SOME PROPERTIES HAAR STATISTICAL STRUCTURES

Z. Zerakidze¹, T. Chkonia²

¹ Faculty of Educations, Exact and Natural Sciences Gori State University, 53 Chavchavadze Ave., 1400, Gori, Georgia zura.zerakidze@mail.ru
² I. Javakhishvili Tbilisi State University

11 University str. 0186, Tbilisi, Georgia tamar.chkonia@tsu.ge

Abstract

In this paper we define Haar statistical structures. We prove necessary and sufficient conditions to be weakly separable and strongly separable Haar statistical structures in Banach space of measures.

Keywords and phrases: Haar measure, Haar statistical structure, Banach space of measure.

AMS subject classification (2010): 62H05, 62H12.

Let (E, S) be a measurable space, I the set indices, $\{\mu_i, i \in I\}$ the family of probability measures on S. The following definitions are taken from the works [1, 2, 3, 4].

Definition 1. An object $\{E, S, \mu_i, i \in I\}$ is called statistical structure.

Definition 2. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called orthogonal statistical structure if the family of probability measures $\{\mu_i, i \in I\}$ are pairwise singular measures.

Definition 3. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called weakly separable if there exists a family S-measurable sets $\{X_i, i \in I\}$ such that the relations are fulfilled:

$$\mu_i(X_j) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases} \quad \forall i, j \in I.$$

Definition 4. A statistical structure $\{E, S, \mu_i, i \in I\}$ is strongly separable, it there exist pairwise disjoint S-measurable sets $\{X_i, i \in I\}$ such that the relations are fulfilled:

$$\mu_i(X_i) = 1, \ \forall i \in I.$$

Let M^{σ} be real linear space of all alternating finite measures on (E, S).

Definition 5. A linear subset $M_B \subset M^{\sigma}$ is called a Banach space of measures if:

(1) a norm can be defined on M_B so that with respect to this norm M_B will be a Banach space, and for any orthogonal measures, $\mu, \nu \in M_B$ and any real number $\lambda \neq 0$ the following inequality is fulfilled:

$$\|\mu + \lambda\nu\| \ge \|\mu\|;$$

(2) if $\nu \in M_B$ and $|f(x)| \leq 1$, then

$$\nu_f(t) = \int_A f(x)\nu(dx) \in M_B,$$

where f(x) is a S-measurable real function and $\|\nu_f\| \leq \|\nu\|$;

γ

(3) if $\nu_n \in M_B$, $\nu_n > 0$, $\nu_n(E) < \infty$, n = 1, 2, ... and $\nu_n \downarrow 0$, then for any linear functional $\ell^* \in M_B^*$:

$$\lim_{n \to \infty} \ell^*(\nu_n) = 0,$$

where M_B^* conjugate to linear space M_B .

Example. Let $\{\mu_i, i \in A\}$ be pairwise orthogonal Haar probability measures on $\{E, S\}$ and $g_i(x)$ be real S-measurable functions, M_B is the set of measures of the form $\nu(B) = \sum_{i \in A_1 B} \int g_i(x)\mu_i(dx)$, where $A_1 \subset A$ is a countable set form A and

$$\sum_{i\in A_1} \int_E |g_i(x)| \mu_i(sx) < \infty.$$

Let

$$\|\nu\| = \sum_{i \in A_1} \int_E |g_i(x)| \mu_i(dx).$$

Then M_B is Banach space of measures.

Definition 6. Let H be an arbitrary locally compact σ -compact topological group and B(H) σ -algebra of subsets of H. We say that μ measure defined on B(H) is Haar measures if μ is regular measure and

$$\mu(sX) = \mu(X), \ \forall s \in H, \ \forall X \in B(H)$$

Definition 7. An object $\{H, B(H), \mu_i, i \in I\}$ is called Haar statistical structure, where $\{\mu_i, i \in I\}$ the family of Haar measures on (H, B(H)).

Theorem 1. [see [3]] Let M_B be a Banach space of measures. Then there exists a family of pairwise orthogonal Haar statistical structure $\{H, B(H), \mu_i, i \in$ I} from this space, such that $M_B = \bigoplus_{i \in I} M_B(\mu_i)$, where $M_B(\mu_i)$ is a Banach space of elements ν of the form

$$\nu(B) = \int_{B} f(x)\mu_{i}(dx), \quad \int_{H} |f(x)|\mu_{i}(dx) < \infty$$

with the norm

$$\|\nu\|_{M_B(\mu_i)} = \int_H |f(x)\mu_i(x)(dx).$$

Theorem 2. Let

$$M_B = \bigoplus_{i \in I} M_B(\mu_i).$$

For an orthogonal Haar statistical structure $\{H, B(H), \mu_i, i \in I\}$ to be weakly separable it is necessary and sufficient that the correspondence

$$f \longleftrightarrow \ell_f$$

given by equality

$$\int_{H} f(x)\nu(dx) = \ell_f(\nu), \ \forall \nu \in M_B,$$

would be one-to-one. Here $\ell_f(\nu)$ is linear continuous functional on M_B , $f \in F(M_B)$. (Denote by $F(M_B)$ the set of those f, for which $\int_H f(x)\nu(dx)$

is defined for all $\nu \in M_B$.)

Proof. Sufficiently. For $f \in F(M_B)$ we define the linear continuous functional ℓ_f by the equality

$$\int_{H} f(x)\nu(dx) = \ell_f(\nu)$$

Denote by I_f the countable subset I, for which

$$\int_{H} f(x)\mu_i(dx) = 0 \text{ for } i \notin I_f.$$

Let us consider the functional $\ell_{f_{\varphi}}$ on $M_B(\mu_i)$, to which there corresponds f_{φ} . Then for $\psi_1, \psi_2 \in M_B(\mu_i)$:

$$\int_{H} f_{\psi_1}(x)\psi_2(dx) = \ell_{f_{\psi_1}}(\psi_2) = \int_{H} f_1(x)f_2(x)\mu_i(dx) = \int_{E} f_{\psi_1}(x)f_2(x)\mu_i(dx) = \int_{E} f_{\psi_1}(x)f_2$$

Therefore $f_{\psi_1}(x) = f_1$ a.e. with respect to the measure μ_i . Let $f_i(x) > 0$ with respect to the measure μ_i and

$$\int_{H} f_i(x)\mu_i(dx) < \infty, \quad \mu_i^*(C) = \int_{C} f_i(x)\mu_i(dx),$$

then

$$\int_{H} f_{\mu_{i}^{*}}(x)\mu_{j}(dx) = \ell_{f_{\mu_{i}^{*}}}(\mu_{j}) = 0, \quad \forall j \neq i.$$

Denote $C_i = \{x : f_{\mu_i^*}(x) > 0\}$, then $\int_H f_{\mu_i^*}(x)\mu_j(dx) = \ell_{f_{\mu_i^*}}(\mu_j) = 0, \forall j \neq i$. Hence it follows that $\mu_j(C_i) = 0, \forall j \neq i$.

On the other hand

$$\mu_i^*(H - C_i) = \int_{H - C_i} f_{\mu_i}(x)\mu_i(dx)$$

=
$$\int_{H} f_{\mu_i}(x)I_{(H - C_i)}(x)\mu_i(dx) = \int_{H} f_{\mu_i^*}(x)I_{(H - C_i)}(x)\mu_i(dx) = 0.$$

Since $f_{\mu_i^*}(x) = f_{\mu_i}(x)$ a.e. with respect to the measure μ_i and $f_{\mu_i^*}(x)I_{(H-C_i)}(x) \equiv 0$. The sufficiency is proved.

Necessary. Since the Haar statistical structure $\{H, B(H), \mu_i, i \in I\}$ is weakly divisible, there exist S-measurable sets C_i such that $\mu_i(H - C_i) = 0$ and $\mu_j(C_i) = 0, \forall j \neq i$. We put the linear continuous functional ℓ_{C_i} into correspondence to a function $I_{C_i}(x) \in F(M_B)$ by the formula

$$\int_{H} I_{C_i}(x)\mu_i(dx) = \ell_{C_i}(\mu_i) = \|\mu_i\|_{M_B(\mu_i)}.$$

We put the linear continuous functional $\ell_{f_{\psi_1}}$ into correspondence to the function $f_{\psi_1}(x) = f_1(x)I_{C_i}(x) \in F(M_B)$. Then for any $\psi_i \in M_B(\mu_i)$,

$$\int_{H} f_{\psi_1}(x)\psi_2(dx) = \int_{H} f_1(x)I_{C_i}(x)\psi_2(dx)$$
$$= \int_{H} f(x)f_1(x)I_{C_i}(x)\mu_i(dx) = \ell_{f_{\psi_1}}(\psi_2) = \|\psi_2\|_{M_B(\mu_i)}.$$

Let \mathcal{E} be the collection of extensions of functionals ℓ satisfying the condition $\ell_f \leq p(x)$ on those subspaces where they are defined. Let us introduce, on \mathcal{E} , a partial ordering, having assumed $\ell_{f_1} < \ell_{f_2}$, if ℓ_{f_2} is defined on a larger set that ℓ_{f_1} , and $\ell_{f_2}(x) = \ell_{f_1}(x)$ there where both of them are defined, Let $\{\ell_{f_i}\}_{i \in I}$ be a linear ordered subset in \mathcal{E} . Let $M_B(\mu_i)$ be the subspace on which ℓ_{f_i} is defined. Define ℓ_f on $\bigcup_{i \in I} M_B(\mu_i)$, having assumed $\ell_f(x) = \ell_{f_i}(x)$ if $x \in M_B(\mu_i)$. It is obvious that $\ell_{f_i} < \ell_f$. Since any linearly ordered subset in \mathcal{E} has an upper bound, by virtue of Chorn's lemma \mathcal{E} contains a maximal element Λ defined on some set X' and satisfying the condition $\Lambda(x) \leq p(x)$ for $x \in X'$. But X' must coincide with the entire space M_B because otherwise we could extend Λ to a wider space by adding, as above, one more dimension. This contradicts the maximality of Λ . Hence $X' = M_B$. Therefore the extension of the functional is defined everywhere.

If we put the linear continuous functional ℓ_f into correspondence to the function

$$f(x) = \sum_{i \in I} g_i(x) I_{C_i}(x) \in F(M_b).$$

than we obtain

$$\int_{H} f(x)\nu(dx) = \|\nu\| = \sum_{i \in I_0} \|\mu_i\|_{M_B(\mu_i)},$$

where

$$\nu = \sum_{i \in I_0} \int_H g_i(x) \mu_i(dx).$$

Remark 1. From the proven theorem it follows that the above-indicated correspondence puts some function $f \in F(M_B)$ into correspondence to each linear continuous functional ℓ_f . If in $F(M_B)$ we identify the functions co-inciding with respect to the measure $\{\mu_i, i \in I\}$, then the correspondence will be bijective.

It is also well known that in the (ZFC) & (CH) theory exists a continual weakly separable structure that is not strongly separable. Here and in the sequel we denote by (MA) Martin's axiom (see [4]).

Theorem 3. Let

$$M_B = \bigoplus_{i \in I} M_B(\mu_i),$$

H be total metric space, and $\{\mu_i, i \in I\}$ be the family of pairwise orthogonal Haar Borel probability measures on the space *H*. Let Card $I < 2^{\chi_0}$. Then in the (ZFC) & (MA) theory, for an orthogonal Haar Borel statistical structure $\{H, B(H), \mu_i, i \in I\}$ to be strongly separable it is necessary and sufficient that the correspondence

$$f \longleftrightarrow \ell_f$$

given by the equality

$$\int_{H} f(x)\nu(dx) = \ell_f(\nu), \ \forall \nu \in M_B,$$

would be one-to-one and $\ell_f(\nu)$ would be a linear continuous functional. (Denote $F = F((M_H)$ the set real functions for which $\int_{Y} f(x)\nu(dx)$ is de-

fined $\forall \nu \in M_B$.)

Proof. The *necessity* is proved in the same manner as the necessity in Theorem 2. We will show the *sufficiently*.

According to Theorem 2, a Haar Borel orthogonal statistical structure $\{H, B(H), \mu_i, i \in I\}$, $Card I < 2^{\chi_0}$, is weakly separable. We represent $\{\mu_i, i \in I\}$ as an inductive sequence $\{\mu_i, i < w_\alpha\}$ where W_α denotes the first ordinal number of the power of the set I. Since $\{H, B(H), \mu_i, i \in I\}$ is weakly separable, there exists a family of measurable parts $\{X_i\}_{i < w_\alpha}$ of the space H, such that the following relation is fulfilled:

$$(\forall i)(\forall j)(i \in [0, w_{\alpha}) \& j \in [0, w_{\alpha}) \Longrightarrow \mu_i(X_j) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases} \forall i, j \in I.$$

We define the w_{α} -sequence of parts of the space H so that the following relations are fulfilled:

- (1) $(\forall i)(i < w_{\alpha} \Longrightarrow B_i \text{ is a Borel subset } H);$
- (2) $(\forall i)(i < w_{\alpha} \Longrightarrow B_i \subset X_i);$
- (3) $(\forall i_1)(\forall i_2)(i_1 < w_\alpha) \& (i_2 < w_\alpha) \& (i_1 \neq i_2) \Longrightarrow B_{i_1} \cap B_{i_2} = \emptyset;$
- (4) $(\forall i)(i < w_{\alpha} \Longrightarrow \mu_i(B_i) = 1).$

Assume that $B_0 = X_0$. Let further the partial sequence $(B_j)_{j < i}$ be already defined for $i < w_{\alpha}$. It is clear that $\mu^*(\bigcup_{j < i} B_j) = 0$. Thus there exists a Borel subset Y_i of the space H such that the following relations ar valid:

$$\bigcup_{j < i} B_j \subset Y_i \text{ and } \mu_i(Y_i) = 0.$$

Assume $B_i = X_i - Y_i$.

Thereby the w_{α} -sequence of $(B_i)_{i < w_{\alpha}}$ -disjunctive measurable subsets of the space E is constructed. Therefore

$$(\forall i) (i < w_{\alpha} \Longrightarrow \mu_i(B_i) = 1).$$

References

- 1. Ibramkhalilov I. Sh., Skorokhod A. V. Consistent estimators of parameters of random processes (Russian). "Naukova Dumka", Kiev, 1980.
- 2. Zerakidze Z. S. The structure of a family of probability measures (Russian). Soobshch. Akad. Nauk Gruzin. SSR 113, 1 (1984), 37–39.
- Zerakidze Z. S. Banach space of measures. Probability theory and mathematical statistics, Vol. II (Vilnius, 1989), 609–616, "Mokslas", Vilnius, 1990.
- 4. Jech T. Set theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.