
STAR TYPES: A TYPE SYSTEM FOR PATTERN
CALCULUS

Besik Dundua1,2 Mikheil Rukhaia2 Lali Tibua2

1 FBT, International Black Sea University
Agmashenebeli Alley 13km., 0131 Tbilisi, Georgia

2 VIAM, Ivane Javakhishvili Tbilisi State University
University str. 2, 0186 Tbilisi, Georgia

Abstract

The pattern calculus described in this paper integrates the func-
tional mechanism of the lambda-calculus and the capabilities of pat-
tern matching with star types. Such types specify finite sequences of
terms and introduce non-determinism, caused by finitary matching.
We parametrize the calculus with an abstract matching function and
prove that for each concrete instance of the function with a finitary
matching, the calculus enjoys subject reduction property.

1 Introduction

Pattern calculi extend λ-calculus by permitting to abstract over arbitrary
terms, not only over variables. For instance, an expression λtxupf xq.px aq
is a term in a pattern calculus, where pf xq is called the pattern. Some
of other instances of pattern calculi are λ-calculus with patterns [15], pure
pattern calculus [12, 13], pattern-based calculi with finitary matching [1],
ρ-calculus [5], λ-calculus with first-order constructor patterns [16].

Pattern calculi are expressive enough to encode term rewriting systems
correspond to contracting symbols given in [18, 17]. Typed pattern based
calculi are formalism for functional programming languages. Therefore,
after studying properties of untyped pattern calculus parameterized with
finitary matching [1], it is natural to integrate a type system in it and con-
sider a typed version of the calculus. This paper presents star typed pattern
calculus with finitary matching and introduces a corresponding subtyping
relation. Star types allow to control non-determinism in pattern calcu-
lus influenced from finitary matching. We prove that star typed pattern
calculus with finitary matching enjoys subject reduction property.

A distinctive feature of our pattern calculus is star types, extending
simple types. For instance, we may have a type α�, which, intuitively,
represents a finite sequence of terms (aka a hedge) of type α; or a type

AMIM Vol.25 No.2, 2020 B. Dundua, M. Rukhaia, L. Tibua

α1 Ñ α�
2 Ñ α, which represents a variadic function whose first argument

should have the type α1, followed by arbitrarily many arguments of type α2.
Star types naturally introduce subtyping, based on the monoidal structure
of hedges. Fixed arity types (e.g., the binary type pθ�1 Ñ α1q Ñ θ2 Ñ α2)
and their starred versions form the upper set in the preorder generated
by the subtype ordering. We type variables only with types from this
set, while constants can get arbitrary types, which may contain stars (e.g.,
pθ� Ñ αq� Ñ α) but are not starred themselves (e.g., not pθ� Ñ αq�).

Typed pattern calculi have been studied in [14, 6, 3, 11], just to name a
few. To the best of our knowledge, systems with star types have not been
considered in this context. Star types (and, in general, regular expression
types) proved to be useful for XML processing. XDuce [10], CDuce [4],
XHaskell [19], XCentric [7], PρLog [9, 8] are some examples of such ap-
plications. Hence, our work also provides a bridge between pattern-calculi
(which model pattern-matching in functional programming languages) and
XML-processing languages.

2 A Non-deterministic Pattern Calculus

2.1 Untyped Terms

We start with defining the syntax of our untyped pattern calculus. The
alphabet consists of the set X of variables and F of constants. They are
disjoint and countably infinite. The symbols x and f range over X and F ,
respectively. Terms are defined by the following grammar:

A,B ::� x | f | pABq | λVA.B

where pABq is an application and λVA.B is an abstraction. We call the
term A in the abstraction a pattern and the finite set V of variables is
supposed to specify which variables are bound by the abstraction. Ap-
plication associates to the left, therefore we can write pAB1 � � �Bnq for
pp� � � pAB1q � � � qBnq. When there is no ambiguity, the outermost parenthe-
ses are omitted as well. The letters A,B,C,D are used for terms and the
set of terms is denoted by T .

The sets of free and bound variables of a term D, denoted fvpDq and
bvpDq respectively, are defined inductively as follows:

fvpxq � txu fvpfq � H bvpxq � H bvpfq � H

fvpABq � fvpAq Y fvpBq bvpABq � bvpAq Y bvpBq

fvpλVA.Bq � pfvpAq Y fvpBqqzV bvpλVA.Bq � bvpAq Y bvpBq Y V

138

Star Types: A Type System for ... AMIM Vol.25 No.2, 2020

Note that, unlike the λ-calculus, we abstract not only on variables but
on terms. Usually, terms are denoted by capital letters. We adopt Baren-
dregt’s variable name convention [2], i.e., free and bound variables have
different names. This can be fulfilled by renaming bound variables. As
usual, we identify terms modulo α-equivalence.

Hedges are finite (possible empty) sequences of terms. For readability,
we put in brackets if they have more than one element, e.g., xA,By. For
the empty hedge we use xy. We use letter h to denote hedge.

The notions of free and bound variables are extend to hedges in a natural
way: fvpxA1, . . . , Anyq � Yni�1fvpAiq and bvpxA1, . . . , Anyq � Yni�1bvpAiq.

A substitution σ is a mapping from variables to hedges such that all
but finitely many variables are mapped to themselves. If x1, . . . , xn, n ¥
0 are all the variables for which σpxiq � xi, then we write σ in the
form of the finite set of pairs tx1 ÞÑ σpx1q, . . . , xn ÞÑ σpxnqu. The sets
Dompσq � tx1, . . . , xnu and Ranpσq � tσpx1q, . . . , σpxnqu are called the
domain and the range of σ, respectively. The set Varpσq is defined as
Varpσq � Dompσq Y fvpRanpσqq. The Greek letters σ, ρ, ϕ, ϑ are used to
denote substitutions.

The restriction of a substitution σ to a set of variables V , denoted σ|V ,
is defined as σ|V pxq � σpxq if x P V , and σ|V pxq � x otherwise.

The application of a substitution ϕ to a term D replaces each free
occurrence of a variable v in D with ϕpvq. It is defined inductively:

xσ � σpxq, if x P Dompσq. pABqσ � AσBσ, if B R X .
xσ � x, if x R Dompσq. pAxqσ � AσB1 � � �Bn,

fσ � f. if σpxq � xB1, . . . , Bny, n ¥ 0.

pλVA.Bqσ � λVAσ.Bσ. pAxqσ � Aσ x, if x R Dompσq.

In the abstraction, it is assumed that Varpϕq X bvpλVA.Bq � H. This
can be achieved by properly renaming the bound variables. Hence, the
equality here is α-equivalence.

The application of a substitution ϕ to a hedge xs1, . . . , sny is defined as
xs1, . . . , snyϕ � xs1ϕ, . . . , snϕy, where we write xs1ϕ, . . . , si�1ϕ, t1, . . . , tm,
si�1ϕ, . . . , snϕy when siϕ � xt1, . . . , tmy.

Evaluation in the pattern calculus is defined by a binary relation βp
on terms. It defines the way how pattern-abstractions are applied. The
relation is parametrized by a pattern matching function Sol , which takes
as parameters two terms A,B and set of variables V and computes a finite
set of substitutions. We denote it by SolpA ÎV Bq. βp is written in the
form of a reduction rule:

βp : pλVA.BqC Ñ Bσ, where σ P SolpA ÎV Cq and Bσ is a term.

139

AMIM Vol.25 No.2, 2020 B. Dundua, M. Rukhaia, L. Tibua

The condition “Bσ is a term” is important to make sure that terms are re-
duced to terms, not to arbitrary hedges. A reducible expression, or redex, is
any expression to which this rule applies. A binary relation of compatibility
ÑR on hedges is defined with the help of the following inference rules:

AÑR A
1

AB ÑR A1B

AÑR A
1

BAÑR BA1

B ÑR B
1

λVA.B ÑR λVA.B1

AÑR A
1

λVA.B ÑR λVA1.B

AÑR B

xh1, A, h2y ÑR xh1, B, h2y

In what follows, ÑβC denotes the compatible closure of the βp relation
and �βC denotes the reflexive and transitive closure of ÑβC . The definition
of �βC is extended to substitutions having the same domain by setting
ϕ�βC ϕ1 if for all x P Dompϕq � Dompϕ1q, we have xϕ�βC xϕ1.

2.1.1 Typed Terms.

Let A be a nonempty set of type atoms. The set of types over A, denoted
TA or simply T, is defined inductively with the help of the type constructors
Ñ and �: α P A ñ α P T, θ1, θ2 P T ñ pθ1 Ñ θ2q P T, and θ1, θ2 P T ñ
pθ�1 Ñ θ2q P T.

The set of star types (over A), denoted T�A or simply T�, is defined
inductively as θ P T ñ θ P T� and θ P T ñ θ� P T�. Note that if a type
does not contain a star type, then it is a standard simple type.

We define yet another set of types, which we call fixed arity types and
denote by F. It is the smallest set with the properties α P A ñ α P F and
θ P T,ϕ P F ñ pθ Ñ ϕq P F. Each type in F has the form θ1 Ñ p� � � Ñ
pθn Ñ αq � � � q. The set of starred fixed arity types is denoted by F�. We
have F � T and F� � T�.

The letter α will be used to denote elements from A, the letters θ, δ
for elements of T, Θ for elements of T�, ϕ for elements of F, and Φ for
elements of F�. As usual, Θ1 Ñ � � � Ñ Θn Ñ θ stands for pΘ1 Ñ pΘ2 Ñ
� � � Ñ pΘn Ñ θq � � � qq.

The subtyping relation is the preorder generated by the relation ¤ de-
fined as:

θ
�
1 Ñ θ2 ¤ θ2 θ

�
1 Ñ θ2 ¤ θ

�
1 Ñ θ

�
1 Ñ θ2 θ ¤ θ

�

θ
�
1 ¤ θ

�
2 if θ1 ¤ θ2 Θ1 Ñ θ1 ¤ Θ2 Ñ θ2 if Θ2 ¤ Θ1 and θ1 ¤ θ2

We denote the subtyping relation with ¤ as well. The following lemma
characterizes fixed arity types in T with respect to ¤:

Lemma 1. For all types θ P T, there exists ϕ P F such that θ ¤ ϕ.

140

Star Types: A Type System for ... AMIM Vol.25 No.2, 2020

Proof. By structural induction on θ.

Corollary 1. For all types Θ P T�, there exists Φ P F� such that Θ ¤ Φ.

The next lemma states that F is an upper set in the preorder T:

Lemma 2. For all types ϕ P F and θ P T, if ϕ ¤ θ, then θ P F.

Proof. By structural induction on ϕ.

Corollary 2. For all types Φ P F� and Θ P T�, if Φ ¤ Θ, then Θ P F�.

We assume that each f P F has the unique associated type, typepfq P T.
A type assignment statement is an expression of the form x : Φ or A : Θ

with A P T zX , Φ P F�, Θ P T�. The types Φ, Θ are the predicate and x,A
are the subject of the statement. A declaration is a statement whose subject
is a variable. A basis Γ is a set of declarations with distinct variables as
subjects. By SubjectpΓq we denote the set of variables that are subjects
of the declarations in Γ: SubjectpΓq � tx | x : Φ P Γu. Note that the
variables are assigned fixed arity types or starred fixed arity types, while
constants may have an arbitrary associated type from T. A statement A : Θ

is derivable from a basis Γ, written Γ $ A : Θ, if Γ $ A : Θ can be produced
by the following rules:

Γ, x : Φ $ x : Φ
(var)

Γ $ f : typepfq
(fun)

Γ $ A : Θ Ñ θ Γ $ B : Θ

Γ $ AB : θ
(app)

Γ $ A : Θ1 Θ1 ¤ Θ2

Γ $ A : Θ2
(sub)

Γ,∆ $ A : θ1 Γ,∆ $ B : θ2 Subjectp∆q � V
Γ $ λVA.B : θ1 Ñ θ2

(abs)

The type assignment statement and the derivability relation extend to
hedges:

Γ $ A1 : Θ1, . . . ,Γ $ An : Θn Θ1 ¤ Θ, . . . ,Θn ¤ Θ

Γ $ xA1, . . . , Any : Θ
(hed)

From this definition, by Corollary 2 we have the lemma:

Lemma 3. If Γ $ x : Θ, then Θ P F�.

Example 1. Let typepfq � α1 Ñ α1, typepgq � α�
2 Ñ α�

1 Ñ α2, typepaq �
α1, typepbq � α2, and Γ � tx : α1, y : α�

2 , z : α1 Ñ α2u. Then some
examples of derivable statements are

� Γ $ x : α1, Γ $ x : α�
1 , and Γ $ y : α�

2 .

141

AMIM Vol.25 No.2, 2020 B. Dundua, M. Rukhaia, L. Tibua

� Γ $ z : pα�
2 Ñ α1q Ñ α2 and Γ $ z : pα�

2 Ñ α�
2 Ñ α1q Ñ α2.

� Γ $ pg bq : α�
2 Ñ α�

1 Ñ α2, Γ $ pg bq : α�
1 Ñ α2, and Γ $ pg bq : α2.

� Γ $ pg pf aqq : α�
1 Ñ α2 and Γ $ pg pf aqq : α2.

� Γ $ xy, b, pg bq, pg pf aqqy : α�
2 .

We say that xA1, . . . , Any is a Γ-typed hedge iff there exists Θ P T� such
that Γ $ xA1, . . . , Any : Θ. Respectively, A is a Γ-typed term iff there exists
θ P T such that Γ $ A : θ. Under this definition, every Γ-typed term is
also a Γ-typed hedge, but not vice versa. For instance, if x : ϕ� P Γ, then
x is a Γ-typed hedge, but not a Γ-typed term.

A typed hedge (resp. typed term) is a Γ-typed hedge (term) for some
Γ. We use the letter h for typed hedges and the letters M,N,P,Q,W for
typed terms.

Given a basis Γ, we define a Γ-typed substitution σΓ as a substitution
from Γ-typed variables to Γ-typed hedges such that types are preserved.
Type preservation means that for each variable x there exist types Φ and
Θ with Θ ¤ Φ such that x : Φ P Γ and Γ $ σΓpxq : Θ. The subscript Γ
from σΓ is sometimes omitted, if it is clear from the context.

Note that the application of a Γ-substitution σ to a Γ-typed hedge
maps Γ-typed hedges to Γ-typed hedges. Also, Γ-typed terms are mapped
to Γ-typed terms (and not to arbitrary Γ-typed hedges).

Example 2. Let f, g, a, b, and Γ be defined as in Example 1. Let also
M � λtxupf xq.pg y xq and σ � tx ÞÑ pf aq, y ÞÑ xb, pg bq, pg pf aqqyu. Then
we have Mσ � λtxupfxq.pg b pg bq pg pf aqqxq.

2.1.2 Reduction.

For a given Γ, a Γ-typed version of the pattern matching function Sol
takes as parameters two Γ-typed terms P,Q and Γ-typed set of variables
V and computes a finite set of Γ-typed substitutions. We denote it by
SolpP ÎΓ

V Qq, dropping Γ when it does not cause a confusion. Then for
Γ-typed terms P,N,Q and a Γ-typed substitution σ, βp can be written as

βp : pλVP.NqQÑ Nσ, where σ P SolpP ÎV Qq.

Note that there is no need to require Nσ to be a term explicitly, because
this property always holds due to the fact that the application of a Γ-typed
substitution to a Γ-typed term gives a Γ-typed term.

142

Star Types: A Type System for ... AMIM Vol.25 No.2, 2020

3 Subject Reduction

The first interesting property of our calculus is subject reduction (SR),
which essentially says that the �βC relation preserves types. SR is based
on two lemmas: the Generation Lemma and the Substitution Lemma.

Lemma 4 (Generation Lemma). Let Γ be a basis.

� If Γ $ x : Φ, then there exists Φ1 ¤ Φ such that px : Φ1q P Γ.

� If Γ $ MN : Θ, then there exist Θ1 and θ ¤ Θ such that Γ $ M :
Θ1 Ñ θ and Γ $ N : Θ1.

� If Γ $ λVP.N : Θ, then there exist θ1, θ2, and ∆ such that θ1 Ñ θ2 ¤

Θ, Subjectp∆q � V, Γ,∆ $ P : θ1 and Γ,∆ $ N : θ2.

� If Γ $ xM1, . . . ,Mny : Θ, then there exist Θ1 ¤ Θ, . . . ,Θn ¤ Θ such
that Γ $M1 : Θ1, . . . ,Γ $Mn : Θn.

Proof. By induction on the length of the type derivation.

Lemma 5 (Substitution Lemma). Let Γ be a basis and σ be a Γ-typed
substitution. If Γ $M : θ, then there exists δ ¤ θ such that Γ $Mσ : δ.

Proof. By structural induction on M . When M � x, either xσ � x and
δ � θ, or xσ � x and by Lemma 4, there exists Φ ¤ θ such that x : Φ P Γ.
Since σ is Γ-typed, there exists Φ1 ¤ Φ such that Γ $ xσ : Φ1 and we can
take δ � Φ1 ¤ θ.

The proof is easy for M � f and M � λVP.N . We only consider the
case M �M1x. For M �M1M2 with M2 R X the proof is similar.

Let M �M1x. by Lemma 4, there exist Θ, θ1 such that Γ $M1 : Θ Ñ
θ1, Γ $ x : Θ, and θ1 ¤ θ. Then Θ P F�. First, assume Θ � ϕ� for some
ϕ. Let xσ � xN1, . . . , Nny, n ¥ 0. Then pM1xqσ � ppM1σqN1 � � �Nnq. By
the IH there exists δ1 ¤ ϕ� Ñ θ1 such that Γ $ M1σ : δ1. If n � 0, this
already proves the lemma, because from δ1 ¤ ϕ� Ñ θ1 ¤ θ1, the sub rule
gives Γ $ M1σ : θ1, and we can take δ � θ1. If n ¡ 0, by the sub rule, we
have Γ $ M1σ : ϕ� Ñ θ1 and, eventually, Γ $ M1σ : ϕ� Ñ � � � Ñ ϕ� Ñ θ1

for n-fold application. Since Γ $ xN1, . . . , Nny : ϕ�, by hed, there exist
Θ1, . . . ,Θn such that Γ $ Ni : Θi ¤ ϕ� for all 1 ¤ i ¤ n. Then by sub
we have Γ $ Ni : ϕ� for all 1 ¤ i ¤ n. Applying app n-times, we get
Γ $ ppM1σqN1 . . . Nnq : θ1 and we can take δ � θ1 ¤ θ.

Now assume Θ � ϕ for some ϕ. Then Γ $ xσ : ϕ. By the IH, Γ $
M1σ : δ1 and δ1 ¤ ϕ Ñ θ1. By sub, Γ $ M1σ : ϕ Ñ θ1. Then app gives
Γ $ pM1σqxσ : θ1 and we take δ � θ1 ¤ θ.

143

AMIM Vol.25 No.2, 2020 B. Dundua, M. Rukhaia, L. Tibua

Theorem 1 (Subject Reduction). If M1 �βC M2 and Γ $ M1 : Θ, then
Γ $M2 : Θ.

Proof. We prove Γ $ M2 : Θ from Γ $ M1 : Θ and M1 ÑβC M2. Then
the theorem follows by induction on the length of the reduction sequence
M1 �βC M2.

We proceed by induction on the derivation of Γ $ M1 : Θ. When
Γ $M1 : Θ is an axiom, then M1 is either x or f and it can not be reduced
by ÑβC . Hence, the theorem follows trivially, since M1 ÑβC M2 is not
possible. When Γ $M1 : Θ is Γ $ N1N2 : Θ, then by Lemma 4 there exist
Θ1 and θ ¤ Θ such that Γ $ N1 : Θ1 Ñ θ and Γ $ N2 : Θ1. We have the
following cases:

� M2 � N 1
1N2 with N1 ÑβC N 1

1, or M2 � N1N
1
2 with N2 ÑβC N 1

2.
In these cases we apply the IH to get Γ $ M2 : θ. Then sub gives
Γ $M2 : Θ.

� N1 � λVP.Q and M1 � pλVP.QqN2 ÑβC M2 � Qσ where σ P
SolpP ÎV N2q. σ is a Γ,∆-based substitution, where Subjectp∆q � V.
By Lemma 4, there exist Θ1 and θ ¤ Θ such that Γ $ pλVP.Qq :
Θ1 Ñ θ and Γ $ N2 : Θ1. Again, by Lemma 4 there exist θ1, θ2

such that θ1 Ñ θ2 ¤ Θ1 Ñ θ, Γ,∆ $ P : θ1, and Γ,∆ $ Q : θ2.
By the subtyping rules, we get Θ1 ¤ θ1 and θ2 ¤ θ. By Lemma 5,
we have Γ,∆ $ Qσ : δ with δ ¤ θ2. By C0, on the one hand we
have Dompσq � V and on the other hand we have Ranpσq X V � H,
hence we conclude fvpQσq X V � H. Since V � Subjectp∆q, from
Γ,∆ $ Qσ : δ we get Γ $ Qσ : δ with δ ¤ θ2. We also know
θ2 ¤ θ ¤ Θ. Hence, by sub we conclude Γ $ Qσ : Θ.

When Γ $ M1 : Θ is Γ $ λVP.Q : Θ, then by Lemma 4 there exist
θ1 Ñ θ2 ¤ Θ and ∆ such that Subjectp∆q � V, Γ,∆ $ P : θ1, and
Γ,∆ $ Q : θ2. If M2 � λVP

1.Q with P ÑβC P 1 or M2 � λVP.Q
1 with

QÑβC Q1, then by the IH and abs we get Γ $M2 : θ1 Ñ θ2. Finally, sub
gives Γ $M2 : Θ.

Example 3. If variables were permitted to have arbitrary types instead
of fixed arity types or starred fixed arity types, then SR would not hold:
Assume px : α� Ñ αq P Γ and typepaq � α. Then we have Γ $ x : α Ñ α,
Γ $ x : α, Γ $ λtxux.pxxq : α Ñ α and, finally, Γ $ pλtxux.pxxqaq : α.
However, pa aq, that is obtained by reducing pλtxux.pxxq aq, is not typeable
anymore.

144

Star Types: A Type System for ... AMIM Vol.25 No.2, 2020

Acknowledgments

This research has been partially supported by the Shota Rustaveli National
Science Foundation of Georgia under the grant FR-19-18557, and by the
Shota Rustaveli National Science Foundation of Georgia and Turkish Sci-
entic and Technological Research Council joint grant 04/03.

References

1. Alves, S., Dundua, B., Florido, M., and Kutsia, T. Pattern-
based calculi with finitary matching. Log. J. IGPL 26, 2 (2018), 203–
243.

2. Barendregt, H. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, 1984. Revised edition.

3. Barthe, G., Cirstea, H., Kirchner, C., and Liquori, L. Pure
patterns type systems. In POPL (2003), A. Aiken and G. Morrisett,
Eds., ACM, pp. 250–261.

4. Benzaken, V., Castagna, G., and Frisch, A. CDuce: an XML-
centric general-purpose language. In ICFP (2003), C. Runciman and
O. Shivers, Eds., ACM, pp. 51–63.

5. Cirstea, H., and Kirchner, C. The rewriting calculus - parts I and
II. Logic Journal of the IGPL 9, 3 (2001).

6. Cirstea, H., Kirchner, C., and Liquori, L. Rewriting calculus
with(out) types. Electr. Notes Theor. Comput. Sci. 71 (2002), 3–19.

7. Coelho, J., and Florido, M. Xcentric: A logic-programming lan-
guage for xml processing. In PLAN-X (2007), pp. 93–94.

8. Dundua, B., Kutsia, T., and Marin, M. Strategies in Pρlog. In
WRS (2009), M. Fernández, Ed., vol. 15 of EPTCS, pp. 32–43.

9. Dundua, B., Kutsia, T., and Reisenberger-Hagmayer, K. An
overview of pρlog. In Practical Aspects of Declarative Languages - 19th
International Symposium, PADL 2017, Paris, France, January 16-17,
2017, Proceedings (2017), Y. Lierler and W. Taha, Eds., vol. 10137 of
Lecture Notes in Computer Science, Springer, pp. 34–49.

10. Hosoya, H., and Pierce, B. C. Xduce: A statically typed xml
processing language. ACM Trans. Internet Techn. 3, 2 (2003), 117–
148.

145

AMIM Vol.25 No.2, 2020 B. Dundua, M. Rukhaia, L. Tibua

11. Jay, B. Pattern Calculus. Springer, 2009.

12. Jay, C. B., and Kesner, D. Pure pattern calculus. In ESOP (2006),
P. Sestoft, Ed., vol. 3924 of LNCS, Springer, pp. 100–114.

13. Jay, C. B., and Kesner, D. First-class patterns. J. Funct. Program.
19, 2 (2009), 191–225.

14. Kesner, D., Puel, L., and Tannen, V. A typed pattern calculus.
Inf. Comput. 124, 1 (1996), 32–61.

15. Klop, J. W., van Oostrom, V., and de Vrijer, R. C. Lambda
calculus with patterns. Theor. Comput. Sci. 398, 1-3 (2008), 16–31.

16. Peyton Jones, S. L., and Wadler, P. The Implementation of
Functional Programming Languages. Prentice Hall, 1987, ch. 4: Struc-
tured Types and the Semantics of Pattern Matching.

17. Pkhakadze, S. A n. bourbaki type general theory and the properties
of contracting symbols and corresponding contracted forms. Georgian
Mathematical Journal 6, 2 (1999), 179–190.

18. Sh, P. Some problems of the notation theory. In Proceedings of I.
Vekua Institute of Applied Mathematics of Tbilisi State University,
Tbilisi (1977).

19. Sulzmann, M., and Lu, K. Z. M. XHaskell - adding regular ex-
pression types to Haskell. In IFL (2007), O. Chitil, Z. Horváth, and
V. Zsók, Eds., vol. 5083 of LNCS, Springer, pp. 75–92.

146

