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Abstract

We present a theorem prover for natural language and show how
it processes various types of textual entailment problems. The prover
itself is based on a tableau system for natural logic that employs
logical forms similar to linguistic expressions. With respect to the
problems drawn from textual entailment datasets, a wide-range of
the judgments of the prover are discussed, including both correct and
incorrect ones. The analysis shows that the false proofs, which are
extremely rare, are mainly due to the wrong lexical senses or the noisy
gold labels of the dataset. Knowledge sparsity is identified as the main
reason for the failure in proof search.
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ing, natural reasoning, lambda logical form, natural logic, typed lambda
calculus, textual entailment, combinatory categorial grammar

1 Introduction

The automatic detection of logical relations between natural language ex-
pressions is a fundamental problem of natural language understanding. In
order to model the human reasoning over natural language text, textual
entailment data is used for training and evaluating the theories and sys-
tems. The data represents a collection of text pairs annotated on the en-
tailment, contradiction and neutral relations by humans. The annotated
textual entailments are further used as a benchmark in the recognizing tex-
tual entailment (RTE) challenges [8]. On the other hand, studies on formal
semantics seek formal logics that model linguistic semantics. Such formal
logics supported by an automated theorem prover usually leads to an au-
tomated reasoner for natural language. A notable example of this research
line is the RTE system NutCracker [6] which combines first-order logic and
theorem proving to account for the natural reasoning. We follow the lat-
ter research line by adopting a version of higher-order logic as a semantic
representation and employing an analytic tableau system for theorem prov-
ing. The combination results in an implemented theorem prover for natural
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language that is applicable to wide-coverage text using a robust syntactic
parser as a preprocessor.

While our previous works [2, 1, 3] talks about the theorem prover for
natural language, it was never the purpose to show the matters of failure
and success of the prover with respect to entailment problems. Taking
into account that the prover has almost prefect precision (≈ 98%) with
competitive accuracy [1], it is interesting to see the false proofs or to find
out what is the reason for relatively small recall (61%). In this paper we
explore these cases by considering a plethora of entailment problems that
get mixed judgments from the prover. Based on the analysis, we give the
rationale for the decisions of the prover and draw the directions towards
improvement of the performance.

The rest of the paper is structured as follows. First, the theory behind
the prover, the natural tableau system [22], and its extensions are intro-
duced. Then two relevant components of the natural logic theorem prover
are described. The natural logic theorem prover is followed by the prover
for natural language. We outline its architecture and the details of entail-
ment processing. For each classification type we discuss several entailment
problems that illustrate the issues of theorem proving. Based on the exam-
ples, the reasons for true, false and failed proofs are explained. The paper
ends with final remarks and a description of future work.

2 Natural tableau system

An analytic tableau system for natural logic [22] is a proof procedure over
the logical forms of natural language expressions. The logical forms, so-
called Lambda Logical Forms (LLFs), are merely typed λ-terms that em-
ploy lexical constants and no logical connectives.1 LLFs resemble the sur-
face forms and can be considered as formulas of some sort of natural logic
[15, 5, 26], hence we refer the tableau system as the natural tableau. On the
other hand, a tableau method is a refutation proof procedure [10]. To prove
a statement, it attempts to find a situation that serves as a counterexample
to the statement. If such a situation is found, the statement is disproved;
otherwise it is proved. The search for a situation is done by building a
tableau, also called a truth tree. Each branch of a tableau represents a
situation. The construction of a tableau is guided by a predefined set of
tableau rules.

1In contrast to [22], throughout the paper we assume the extensional semantic types
built upon the entity e and truth t types while the type s for possible worlds is dropped
out. The terms for common lexical elements are typed in an ordinary way: nouns and
intransitive verbs as et, transitive verbs as eet, proper names as e, quantifiers as (et)(et)t.
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1 every(et)(et)t (who(et)(et)et moveet personet) smirket : [ ] : T
2 each(et)(et)t (who danceet manet) smileet : [ ] : F

5
mon↑[1,2]

every (who move person) : [Qet] : T
6

mon↑[1,2]
each (who dance man) : [Q] : F

10
mon↓[5,6]

every : [Ret, Q] : T
11

mon↓[5,6]
each : [R,Q] : F

≤×[10,11] ×

8
mon↓[5,6]

who dance man : [c] : T
9

mon↓[5,6]
who move person : [c] : F

13
∧T[8]

dance : [c] : T
14
∧T[8]

man : [c] : T

16
∧F[9]

person : [c] : F
≤×[14,16] ×

15
∧F[9]

move : [c] : F
≤×[13,15] ×

3
mon↑[1,2]

smirk : [ce] : T
4

mon↑[1,2]
smile : [c] : F

≤×[3,4] ×

Figure 1. The closed tableau represents a failed attempt to refute that the
tep P:“every person who moves smirks”, C:“each man who dances smiles”
does not represent entailment. For the first appearance of a term, its type
is written in a subscript and assumed for its later occurrences. Each node
is labeled with an ID and a source rule application (i.e. the rule and the
IDs of the nodes it applies).

In order to illustrate how the natural tableau works, we give a tableau in
Fig. 1 which refutes a given textual entailment problem (tep) that does not
represent entailment. The tableau starts with the counterexample, 1 and
2 nodes, of the argument.2 It is expanded using the mon↑ rule (see Fig. 2)
which takes into account upward monotonicity (mon↑) of function terms.
mon↑ is a branching rule and its application yields two situations. The left
branch corresponds to the situations where A 6≤ B holds,3 and the right one
to the situations where G 6≤ H holds, including those where A ≤ B holds.
Since every and each are mon↑ in the second argument position, (mon↑)
applies to them—its antecedents match the nodes and its consequents are
introduced in the tableau. From the resulting branches, the left one is closed

2A tableau entry (i.e. node) represents a pair of an LLF and its argument list which
is additionally marked with a truth sign. The semantics behind an entry is that the term
obtained by applying the LLF to its arguments is evaluated according to the sign. The
truth signs T (true) and F (false) represent the terms of type t. Annotations on the nodes
give information about the building process of a tableau.

#�

C denotes a sequence of the
terms.

3For any Aα and Bα lexical terms of the same type α, we say B contains A and write
as A ≤ B iff ∀ #�X(A

#�

X → B
#�

X), where F→T. In this way, doget ≤ animalet holds since
based on the lexical knowledge ∀xe(dogxe→animalxe) holds. Notice that in case of
truth values the containment relation ≤ coincides with the material implication →.
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GA : [
#�

C ] : T
HB : [

#�

C ] : F

A : [
#�

d ] : T
B : [

#�

d ] : F
G : [Q,

#�

C ] : T
H : [Q,

#�

C ] : F

mon↑

where G or H is mon↑
and

#�

d and Q are fresh

GA : [
#�

C ] : T
HB : [

#�

C ] : F

A : [
#�

d ] : F
B : [

#�

d ] : T
G : [Q,

#�

C ] : T
H : [Q,

#�

C ] : F

mon↓

where G or H is mon↓
and

#�

d and Q are fresh

A : [
#�

C ] : T
B : [

#�

C ] : F

×
≤×

where A ≤ B

Figure 2. The tableau rules for monotonic operators

as it is identified as inconsistent with the help of the closure (≤×) rule
in Fig. 2. The right branch is further developed by applying (mon↓) to 5
and 6 . The rule application takes into account the downward monotonicity
(mon↓) of every and each in the first argument position. From the new
branches, the right one is closed due to inconsistency while the left one
is grown from 8 and 9 with the rules that treats who as a conjunction
between terms of type et. In the end, each branch of the tableau is closed,
i.e. the tableau is closed, which indicates the failure in refuting the textual
entailment; therefore the proof for the entailment relation is found.

The previous works [2, 1] extend the natural tableau in several direc-
tions in order to make it viable beyond toy examples. First, we incorporate
the following syntactic types in the type system: n for nouns, np for noun
phrases, s for sentences and pp for prepositional phrases. From the per-
spective of theorem proving, LLFs with syntactic types offer fine-grained
matching between tableau entries and antecedents of the rules. For in-
stance, an LLF of type et can ambiguously correspond to a noun or an
intransitive verb. This ambiguity needs to be resolved before applying a
rule; this complicates a proof procedure. On the other hand, an LLF of
syntactic type contains no such ambiguity. Interaction between the syntac-
tic and semantics types is established by the subtyping v relation defined
as:

(a) e v np, s v t, n v et, pp v et;

(b) for any α1, α2, β1, β2 types, (α1, α2)v(β1, β2) iff β1vα1 and α2vβ2

An LLF with syntactic types still has the similar form as its semantic
counterpart. For instance, compare the LLF in (1), where vp abbreviates
(np, s), to the one in 1 of Fig. 1.

everyn,vp,s (whovp,n,n movevp personn) smirkvp (1)

modifierSet : LLF : argList : truthSign (2)

Moreover, for a single lexical element it is rarely necessary to have two
lexical terms with semantic and syntactic types. This is facilitated by the
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subtyping relation as smilevpce and personnce terms are well-formed and
there is no need for the semantic terms smileet and personet.

The second extension to the system is the introduction of a modifier set
in tableau entries, see (2). As argued in [2], the set is used for saving and
later retrieving a modifier term that is indirectly applied to its head. This
technique is used for the nouns with several adnominals or for the verbs
with several adverbs. The trick with the modifier set solves the problem
of event modification without introducing an event variable in an LLF and
losing the essence of natural logic.4

The last extension is in terms of tableau rules. While [22] presents the
rules for monotonic operators, Boolean connectives, quantifiers, etc., the
natural tableau lacks the rules for many phenomena that are often found
in open domain text. The inventory of rules is further enriched with the
rules for nominal and verbal modifiers, prepositions, copula, passive con-
strictions, expletives, etc. The procedure of collecting the rules is described
in [1]; the rules are presented in [2].

3 Natural logic theorem prover

In order to automatize the natural tableau system, we implemented the
theorem prover for natural logic, called NatPro. The prover is written in
the Prolog language. It expects a finite set of signed LLFs as an input
and, using the inventory of rules and the knowledge base, tries to build a
tableau over the input. Below we describe the components of the prover.
The organization of the knowledge base is explored in more details as it is
relevant for certain judgments discussed in Sec. 5.

3.1 Knowledge base (KB)

Importance of background knowledge for open domain textual entailment
is extremely high. Background knowledge is of two kinds. One is extra-
linguistic knowledge, also called encyclopedic or world knowledge, which
mainly involves information how the current state of the situation or world
is organized. For example, correct classification of the teps (K1) and (K2)
in Table 1 require extra-linguistic knowledge. Another type of knowledge
is linguistic which encompasses the lexical knowledge and its compositions,
where composition is governed by the grammar. In other words, this type
of knowledge is encoded in the language itself. For instance, the linguistic

4Notice that the extension of the natural tableau is conservative—the tableaux gener-
ated with the system of [22], e.g., the one in Figure 2, are still available in the extended
version.
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Table 1. Examples of textual entailment problems

ID Premise Conclusion

K1 Barcelona defeated Real Madrid 4-0 Barcelona thumped Real Madrid

K2 Messi won Ballon d’Or Lionel Messi won the Ballon d’Or award

K3 Not all birds fly There is some bird that does not fly

K4 The piano is being played by the boy The boy is playing a musical instrument

S5 A sad girl is crying A girl is weeping

S6 The child is crying The child is screaming and weeping

S7 The child is screaming The child is weeping

knowledge is required for solving the teps (K3) and (K4) in Table 1. De-
spite this distinction the border between the linguistic and extra-linguistic
knowledge is quite vague.

Currently we model only the linguistic knowledge in the tableau system
by taking WordNet [12] as a lexical knowledge base. At this moment,
for simplicity we employ only the hypernymy and antonymy relations of
WordNet. Using these relations, we define the containment (≤) and disjoint
(|) relations over lexical terms A and B as follows. A ≤ B holds if there
exist the WordNet synsets SA and SB such that SB is at least as general as
SA and some senses of A and B are in SA and SB, respectively. According
to this definition, cryvp ≤ screamvp and screamvp ≤ cryvp because there
exists senses of cryvp and screamvp that belong to the same synset with
the meaning of “utter a sudden loud cry”. Similarly, A and B terms are
disjoint, written as A |B, if some of their senses belong to the synsets that
are in the antonymy relation. In this way, emptyn,n | fulln,n holds as there
exist antonymous singleton synsets with the senses related to the terms.
This kind of treatment of lexical semantics assumes that each lexical term
has multiple senses independently from the context it occurs in. Due to
this feature we call it the multi-sense approach.

The proof search with multiple senses can be interpreted as a search
over lexical senses too: are there senses for the lexical terms that licenses
the given tep as entailment or contradiction? For example, proving equiv-
alence of the sentences in (S5) literally means that based on certain lexical
semantics the sentences are equivalent. The multi-sense approach has a
shortcoming as it validates the entailment relations like one in (S6). But
it does not lead to any relation between “weep” and “scream” since their
senses are not related in WordNet, hence there is no logical relation between
the sentences in (S7).

Compared to the sense disambiguated approach, with multiple senses
it is more likely that there is a relation between two terms. Taking into
account that rule-based RTE systems often have problems related to knowl-
edge sparsity, the multi-sense approach seems an interesting option for the
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tableau prover to overcome the sparsity to some extent. Moreover, the
multi-sense approach is simpler and more robust since it does not require
to disambiguate word senses, the latter representing an open problem in
NLP.5

3.2 Inventory of the rules (IR)

The inventory of the rules is the most crucial component of the tableau sys-
tem. The tableau rules encode simple reasoning steps and instructions how
to decompose large LLFs into smaller pieces. According to the phenomena
the rules account for, they can be roughly categorized into two groups. The
first group of the rules are mainly the ones presented in [22]. These rules
unfold the semantics of the LLFs involving the terms with the algebraic
properties: Boolean, upward monotone, downward monotone, etc. Hence
the rules of this group are called algebraic. The rules for determiners and
those concerning the format of tableau entries are also part of the algebraic
rules. This group also contains so-called admissible rules—the rules that
are redundant from a completeness point of view but represent a shortcut
for several rule applications. Many algebraic rules either introduce a fresh
entity, employ an old entity or has a branching structure; these make the
rules inefficient from the theorem proving perspective. The admissible rules
can be seen as a way of applying some of the inefficient rules in an efficient
manner.

The second group counts the rules that essentially deal with LLFs mod-
eling common syntactic constructions; let them be syntactic rules. The
syntactic rules analyze adjective-head and adverb-head pairs, prepositional
phrases, passive constrictions, compound nouns, the constructions with a
copula, auxiliary and light verbs, etc.; most of these rules are described in
[2].

3.3 A proof engine (PE)

In the prover, a tableau is represented as a list of tableau branches, where
a branch itself is a list of signed LLFs. For terminating a tableau building
process in a finite time, we set the limit for the number of rule applications
(ral). If there is an open branch after the ral is reached, the tableau is
considered open. In order to make sure that each branch gets its fair share
of rule applications, after each rule application on a branch, its next branch

5The upper limit of a word sense disambiguation (WSD) system with respect to the
WordNet senses (i.e. fine-grained senses) is quite low as the inter-annotator agreement
is only 72.5% [24]. Even for course-grained senses the inter-annotator agreement is only
86.5% [23].
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is processed; in case of the last branch, the first branch is processed. In
average, this strategy guarantees finding an open branch, if it exists, earlier
than the strategy where a shift to a new branch happens only if the current
one closes.

The proof engine of the prover represents an algorithm that decides
which of the rule applications is to be carried out next. For the rule appli-
cation strategy it takes into account efficiency of each tableau rule, where
efficiency depends on the properties of a rule, e.g, whether it is branching,
employs old constants or produces fresh ones. For example, (mon↑) and
(mon↓) from Fig. 2 are inefficient rules as they are branching and intro-
duce fresh constants. These rules also have an interesting feature: their
antecedents are not equivalent to the disjunction of the consequents. So,
discarding a node from a branch after applying such a non-equivalent rule
to the node might lead to incompleteness. In light of the non-equivalent
rules, the proof engine needs to track down a rule application history for
each branch in order to avoid performing the same rule application more
than once. Recording the history is also important for the admissible rules.

4 LangPro: natural language theorem prover

The section describes the architecture of the theorem prover that reasons
over natural language expressions. It is also illustrated how the prover
operates on a certain tep. In the end, the evaluation results of the prover
on RTE datasets are presented.

4.1 The architecture

A theorem prover for natural language, called LangPro, is obtained by com-
bining a ccg parser6, the LLF generator [1] and the natural logic theorem
prover (see Fig. 3). In case of the parser component we have at least two
choices: the c&c [7] and easyccg [16] parsers.7 It is interesting to em-
ploy both parsers as they are based on different approaches. Hereafter, the
version of LangPro based on c&c or easyccg is referred as ccLangPro or
easyLangPro, respectively.

6In LLFs, lexical elements are interpreted as functions. Since this interpretation is
fundamental for categorial grammars (CGs), the CG-style derivation is a good starting
point for obtaining LLFs. To the best of our knowledge, the only wide-coverage CG-based
parsers analyze sentences in Combinatory Categorial Grammar (ccg) [25].

7In the current settings of LangPro, we employ c&c with the model trained on the
improved corpus [13]. While easyccg acts as a multi-parser, returning n-best derivations,
currently only the first best derivation is employed.
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LangPro

CCG parser

c&c

easyccg

LLFgen

Tree to term

Fixing terms

Aligner

Type-raising

NatPro

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

Figure 3. The architecture of LangPro

While describing the architecture of LangPro, in Fig. 4 we also de-
mosntrate how the prover operates on a particlar tep—sick-1417 from
the sick dataset [21]. First, the premise and the conclusion are parsed
by a parser. The obtained ccg derivation trees are processed by the LLF
generator (LLFgen): first, the derivations are converted into ccg terms
by removing directionality from the ccg categories, then the terms are
corrected and further transformed into LLFs by type-raising the quantified
NPs.8 Depending on the choice of the parser, we call an obtained LLF a
ccLLF or easyLLF.

Often a premise and a conclusion share several multiword phrases, anal-
ysis of which is not relevant for the classification. Due to this reason, many
RTE systems adopt alignment techniques that help the systems to concen-
trate on relevant parts of the text [9]. In LangPro alignment is carried out
by the term aligner, a part of LLFgen. The aligner finds the subterms oc-
curring in both ccg terms and replaces them with fresh terms. While doing
so, the candidate subterms are checked for monotonicity: they are aligned
iff they are not mon↓ (for more details see sick-1207 in Sec. 5). Sometimes
the alignment procedure leaves the ccg terms unchanged, like in the cur-
rent example. Since the alignment procedure may eliminate the chance of
finding a proof, the original LLFs are tested if the prover is not able to
find a proof with the aligned LLFs. Henceforth, ccLLFs and easyLLFs will
denote the aligned versions of the corresponding LLFs. The aligner is an
optional component of the prover which contributes to short proofs, hence
to the prefromance too [3].

For each ccg derivation, LLFgen returns a list of LLFs. In the running

8The ccg terms are typed with the syntactic types corresponding to the ccg cate-
gories. They are not well-formed λ-terms due to the remains of the type changing (i.e.
lexical) combinatory rule of the ccg parsers. The ccg terms are fixed with term-rewriting
rules which mainly explain the type changes (see Fig. 4) or modify the terms for better
semantic adequacy. More details about the LLFgen procedures can be found in [1, Sec. 3].
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SICK-1417: Men are sawing logs ? There are no men sawing

CCG parser CCG parser

ba[Sdcl]

fa[VP dcl]

fa[VPng]

lx[NP,N ]

logs

N
log
NNS

sawing

VPng/NP
saw
VBG

are

VP dcl/VPng
be
VBP

lx[NP,N ]

Men

N
Man
NNS

ba[Sdcl]

fa[VP dcl]

fa[NP ]

ba[N ]

lx[N\N,VPng]

sawing

VPng
saw
VBG

men

N
man
NNS

no

NP/N
no
DT

are

VP dcl
be
VBP

There

NP thr
there

EX

LLFgen(fix) LLFgen(fix)

sdcl

np

man

n

man
NN

s

n, np
s
DT

vpdcl

vpng

np

log

n

log
NN

s

n, np
s
DT

sawing

np, vpng
saw
VBG

are

vpng, vpdcl
be
VBP

sdcl

There

npthr
there

EX

vpdcl

np

n

man

n

man
NN

n, n

sawing

vpng
saw
VBG

which

vp, n, n
which
WDT

no

n, np
no
DT

are

np, vpdcl
be
VBP

LLFgen(align) LLFgen(align)

be
(
(saw (s log)

) (
s man

)
be

(
no (which saw man)

)
there

LLFgen(type-raise) LLFgen(type-raise)

s man
(
be λx(s log λy(saw y x))

)
s log λx

(
s man (be (saw x))

) no (who saw man)λx(be x there)

NatPro(pe, ir, kb)

checking for contradiction
s man

(
be λx(s log λy(saw y x))

)
: [ ] : T

checking for contradiction
no (who saw man)λx(be x there) : [ ] : T

checking for entailment
s man

(
be λx(s log λy(saw y x))

)
: [ ] : T

no (who saw man)λx(be x there) : [ ] : F

checking for contradiction
s man

(
be λx(s log λy(saw y x))

)
: [ ] : T

no (who saw man)λx(be x there) : [ ] : T

Figure 4. LangPro processes the tep from sick[21]. The ccg derivations
obtained from a parser, namely c&c, are presented as a tree. The terminal
nodes are annotated with a token, a ccg category, a lemma and a part
of speech (pos) tag while the non-terminal ones are marked with a ccg
category and a combinatory rule that combines the constituent(s). The
constituents with a type changing rule and their fixed versions are framed.
The term sn,vp,s stands for a plural quantifier. VP i category and vpi type
abbreviate Si\NP and (np, si) respectively, where i is a category feature
employed by the ccg parsers.
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example, there are two LLFs for the premise due to the possible ambiguity
between the quantifier scopes while for the conclusion only one LLF is gen-
erated. At this moment, LLFgen does not take the semantics of a quantifier
into account during type-raising; that is why despite their semantic equiv-
alence, both LLFs for the premise are generated. In the current settings of
LangPro, for each ccg derivation only the first LLF is considered by the
prover. Notice that the scope order in the first LLF usually resembles the
order in the surface level.

NatPro first checks each LLF for contradiction.9 If all LLFs are found
self-consistent, they are checked for entailment, and if no proof is found
then they are checked for contradiction (see the tableau in Fig. 5 which
proves the running example as entailment). If the entailment relation is
proved, there is no need for checking the LLFs for contradiction. In this
way, neutral problems are the most time-consuming; for a neutral single-
premised problem, in total 8 tableaux are constructed for the aligned and
non-aligned LLFs.

4.2 Performance

For the training and evaluation purposes, we use the sick [21] and fracas
[11] RTE datasets for the following reasons.10 The datasets contain rel-
atively short sentences which is expected to increase correct analysis by
ccg parsers. The fracas problems require no lexical knowledge while the
sick problems require only linguistic knowledge. The training process is
not fully automatized: if LangPro misclassifies a problem, the process is
debugged—either a new tableau rule or knowledge fact is introduced or
LLFgen is further improved. More details about the training and develop-
ment phases can be found in [1, Sec. 5].

In Table 2 both versions of the prover, ccLangPro and easyLangPro, are
evaluated and compared to state-of-the-art results.11 ccLangPro achieves

9If an LLF is found self-contradictory, i.e. the tableau initiated by it closes, there is a
high chance that the source ccg derivation is erroneous [3, Sec. 4]. If one of the LLFs is
self-contradictory, the prover aborts and returns the neutral answer. The same decision
is made when one of the LLFs has a different type from the rest.

10fracas is a small set containing semantically challenging multi-premise problems. It
is available at: http://www-nlp.stanford.edu/~wcmac/downloads. Currently few RTE
systems are able to cope with the fracas problems. On the other hand, sick is a large
dataset intended for compositional distributional semantic models. It was used as a
benchmark at the SemEval RTE challenge [20]: http://alt.qcri.org/semeval2014/

task1. The teps in both datasets are human annotated with three labels: entailment,
contradiction and neutral. We adopt the partition of sick from the RTE challenge [20]
and refer to these parts as sick-trial, sick-train and sick-test.

11In case of fracas, the training and testing data are the same for LangPro; so com-
parison to the system that did not have a close look at the test problems should be
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Table 2. Performance of the versions of LangPro on fracas and sick

(a) Results on fracas’s section 1
on generalize quantifiers involving
both single- (one) and multi- (all)
premise problems

Systems’ Acc% One (44) All (74)

NatLog’07 [18] 84 -
NatLog’08 [19] 98 -
NaturalLI [4] 95 -
L&S’13 [17] 70/89 50/80
DCS [27] 79 80
HOL [14] - 77

ccLangPro 95 85
easyLangPro 80 81

Baseline (major) 45 50

(b) Results on the test portion of
sick(4927). uniLangPro is a prover uni-
fying judgments of ccLLF- and easyLLF-
based provers.

Systems Prec % Rec % Acc %

Illinois-LH 81.56 81.87 84.57
ECNU 84.37 74.37 83.64
UNAL-NLP 81.99 76.80 83.05
SemantiKLUE 85.40 69.63 82.32
Meaning Factory 93.63 60.64 81.59

ccLangPro 97.53 57.26 80.90
easyLangPro 97.63 57.83 81.15
uniLangPro 97.67 61.01 82.50

Baseline (major) - - 56.69

higher results on fracas than easyLangPro. This is explained by using
ccLLFs during the entire training process, which made LLFgen to work
better on ccLLFs. Despite fitting LLFgen to ccLLFs, easyLangPro still
obtains high results on fracas and even beats ccLangPro on sick-test.
uniLangPro is a prover unifying both provers: it finds a proof iff one of the
provers finds a proof. On sick, the versions of the prover is compared to the
top systems of the SemEval challenge [20]. Although LangPro shows a low
recall on sick-test, it obtains a competitive accuracy along with an almost
prefect precision. Note that most of these errors are due to the noisy gold
labels in the dataset. Several problems with noisy gold labels are discussed
in the next section. Additional information about the comparison based on
the sick data is given in [1] and [3, Sec. 5].

We briefly compare our prover to two related systems: NatLog [19] and
NutCracker [6]. LangPro improves over NatLog in terms of having full-
fledged logic and proof system over the logical forms. As a result it can
process more complex and multi-premised teps. Compared to NutCracker,
our prover can reason over higher-order and monotone terms. NatPro is
also specially tuned for natural reasoning in contrast to the off-the-shelf
provers and model builders incorporated in NutCracker. Further details
of the comparison is given in [1, Sec. 6]. The demo version of LangPro is
available online.12

understood in terms of the expressive power of a system. For sick the test data, sick-
test, was held out during training, so comparison to related systems can be made in
terms of performance too.

12http://lanthanum.uvt.nl/labziani/tableau
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5 Solving textual entailment problems

The section shows in details how LangPro processes various problems drawn
from the sick [21] and fracas [11] datasets. Each presented problem is
accompanied with its dataset ID, the gold label and two judgments by
the prover—one based on c&c and another on easyccg derivations. The
selected set of examples intend to highlight the issues of natural language
theorem proving and give the clues for further improvements.

5.1 True entailments and contradictions

First, we are going to discuss the positive (entailment or contradiction)
problems that were correctly proved either by ccLangPro or by easyLang-
Pro.

sick-1417 gold: cont. LangPro(c&c/easyccg): cont./neut.

Men are sawing logs

There are no men sawing

SICK-1417: this is the problem from Fig. 4 in Section 4. Both parsers
correctly analyze the premise while in case of the conclusion only easyccg
makes mistake: “men sawing” is identified as a constituent [menN/N sawN ]N .
This mistake is crucial for easyLLFs hence the proof over them is not
found. Fortunately, correct c&c derivations result in semantically adequate
ccLLFs. LangPro proves them as inconsistent in 10 rule applications; see
the proof in Fig. 5.
Conclusion: while the proof is not found with easyccg due to a wrong
derivation, the c&c derivations salvage the situation.

sick-8147 gold: ent. LangPro(c&c/easyccg): ent./ent.

The girl [in blue]1 is chasing the base runner
[
with a number [on the jersey]3

]
2

The girl [in blue]1 is chasing the player
[
with a number [on the jersey]3

]
2

SICK-8147: the problem contains sentences each having three PPs, marked
with brackets and indexed; this makes the sentences challenging for the
parsers. Apart from the different analyses for each NP13, the derivation
trees from c&c and easyccg also differ in PP-attachments. For both sen-
tences, c&c treats PP3 as an argument of “number” while easyccg analyzes
it as a modifier of “a number”. In both sentences, easyccg wrongly but
in a consistent way treats PP2 as a VP modifier; PP2 gets mixed analyses

13easyccg usually analyzes NPs with post-modifiers in the NP-S style, i.e. a determiner
is grouped with a head earlier than post-modifiers:

[
[the girl]NP [in blue]NP\NP

]
NP . On

the other hand, c&c trained on rebanked CCGbank [13] prefers the Nom-S analysis:[
theNP/N [girlN [in blue]N\N ]N

]
NP .
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1 s man (be λx1(s log λx2(saw x2 x1))) : [ ] : T
2 no (who saw man) λx3(be x3 there) : [ ] : T

3 ∃T[1] man : [c1] : T
4 ∃T[1] be λx1(s log λx2(saw x2 x1)) : [c1] : T

5 aux[4] λx1(s log λx2(saw x2 x1)) : [c1] : T

6 λpull[5] s log λx2(saw x2 c1) : [ ] : T

8 noT(c1)[2] who saw man : [c1] : T
9 noT(c1)[2] λx3(be x3 there) : [c1] : F

12 λpull[9] be c1 there : [ ] : F
×there[12] ×

7 noT(c1)[2] who saw man : [c1] : F

11 ∧F[7] man : [c1] : F
≤×[11,3] ×

10 ∧F[7] saw : [c1] : F

13 ∃T[6] log : [c2] : T
14 ∃T[6] λx2(saw x2 c1) : [c2] : T

15 λpull[14] saw c2 c1 : [ ] : T

16 push arg[15] saw c2 : [c1] : T

17 push arg[16] saw : [c2, c1] : T
×subcat[17,10] ×

Figure 5. The closed tableau proves sick-1417 as entailment. The intu-
ition behind the employed rules (e.g., λpull, aux, noT, etc.) can be read
from the tableau.

from c&c: correctly identified as a modifier of “player” in the conclusion
but analyzed wrongly in the premise, like in case of easyccg. Due to
these differences, the corresponding ccLLFs and easyLLFs, including their
aligned versions, also differ from each other. In particular, the terms for
PP2 are aligned in the easyLLFs; but for the ccLLFs, the shorter subterms
of “a number on the jersey” are aligned because c&c analyzes PP2 in a
mixed way and assigns different categories to “with” in the sentences.

For both versions of aligned LLFs, LangPro finds proofs for the en-
tailment relation. Due to the poor alignment for the ccLLFs, the tableau
was closed in 20 rule applications while for the easyLLFs, with the better
alignment, in 8 applications. Despite the wrong attachments of PP2 in the
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easyLLFs, proof search is more efficient because the attachments were con-
sistent which contributed to the better alignment. In case of the ccLLFs,
the attachments of PP2 were inconsistent (though one of them was correct)
which finally costs much in terms of a lengthy proof. Moreover, finding
a proof for the ccLLFs would be impossible if we did not introduce the
×pp attT rule, which abstracts from inconsistency in PP-attachments. As
a result, the rule identifies the nodes in (3) as inconsistent; terms written in
CamelCase are the aligned subterms while the individual constant c stands
for “the base runner”.

Capturing the entailment base runner ≤ player is a main part of solving
SICK-8147. This piece of information is necessary for the tableau to be
close. The multi-sense approach tries to find some senses of the nouns for
which the entailment relation holds. Such senses are found in the knowledge
base as the synset {“base runner”, “runner”} is indirectly subsumed by
{“player”, “participant”} synset in WordNet.14

{with aNumberOnTheJersey} : chase : [c, theGirlInBlue] : T
with : [aNumberOnTheJersey, c] : F

×
×pp att∗T

(3)

Conclusion: the consistent (possibly wrong) analyses of PP-attachments
leads to the better alignment of terms, which itself contributes to the shorter
proof. A wrongly attached structurally ambiguous PP can be identified and
correctly interpreted with the help of the special rules. The multi-sense
approach also works well for this case.

fracas-18 gold: ent. LangPro(c&c/easyccg): neut./ent.

Every European has the right
[
[to live in Europe]VP to

]
N\N

Every European is a person
Every person who has the right [to live in Europe] can travel freely within Europe

Every European can travel freely within Europe

FraCaS-18: the textual entailment contains multiple premises but this is
not a problem for the prover. The challenge in this example is to obtain
decent derivations and to convert them in LLFs. The c&c line fails in the
beginning when the parser fails to return the derivations for the first two
sentences which contain relevant information for the entailment. Fortu-
nately, easyccg gets all the sentences parsed. The produced easyLLFs are

14Tthe prover is also able to derive base runner ≤ player relation by first capturing
base runner ≤ runner using a rule for subsective adjectives and then combining it
with runner ≤ player relation retrieved from WordNet. Based on the information
runner ≤ player, unfortunately the multi-sense approach also leads to the proof of “A
runner won” entails “A player won”.

128



Solving Textual Entailment ... AMIM Vol.25 No.2, 2020

not proper λ-terms since LLFgen, at this moment, does not have a remedy
for the rule that changes the syntactic type vpto into (n, n). Despite this
shortcoming, LangPro is still able to operate on the easyLLFs and find a
proof for entailment in 43 rule applications (actually, only a few of those ap-
plications contribute to the proof). In case the proof needed to decompose
the LLF corresponding to “the right ... Europe”, due to the unexplained
type-changing rule, the prover would fail to do so and fail to find a proof.
Notice that in this example, the aligner is useless as there is no multiword
phrase shared by all the sentences.
Conclusion: c&c failed to parse several sentences, however easyccg saved
the situation. The obtained easyLLFs were not well-formed terms, never-
theless the prover is able to process them as long as the decomposition of
the ill-formed subterms is not necessary for the proof.

sick-1207 gold: cont. LangPro(c&c/easyccg): cont./cont.

A woman is not talking on a telephone

A woman is talking on a telephone

SICK-1207: this is a dubious case. One might identify the problem as
neutral or contradiction depending whether the indefinite NPs “a woman”
and “a telephone” are co-referencing to the same referents. The human
annotations in sick show a strong tendency towards co-reference of this
kind of NPs (the similar problems, sick-363 and 1989, with the similar
judgments are given in Table 3).

In order to support the co-reference, we choose a simple solution that
comes for free with the current settings of LangPro. In particular, the
aligner is used for this purpose: aligning the identical indefinites make
them to refer to the same entity. The aligned LLFs for the problem are
given in (4) and (5). Using the aligned LLFs, the prover is able to find a
proof in 3 rule applications.

notvp,vp beTalkOnATelephonevp aWomannp (4)

beTalkOnATelephonevp aWomannp (5)

Conclusion: the simple solution with the alignment technique accounts
enough well for the co-reference of indefinite NPs. It also makes proofs
extremely short.15

Above we tried to give the teps that were correctly classified in spite
of the various shortcomings. Usually this kind of teps are rare. For exam-

15If in the premise “a woman” is replaced by “a person”, the alignment approach
cannot contribute to the proof. More general solution to the co-reference of indefinites
is achieved when the negation takes a wide scope. Implementing the latter approach
requires further development of LLFgen. This approach is left for future work.
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ple, while in our examples the judgments of ccLangPro and easyLangPro
diverged in the half of the cases, based on the development set—sick-train
(4500 problems)—the judgments diverge only for 3.3% of the teps.

5.2 False entailments and contradictions

Given the almost perfect precision of the prover, the false positive problems
represents a special case of interest.

SICK-8461 gold: neut. LangPro(c&c/easyccg): cont./cont.

A man with no hat [is sitting on the ground]1
A man with a backwards hat [is sitting on the ground]1

SICK-8461: the ccLLFs and easyLLFs for both sentences are quite sim-
ilar; the ccLLF and easyLLF for the premise are given in (6) and (7),
respectively. The only difference is in the analyses of the verb phrases:
whether be takes sit or the whole verb phrase as an argument. This dif-
ference has no influence on proof search since the auxiliaries are currently
treated as the identity function.

no hat λy
(
a
(
with y man

)
λx

(
the ground λz(on z (be sit) x)

))
(6)

no hat λy
(
a
(
with y man

)(
be λx(the ground λz(on z sit x))

))
(7)

a(et)(et)t λy
(
no(et)(et)t hatet λx(withe(et)et xe manet ye)

)
sleepet (8)

In contrast to the surface level, no hat takes the widest scope in the
LLFs. The reason is usage of the terms with syntactic types. While using
the terms of semantic types, it is possible that no hat takes a narrow scope,
see (8). But in case of the syntactic types, no hat can not be type-raised
in the PP because a determiner of type (n, (np, s), s) cannot take a term of
type (np, t) or (e, t) for its second argument.16

It is obvious that if the sentences were understood with “no hat” and “a
backwards hat” having the widest scope, then they would be inconsistent.
This is why the prover classifies the problem as contradiction. The proofs
for both versions of LLFs were found in 5 rule applications. The alignment
of VP1 does not affects the proof search as the relevant terms “no hat” and
“a backwards hat” are analyzed and contrasted to each other before VP1 is
processed.
Conclusion: the desirable scope order for quantifiers is not obtained due
to less-flexible syntactic types, which in the end leads to the wrong pre-
diction. This mistake seems minor taking into account that the similar

16This issue can be solved by introducing a semantic counterpart of the determiner
that is of type (et)(et)t, but this itself will further require introduction of semantic
counterparts of other terms. The latter complicates the proof search.
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problems, e.g., sick-8562 in Table 3, receive mixed judgments (neutral or
contradiction) in sick.

sick-7402 gold: neut. LangPro(c&c/easyccg): cont./cont.

There is
[
[no man] and [child kayaking through gentle waters]

]
A man and a young boy are riding in a yellow kayak

SICK-7402: the problem is neutral as the sentences are informative with
respect to each other, but the prover identifies it as contradiction. The
reason is the wrong derivation trees where “no” scopes only over “man”.
In this way, the premise implies that there is no man while the conclusion
asserts the contrary—a man is riding in a kayak. The prover identifies this
inconsistency and classifies the problem as contradiction.

Conclusion: the mistakes by the c&c and easyccg parsers misled the
prover. In general, it is very rare that the mistake by a parser leads to a
false positive.

fracas-58 gold: neut. LangPro(c&c/easyccg): neut./ent.

Most Europeans [who are resident in Europe] can travel freely within Europe

Most Europeans can travel freely within Europe

FraCaS-58: the judgments based on the ccLLFs and easyLLFs differ from
each other. The rationale for the proof found over the easyLLFs is the non-
restrictive (i.e. appositional) interpretation of the relative clause. Since the
easyccg derivations were not used during development of LLFgen, it failed
to correct the easyccg derivation for the premise.

Conclusion: LLFgen could not correct an unobserved mistake in the
easyccg derivation. As a result, the mistake caused the false proof for
entailment.

sick-5264 gold: neut. LangPro(c&c/easyccg): ent./ent.

A person is folding a sheet

A person is folding a piece [of paper]1

SICK-5264: both decisions of the prover are false according to the gold
label. Different analyses of PP1—as a noun argument by c&c and as an
NP modifier by easyccg—do not affect the final judgments because all the
argument PPs are also treated as modifier PPs with the help of the rules.

The reason for the contradiction proofs is that “a sheet” is “a piece of
paper” according to the multi-sense approach: in WordNet “sheet” has a
sense that is a hyponym of a sense of “paper”, and there is the tableau rule
that identifies “a piece of paper” as “paper”. The proofs are found in 18
rule appreciations.
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Table 3. The false positive examples and the problems with noisy gold (G)
labels. The problems are drawn from sick. The words that were related to
each other by LangPro (LP) are in bold while the unrelated ones in italic.

ID G/LP Premise Conclusion

1405 N/E A prawn is being cut by a woman A woman is cutting shrimps

1481 N/E A deer is jumping over a wall The deer is jumping over the fence

1777 N/E A boy is happily playing the piano A piano is being played by a man

4443 N/E A man is singing to a girl A man is singing to a woman

2870 N/C Two people are riding a motorcycle Nobody is riding a bike

2868 E/N Two people are stopping on a motorcycle Two people are riding a bike

6258 E/N A policeman is sitting on a motorcycle The cop is sitting on a police bike

344 N/C
P: An Asian woman in a crowd is not carrying a black bag
C: An Asian woman in a crowd is carrying a black bag

545 N/C
P: A woman is standing and is not looking at the waterfall
C: A woman is sitting and looking at the waterfall

8913 N/C A couple is not looking at a map A couple is looking at a map

363 C/C A soccer ball is not rolling into a goal net A soccer ball is rolling into a goal net

1989 C/C A girl is playing the guitar A girl is not playing the guitar

8562 C/N
P: A man in a hat is standing outside of a green jeep
C: A man with no hat is standing outside of a green jeep

Conclusion: the multi-sense approach makes a co-reference that leads the
prover to find a proof for contradiction.

The other false positives that were proved in the same vein as sick-
5264 are give in the upper part of Table 3. The problems were proved
due to the relations, like wall ≤ fence and girl ≤ woman, licensed by
the multi-sense approach. Notice noise with respect to motorcycle ≤ bike

relation. While sick-2870 rejects it, sick-2868 and 6258 presuppose the
relation. Unfortunately, our prover was not able to capture the latter two
entailments as it failed to relate other lexical entries.

On the sick dataset, the prover rarely finds false proofs and when it
does, the multi-sense approach or the noisy labels are the reason in around
80% of the cases. ccLangPro has no false proofs on the first section of
fracas. On the other hand, easyLangPro finds two false proofs due to
non-restrictive relative clauses (e.g., fracas-58) and one due to a wrong
analysis of the expression “at most”.

5.3 False neutrals

There can be several reasons for a false neutral: starting from the mistakes
by the ccg parsers finishing with a poor strategy for proof search. The
prover shows a large number of false neutrals on sick. In order to find out
the reason behind it, we randomly draw 200 problems from sick-train and
analyzed the false positives found there. Around a half of the false positives
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Table 4. Examples of false neutrals from sick. The factors for the failure
(Fail) are noisy gold labels (G), the mistakes by the parsers (P), a lack of
rule (R) and a lack of knowledge (K). Each problem is marked with the
reason of failure.

ID G Fail Premise Conclusion

4720 E G A monkey is practicing martial arts A chimp is practicing martial arts

4275 E R A man and a woman are shaking hands Two persons are shaking hands

4553 E R
P: A man is emptying a container made of plastic
C: A man is emptying a plastic container

2763 C K A man and woman are talking A man and a woman are silent

4974 C K Someone is holding a hedgehog Someone is holding a small animal

6447 C P
P: [A small boy [in a yellow shirt]] is laughing on the beach
C: There is no small boy [in a yellow shirt [laughing on the beach]]

were due to knowledge sparsity (see some of the examples in Table 4). A
lack of the tableau rule was a reason for a quarter of the problems. This
kind of problems also include the cases where an absent paraphrase can be
captured with a schema, e.g., X made of Y → Y X, like in sick-4553. The
entailments concerning the cardinality need assist from the tableau rules
too. The rest of the false neutrals are evenly provoked by noisy gold labels
and the mistakes coming from the parsers.

6 Conclusion

We presented the tableau-based theorem prover for natural language, called
LangPro. The prover is able to reason over wide-coverage natural language
text with the help of the ccg parsers and the module LLFgen producing
the logical forms. After training on the sick and fracas dataset, Lang-
Pro achieves competitive results with respect to the state-of-the-art RTE
systems. The noteworthy virtues of the prover are (i) the almost perfect
precision (despite the noisy gold labels of sick, nearly 98% of the proofs are
correct), (ii) the expressive higher-order logic with natural-looking formulas,
(iii) the proof search strategy specially suited for natural reasoning and (iv)
the explanatory decision procedure based on the analytic tableau method.
On the other hand, the prover is a rule-based system with a pipeline ar-
chitecture, which makes it brittle and expensive for training. To the best
of our knowledge, LangPro is the only wide-coverage RTE system that is
based on natural logic and is able to reason over multiple premises.

For each pair of the human and prover judgments, several textual en-
tailment problems were discussed in details. Due to the accurate nature
of LangPro, special attention was paid to the false predictions. For sick
problems, knowledge sparsity was identified as one of the key factors for
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the relatively low recall.
In future work, we plan to address the observed problematic issues:

knowledge acquisition, word sense disambiguation and generation of se-
mantically adequate LLFs. We intend to populate the knowledge base
with further relations from WordNet (e.g., similarity for adjectives and en-
tailment and causation for verbs) and to explore other lexical or phrasal
databases for future integration. Both sick and fracas data contain rel-
atively short sentences. It would be interesting to test the prover and the
LLF generator module against more naturally occurring text, for instance,
the RTE datasets collected from newswire text. The quality of LLFs can
be improved by exploring the n-best derivations of easyccg.
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