
THE SYNTAX-SEMANTICS INTERFACE: FROM
MONTAGUE GRAMMAR TO TODAY

Aleksandre Maskharashvili

Ohio State University, Ohio, USA
maskharashvili.1@osu.edu

Abstract

In this paper, we overview logical studies of the syntax-semantics
interface, with the focus on Montague’s seminal works in the field,
called Montague Grammar. We also discuss more recent develop-
ments of Montague Grammar on the example of Abstract Categorial
Grammars. We briefly illustrate how recent developments in Mon-
tague’s line of research contribute to the studies in classical natural
language problems such as parsing and generation. We also sketch
an approach that makes use of Abstract Categorial Grammars to es-
tablish interrelations between the surface form and the meaning of a
discourse.

1 Introduction

Studying regularities of forms across natural language expressions was a
subject of study already in the first known grammatical system, created
by Pān. ini for Sanskrit. One of the first interest in mathematical study
of natural language syntax emerged in the works of Ajdukiewicz [1] who
proposed a formal system of rules, called Categorial Grammar, which was
supposed to represent the ways natural language sentences are built. One of
the main insights in Ajdukiewicz’s [1] categorial grammar is to use functor
categories (Funktoren-Kategorien) and basic categories (Grundkategorie),
where a functor category carries functional characteristics and a basic cat-
egory is anything that is not a functor category. Bar-Hillel [2] further
elaborated ideas of Ajdukiewicz [1].

Advances in proof theory motivated Lambek [16] to make use of the
ideas of Ajdukiewicz and Bar-Hillel to provide a logical, proof-theoretic
model of natural language syntax.

Chomsky [5] proposed Context-Free Grammars (CFGs) to study natural
language syntax. His approach was based on Bloomfield’s [4] principle of
immediate constituents.

Shaumyan [30, 31] developed another line of study in natural language
syntax in a setting based on Curry’s theory of types and combinators.

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

In concordance with that, he called his framework Applicative Universal
Grammar (AUG).

As studies in syntax had been developing in various directions, Mon-
tague [21, 19, 20] proposed a program of studying meaning in natural lan-
guage. He designed a way to translate syntactic expressions to their se-
mantic forms (meanings). Montague made use of Ajdukiewicz’s syntactic
calculus as a model of syntax. To encode semantic representations, Mon-
tague has developed his language, which from today’s perspective can be
seen as a version of higher-order logic (HOL). Below, we may refer to Mon-
tague’s works as Montague Grammar (MG).

2 AB-Calculus

We follow Moot and Retoré [22] to define Ajdukiewicz’s [1] (and Bar-
Hillel’s [2]) version of categorial grammar, called AB-calculus or AB-grammar.
In an AB-calculus, an expression is a category (type) if and only if it is
derivable from a set of basic categories, denoted by P , in following way:

L := P | (L\L) | (L/L) (1)

If v and u are categories, then u\v and v/u are such functor categories
which take an expression of type u as its argument and produce an ex-
pression of type v. The difference between u\v and v/u is directional, that
is, u\v receives an argument from right, whereas v/u receives it from left.
These possibilities of receiving arguments (from right and from left) are en-
coded with the following rules (called the right and left elimination rules,
respectively):

u (u\v)→ v (\e)
(v/u) u→ v (/e)

(2)

Formally, an AB-grammar is a function L which maps each word (a
terminal symbol) a finite set of types (in a case of an ambiguous word,
several but finite number of types may correspond to it).

Definition 1. We say that a string w1 . . . wn is derivable in an AB-grammar,
and its category is u if and only if for each wi there exist ti, i = 1, 2 . . . n
such that ti is a category of wi (i.e. ti ∈ L(wi)) and t1 . . . tn → u. The set
of strings which are derivable by a given Ab-grammar is called the language
produced by that AB-grammar.

95

AMIM Vol.25 No.2, 2020 A. Maskharashvili

CAT Description Expressions
S Sentences John walks, A woman smiles, etc.
IV Intransitive Verbs walk, sleep, smile, etc.
CN Common Nouns woman, book, tie, man, etc.
T = S/IV Noun Phrases a woman, John, every man, he0, he1, etc.
TV = IV/T Transitive Verbs love, see, meet, etc.

Table 1: Categories and their use in syntax and semantics

3 Glance at Montague Grammar

In order to provide systematic translations of syntactic expression into log-
ical ones, Montague [21] assumes the following:

� Every lexical entry in the grammar has a syntactic category that has
a corresponding semantic category.

� Compositionality Principle: The meaning of a compound expression
is a function of the meanings of its parts and of the syntactic rule
that combines these parts.

3.1 Syntax

Montague [21] employs an AB-calculus at the level of syntax. He defines
rules that enable one to produce new categories out of the given ones as
follows:1

Definition 2. CAT, the set of categories, is the smallest set such that:

� S, IV, CN belong to CAT.

� If A and B are elements CAT, then A/B belongs to CAT as well.2

S, stands for sentences, IV for intransitive verbs, and CN for common
nouns. Table 1 describes how Montague defines other categories in terms
of these three categories.

The syntactic derivation process in Montague’s approach is the same
as in AB-calculus. BA denotes the set of lexical items of category A. For
instance, BT contains a man, all dogs, together with hei for every natural
number i.

1We do not provide the exact version of Montague’s original grammar, but follow a
more recent one, namely, Dowty [11].

2Montague [21] introduces another syntactic type, denoted as A//B, that has the
same semantic meaning (i.e. translation) as A/B, but they model different syntactic
categories. That is why, we will only use A/B categories as it is done, for instance, by
Gamut [13].

96

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

Montague [21] proposes seventeen syntactic rules, which are classified
as follows: basic rules, rules of functional application, rules of conjunction
and disjunction, rules of quantification, rules of tense and sign. Each of
these syntactic rules has the corresponding semantic rule. Let us consider
some of Montague’s syntactic rules and in the next section we discuss their
semantic translations.

S1 is the first rule in MG, which is one of basic rules:

S1 BA being the set of lexical elements of category A is contained in the
set of all expressions of category A denoted as PA, that is BA ⊂ PA

The another basic rule is the following:

S2 If ζ ∈ PCN, then F0(ζ), F1(ζ), F2(ζ) ∈ PT where:

� F0(ζ) = every ζ

� F1(ζ) = the ζ

� F2(ζ) is a ζ or an ζ according as the first word in ζ takes a or
an

Some of rules of functional application are as follows:

S4 If α ∈ PS/IV and δ ∈ PIV, then F4(α, δ) ∈ PS, where F4(α, δ) = αδ′

and δ′ is the result of replacing the first verb in δ by its third person
singular present

The following rules are for quantification:

S14 If α ∈ PT and φ ∈ PS, then F10,n(α, φ) ∈ PS, where either:

1. α does not have the form hek, and F10,n(α, φ) comes from φ by
replacing the first occurrence of hen or himn by α and all other

occurrences of hen or himn by


he
she
she

 or


him
her
it

 respec-

tively, according as the gender of the first BCN or BT in α is
masc.
fem.
neuter

, or

2. α = hek, and F10,n(α, φ) comes from φ by replacing all occur-
rences of hen or himn by hek or himk respectively

S15 If α ∈ PT and ζ ∈ PT, then F10,n(α, ζ) ∈ PCN

97

AMIM Vol.25 No.2, 2020 A. Maskharashvili

(1) Every man loves Mary.

Fig. 1 shows an exemplifying derivation of a sentence (1) using MG.
A node of the tree in Fig. 1 shows the rule that is applied to the expres-
sions from its daughter nodes in order to obtain the expression standing
as the current node. If one views the derivation from a bottom up per-
spective, then the first rule used is S5; as a result, one produces out of
loves of category IV/T and Mary of category IV/T the expression loves
Mary of category IV. Using the rule S4 leads to he0 loves Mary of category
PS. On the other hand, by using the rule S2, one produces every man.
We can then employ the rule S14 in order to produce the expression
F10,0(every man, he0 loves Mary) of category S.

every man loves Mary (S,S14, F10,0(every man, he0 loves Mary))

every man (T, S2, F0(man))

man (CN)

he0 loves Mary (S, S4, F4(he0, love Mary))

he0 (T = S/IV) love Mary (IV ,S5,F5(love,Mary))

love (TV = IV/T) Mary (T)

Figure 1: MG Derivation of Every man loves Mary

3.2 Translating Syntax to Semantics

Montague [21] shows how to translate syntactic expressions into the cor-
responding semantic expressions by translating his rules governing syntax
into the corresponding semantic ones.3

S category for sentences translates to t. Also note that the syntactic
categories IV and CN, corresponding to intransitive verbs and common
nouns respectively, translate to the same semantic type, e→ t.

Montague [21] translates the other syntactic types using the following
rule:

f is a translation function of types such that f(A/B) = f(B)→ f(A)
(3)

3While Montague’s original translation is an intensional one, we only present exten-
sional translations as it is sufficient for our current purposes.

98

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

Using the rule (3), one can derive Montague’s translation4 of the cate-
gories of noun phrases and transitive verbs as follows:

Noun phrases : f(T) = f(S/IV) = (e→ t)→ t
Transitive verbs : f(TV) = f(IV/T) = f(T)→ f(IV) =

= f(S/IV)→ f(IV) = ((e→ t)→ t)→ e→ t
(4)

In the MG semantic alphabet, one has individual constants and vari-
ables of type e, such as j for John, m for Mary etc.

To encode semantic representations of intransitive verbs, Montague in-
troduces constants such as sleep of type e → t, cry of type e → t, etc. In
words, these constants are one-place predicates whose argument is of type
e. The same is true for common nouns (e.g. woman, book) and adjectives
(e.g. smart, interesting, tall), in MG they are also treated as one-place
predicates of type e→ t.

One of the insights in MG is Montague’s [21] higher-order interpreta-
tions of noun phrases: all noun-phrases are of type (e → t) → t. For
instance, (a) John is translated as λP.P j, where j is of type e and P
is of type e → t; (b) A noun phrase such as every man is translated as
λP.∀x.manx ⊃ P x. The syntactic variables hen, for n = 0, 1, . . ., translate
to λP.P xn, where xn is a variable of type e. (c) A noun phrase, which is
built with the help of an indefinite article, e.g. a woman is translated as
λP.∃x.womanx ∧ P x.

Consider the translation of transitive verbs in MG on the example of
the verb loves. MG translates loves as follows:5

λT.λx.T (λy.lovex y) : ((e→ t)→ t)→ e→ t (5)

In order to illustrate a way of using the semantic translations of the
syntactic rules, let us compute the meaning of the sentence Every man
loves Mary (1), whose MG derivation is depicted in Fig. 1. For that, we
consider Montague’s [21] translation of the syntactic rules S2, S4, S5, and
S14, which we encounter in the derivation of the sentence (1). We read the
derivation tree in Fig. 1 from the left to right and bottom to top perspective.

We have already discussed the semantic translation of every man, it
remains to see how to translate the syntactic rules S4, S5, and S14.

4By convention, type constructors such as → associate to the right, that is α→ β → γ
means α→ (β → γ). In Montague’s notations α→ β is 〈α, β〉.

5One may observe an asymmetry between the object and subject encodings in the
translation (5): the variable T standing for the object of loves is of a higher order
type,(e→ t) → t, whilst the variable modeling a subject, x, is of type e. The asymmetry
in the formula λTλx.T (λy.lovex y) is due to the syntactic analyzes that Montague makes
use of and not because of his semantic approach.

99

AMIM Vol.25 No.2, 2020 A. Maskharashvili

As both S4 and S5 are rules for application, their semantic translations
are very similar.

T4 If α ∈ PT (i.e. α ∈ PS/IV) and β ∈ PIV, and their translations are
(f α) and (f β) then F4(α, β) is translated as (f α) (f β);

T5 If α ∈ PIV/T and β ∈ PT, and their translations are f(α) and f(β)
then F5(α, β) is translated as f(α)(f(β)).

In words, the application of a functor to its argument at the syntax
level translates into functional application (of lambda calculus)6 of their
corresponding terms at the semantic level.

Hence, one can translate he0 loves Mary. By following the derivation
shown in Fig. 1, first we translate loves Mary; then, the translation of he0

will apply to the translation of loves Mary. Thus, we translate loves Mary
as follows:

f(loves Mary) = (λT.λx.T (λy.lovex y)) (λP.P m)�β λx.lovexm (6)

Now, we apply λP.P xn to λx.lovexm:

λP.P xn(λx.lovexm)→β (λx.lovexm)xn →β lovexn m (7)

Let us look up the semantic counterpart of S14. It is as follows:

T14 If α ∈ PT and φ ∈ PS, and their translations are f(α) and f(φ) then
F10,n(α, φ) ∈ PS is translated as f(α)(λxnf(φ))

Note that in T14 application f(α) to (λxnf(φ)) is in concordance with
the fact that f(α) is of type (e→ t)→ t, which is why it can only take an
argument of type e→ t; however, since f(φ) is of type t (as type of φ is PS,
which translates to t), f(φ) cannot be an argument of f(α), but λxnf(φ)
can since its type is e→ t (as xn is of type e).7

Thus, we translate the results of the last step of the derivation given in
Fig. 1. The syntactic expression F10,0(every man, he0 loves Mary) is trans-
lated as:

6We refer readers to [3] for more details about lambda calculus and its variants. We
may write either f(x) and (f x) for denoting application of f to x.

7According to S14, F10,n(α, φ) is the result of substituting by α the first occurrence
of hen in φ, whereas the other occurrences of hen in φ are substituted by he/she/it or
him/her/it (depending on the gender of α). From a semantic point of view, it means that
all the occurrences of hen should be substituted by α, because those occurrences of hen
that are substituted by he/she/it or him/her/it are antecedents of the first occurrence of
hen, which is substituted by α.

100

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

λP.∀x.man(x) ⊃ P x applied to λx0.lovex0 m, which is computed as
follows:

(λP.∀x.manx ⊃ P x)(λx0.lovex0 m)�β ∀x.manx ⊃ lovexm (8)

If we had a woman instead of Mary, the translation would be as follows:

(λP.∀x.manx ⊃ P x)(λx0.∃y.woman y ∧ lovex0 y)

�β ∀x.manx ⊃ (∃y.woman y ∧ lovex y)
(9)

The formula (9) in words means that for every man there is a woman
whom he loves. On the other hand, the initial sentence could also mean that
there is a woman whom every man loves. However, a formula that would
give rise to the second interpretation cannot be obtained using the deriva-
tion we have used. In order to obtain the second reading, Montague [21]
proposes a technique, known as Montague’s trick.

every man loves a woman (S, S14, F10,0(a woman, every man loves he0))

a woman (T, S2, F2(woman))

woman (CN)

every man loves he0 (S, S14, F10,1(every man, loves he0))

every man (T, S2, F0(man))

man (CN)

he1 loves he0 (S, S4, F4(he1, loves he0))

he1 (T = t/IV) love he0 (IV,S5,F5(loves he0))

love (TV = IV/T) he0 (T = t/IV)

Figure 2: Montague’s Trick: Deriving Second Reading

The idea behind of Montague’s trick is to analyze a sentence in a way as
it is shown in Fig. 2: The desired reading is obtained as a result of reversing
scopes, i.e., by making a woman to scope over every man loves somebody.

We compute the formula corresponding to the final step of the derivation
in Fig. 2 as follows:

(λQ.∃y.woman y ∧Qy)(λx0.λP.∀x.manx ⊃ lovexx0)�β

�β ∃y.woman y ∧ ∀x.manx ⊃ lovex y
(10)

4 Abstract Categorial Grammars

Abstract Categorial Grammars (ACGs) by de Groote [9] are grammati-
cal framework based on Curry’s idea of having two levels of grammar [6],

101

AMIM Vol.25 No.2, 2020 A. Maskharashvili

pheno and tecto. At the pheno-grammatical level, natural language ex-
pressions are produced, whereas the tecto-grammatical one is responsible
for production of those expressions with the help of rules that do not in-
volve any information about surface forms. Another source of inspiration
of ACGs comes from MG, namely the use of a typed lambda calculus and
a compositional interpretation of syntax into semantics.

The following preliminary notions help to define Abstract Categorial
Grammars (ACGs).

� A higher-order linear signature (HOS) is a triple Σ = 〈A,C, τ〉 where:

– A is a finite set of atomic types;

– C is a finite set of constants;

– τ : C −→ T (A) is type assignment function mapping each con-
stant from C to a linear implicative type built upon A.

� The order of a type ξ, denoted as ord(ξ) is defined as:

ord(ξ) =

{
1 if ξ is atomic.
max(1 + ord(α), ord(β)) if ξ = α→ β

� Linear λ-terms Λl(Σ)over a HOS Σ = 〈A,C, τ〉 is the set containing
all and only elements defined as follows:

– If t1, t2 ∈ Λl(Σ) the (t1t2) ∈ Λl(Σ).

– If t ∈ Λl(Σ), then λx.t ∈ Λl(Σ), where x is a variable.

– For any subterm λx.p of a term t ∈ Λl(Σ), x is free in p.

– for any subterm t1t2 of t ∈ Λl(Σ), t1 and t2 have no common
free variable.

Definition 3. An ACG is a quadruple G = (Σa,Σo,L, S) where:

� Σa = 〈Aa, Ca, τa〉 is a higher order signature, called the abstract sig-
nature;

� Σo = 〈Ao, Co, τo〉 is a higher order signature, called the object signa-
ture;

� L is a mapping from Ca to Λl(Σo), called the lexicon of the grammar
G, which is uniquely lifted to a homomorphism from Λl(Σa) to Λl(Σo)
(which we denote again with L) that has the following properties:

– L(x) = x where x is a variable;

102

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

– L(t1t2) = L(t1)L(t2);

– L(λx.t) = λx.L(t).

� S is a type of Σa, called the distinguished type of G.

With the ACG G = (Σa,Σo,L, S), we associate two languages, defined
as follows:

The abstract language: A(G) = {u ∈ Λ(Σa) | `Σo u : s is derivable}
The object language: O(G) = {v ∈ Λ(Σo) | ∃u ∈ A(G) : v = L(u)}

In words, the object language is the image of the abstract language by
the lexicon.

We call an ACG G = (Σa,Σo,L, S) of order n (or n-th order) if n is the
maximum of orders of the types of the constants in the abstract signature
Σa.

5 Montague Grammar as an ACG

We can build a HOS, Σ1, to model the syntax used by Montague. More
specifically, the terms over Σ1 model the derivation trees. The derivation
shown in Fig. 3 is modeled by the term u defined as follows:

u = Cevery Cman (Cloves (CaCwoman)) : S

We can view the term u as an instantiation of the Montague’s rule S14,
which allows us to produce the expression F10,0(every man, he0 loves Mary)
of category S.

To be able to build (logical) semantic formulas, we construct another
HOS, Σ2, whose constants are shown in Fig. 4.

Cevery, Ca, Csome : CN→ IV→ S

Cmary, Cjohn : IV→ S

Cwalks, Csleeps : IV

Cwoman, Cman : CN

Cloves, Cmeets : (IV→ S)→ IV

Figure 3: Σ1: Derivation Trees

run,woman,man : e→ t
love,meet, read : e→ e→ t
∧,⊃ : t→ t→ t
∀,∃ : (e→ t)→ t

Figure 4: Σ2: Logical Alphabet

By mapping the term u under the lexicon f , we get:

f(u) = f(Cevery) f(Cman) (f(Cloves) (f(Ca) f(Cwoman)))�β

∀x.(manx) ⊃ ∃y.(woman y) ∧ (lovex y)
(11)

103

AMIM Vol.25 No.2, 2020 A. Maskharashvili

S := t Cevery := λP.λQ.∀x.Px ⊃ Qx
IV := e→ t Ca, Csome := λP.λQ.∀x.Px ∧Qx
CN := e→ t Cwalks := walk

Cwoman := woman

Cloves := λT.λx.T (λy.lovex y)

Figure 5: f: mapping From Derivation Trees to Logical Formulas

Montague’s trick Note that the current state of the grammar does not
allow to obtain the second reading of the sentence (1). We can introduce
new constants to build a term that could be mapped to the second reading.
To mimic Montague’s trick, we first combine the verb and the subject
and the resultant term is then combined with the object. So, we extend
the abstract signature with the constant C2

loves : (IV → S) → IV whose
semantic interpretation is the following one:

f(C2
loves) = λS.λx.S(λy.love y x)

The term utrick is defined as follows:

utrick = CaCwoman (C2
loves (Cevery Cman)) : S

The semantic interpretation of utrick is as follows:

f(u) = f(Ca) f(Cwoman) (f(C2
loves) (f(Cevery) f(Cman)))�β

∃x.(womanx) ∧ ∀y.(man y) ⊃ (love y x)
(12)

6 Montague Grammar in Natural Language Pro-
cessing

Parsing for ACGs of order three is an NP-complete problem, as showed
by Salvati [29, 28]. The grammar based on Montague’s syntax, which we
proposed in the previous section, is of third order.

For second order ACGs, parsing is of polynomial complexity as shown
by Salvati [27] and Kanazawa [15]. Second order ACGs can encode a num-
ber of formalisms, including CFGs, Tree-Adjoining Grammars (TAGs) by
Joshi [14] and Linear Context-Free Rewriting Systems by Weir [33].

6.1 The Syntax-Semantics interface: TAG for Syntax

TAG were found to be useful for modeling natural language phenomena
that CFGs cannot, like certain kind of long-distance dependencies [32]. At

104

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

the same time, for TAGs, as it for CFGs, polynomial parsing algorithms
are available. Subsequently TAGs found a number of applications across
natural language processing problems.

6.2 Tree Adjoining Grammars

TAG is a tree generating formalism. The TAG tree language is generated
by combining elementary trees. There are two kinds of elementary trees,
initial and auxiliary ones. There are two ways of combining elementary
trees, by substitution and by adjunction.

Substitution is a replacement of a frontier node of a tree with an initial
tree that has the same root label as the given node.

Adjunction is like substitution, but in this case one can also substitute
an internal node (i.e. a node which has children) of a tree with an auxiliary
tree whose root node has the same label as the substituted node does.
Since an internal node, call it n, of a tree (call this tree γ) has children (by
definition), those children would be left orphan as a result of adjoining an
auxiliary tree (call it β) on n. As a consequence, the tree structure would
be lost. To avoid that, a TAG auxiliary tree β has a frontier node, marked
with ∗, which has the same label as the root of β (and thus the same label
as n). This frontier node, called the foot node of β, becomes mother to the
children of the node n. For example, γgreeted , γJohn and γMary are initial trees,
whereas γgrumpily is an auxiliary tree. Substituting γJohn and γMary into γgreeted

on the frontier labeled with np and adjoining γgrumpily into γgreeted on the node
with label vp produces the derived tree shown in Figure 6(a).

γMary =
NP

Mary
γgreeted= S

vp

npgreeted

np

γJohn =
NP

John
γgrumpily = vp

vp∗grumpily

The process of the production of the derived tree 6(a) is recorded by
the corresponding derivation tree, which is represented as the tree 6(b).

S

vp

np

John

vp

greeted

grumpily

np

Mary

(a) Derived tree

γgreeted

γJohnγMaryγgrumpily

(b) Derivation tree

Figure 6: Mary grumpily greeted John

105

AMIM Vol.25 No.2, 2020 A. Maskharashvili

6.3 TAG with Semantics as ACGs

While TAGs proved to be successful for encoding a number of syntactic
phenomena, it was not clear how one could design a compositional semantic
approach with TAGs when there is a mismatch between the derivational
scope (parent-child relations in a derivation tree) and the semantic (logical)
one.

Λ(Σderθ)

Λ(Σtrees) Λ(ΣLog)

Figure 7: ACG architecture for TAG

In the ACG encoding of TAG of de Groote [10], TAG derivation trees
are represented as the abstract language, whereas TAG derived trees as the
object one. Pogodalla [25, 24] provided an encoding of TAG with Montago-
vian semantics. In Pogodalla’s approach, TAG derivation trees are realized
as an abstract language (like it is in [10]), whereas logical formulas are
modeled as another object language. This architecture is pictorially repre-
sented in Fig. 7: there are the following signatures and lexicons involved:
a signature Σderθ, where we model TAG derivation trees; a signature Σtrees

where TAG derived trees are encoded; Ld-ed trees : Σderθ −→ Σtrees , it maps
derivation trees to derived trees; ΣLog where we define HOL terms encod-
ing Montague semantics; LLog : Σderθ −→ ΣLog maps derivation trees to
Montague semantics.

Σderθ: Its atomic types include S, vp, np, SA, vpA. . . where the X types
stand for the categories X of the nodes where a substitution can occur while
the XA types stand for the categories X of the nodes where an adjunction
can occur. For each elementary tree γlex. entry it contains a constant Clex. entry

whose type is based on the adjunction and substitution (see Table 2). It
additionally contains constants IX : XA that are meant to provide a fake
auxiliary tree on adjunction sites labeled with X where no adjunction ac-
tually takes place in a TAG derivation.

Σtrees : Its unique atomic type is τ the type of trees. For any X of arity
n belonging to the ranked alphabet describing the elementary trees of the

TAG, Σtrees has a constant Xn :

n times︷ ︸︸ ︷
τ (· · ·(τ (τ

Ld-ed trees(XA) = τ (τ and for any other type X, Ld-ed trees(XA) = τ .
Table 2 illustrates the way Ld-ed trees interprets constants of Σderθ.

Constants of ΣLog are shown in Table 3. We have two atomic types in
ΣLog , e for entities and t for propositions.

The lexicon LLog : Σderθ −→ ΣLog is given in Table 4.

106

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

(2) Mary grumpily greeted John.

The term v models the TAG derivation tree on Fig. 6. By mapping
v with Ld-ed trees , one obtains the term representation of the derived tree
for (2); and by mapping v with LLog , one obtains Montague style HOL
semantics of (2).

v = Cgreeted IS (Cv
grumpily IS) CMary CJohn

Ld-ed trees(v) = S2 (np1 Mary) (v2 (v2 grumpily (v1 greeted)) (np1 John))

LLog(v) = grumpily (greet m j)

Abstract constants Σderθ Their images by Ld-ed trees The corresponding TAG trees

CJohn : np cJohn
: τ
= np1 John

γJohn =
NP

John

Cv
grumpily : vpA (vpA c

vp
grumpily

: (τ (τ)((τ (τ)
= λoadvv x.advv (vp2 grumpily x)

γgrumpily = vp

vp∗grumpily

Cgreeted :
SA (vA (
(np(np(S

cgreeted =
:

(τ (τ)((τ (τ)
(τ (τ (τ
λoadvs advv subj obj. advs
(S2 subj (advv (vp2 greeted obj))

γgreeted = S

vp

npgreeted

np

IX : XA λx.x : τ (τ

Table 2: TAG with Semantics as ACGs: Ld-ed trees lexicon

j,m : e because : t→ t→ t
woman, smart,work-out : e→ t greet, love : e→ e→ t
grumpily : t→ t fast : (e→ t)→ e→ t
∧ : t→ t→ t ∨ : t→ t→ t
⇒ : t→ t→ t ¬ : t→ t
∃ : (e→ t)→ t ∀ : (e→ t)→ t

Table 3: Constants in the semantic vocabulary ΣLog

6.4 Discourse Grammars as ACGs

Several authors have proposed grammatical approaches to discourse based
on TAGs [12, 7]. Each of these grammars consist of two levels, a discourse-
level one and a sentence (clause) level one. An ACG approach to discourse
facilitated to overcome some problems that TAG based grammars experi-
ence when modeling an important discourse phenomenon of clause-medial
adverbials. Consider the following discourse:

107

AMIM Vol.25 No.2, 2020 A. Maskharashvili

(3) Mary worked out. She then watched TV.

In (3), then is a discourse adverbial. At the discourse level, it has two
places: two discourse units which it connects rhetorically (with a temporal
relation of succession), which are Mary worked out and Mary watched TV.
But at the sentence level, it operates on the verb phrase watched TV, which
is its only argument. Thus, there is a mismatch between the discourse level
and sentence level descriptions of discourse adverbials.

To distinguish a discourse meaning and a surface structure, we build two
ACGs, one for studying structural properties of discourse and the other one
to study discourse meaning. Let us sketch the constraint we are modeling:
in discourse meaning, then is a two-place predicate whose arguments are
discourse units, but in syntax, it is a verb-phrase modifier.

Let us first model the case when then is fronted: dthen : DU → DU →
DU, which encodes that a discourse connective takes two arguments that
are pieces of discourses (in our modeling, they are terms of type DU); the
resulting term also models a discourse (its type is again DU). We can
interpret the constant dthen : DU → DU → DU into TAG derived trees as
follows:

dthen := λs1. λ s2.S3 s1 dot (S2 (Then, s2)

In the case of a clause-medial connective then, we introduce a constant
dmthen typed as dmthen : DU → (SA → DU) → DU. It indeed models the
fact that the one of its arguments needs an adjunction in order to become
a discourse unit. Then we can easily interpret it as TAG derived trees.
However note that while theoretically it is perfectly possible to have dmthen
defined as it is now, it makes the ACG we are building of order three (and
thus polynomial parsing cannot be guaranteed).

As it was shown by Danlos et al. [8], it is possible to build a second
order ACG that would be still able to express the needed constraint. Let
us therefore introduce a new type DUm, which we use in order to model
clause-medial connectives. In this new approach, the type of dmthen is DU→

Constants of Σderθ Their interpretations by LLog

Cwoman : nA (np λD.λq .Dwoman q

CMary : np λD.Dm

Cgrumpily : VA (VA λav.λr. av (λx.grumpily(r x))

Cgreeted : SA (VA (np(np(S λ s aS O.s(S(a(λx.O(λy.(greet x y)))))

Cevery,Ceach : nA λP. λQ .∀x. (P x) ⊃ (Qx)

Ca,Csome : nA λP. λQ .∃x. (P x) ∧ (Qx)

Table 4: Interpretations by LLog

108

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

DUm → DU. In order to interpret it in TAG derived trees, we first interpret
it in TAG derivation trees. The constraint that the constant dmthen : DU→
DUm → DU models can be expressed in TAG derivation trees as follows:

dmthen := λs1.λs2. C+ s1 (s2 C
vp
then)

Indeed, we expressed that the second argument of dmthen must receive
an adjunction that would place then in its VP (a clause-medial position).
(The constant C+ stands for a concatenation: it can be interpreted in TAG
derived trees as an initial tree with two substitution sites separated by a
dot.) It means that we have to allow adjunction on the second argument;
the first argument, however, does not need it. To achieve that, we interpret
types DU and DUm as follows:

DU := S
DUm := vpA → S

Since we have already built the lexicon interpreting TAG derivation
trees into TAG derived trees, we can compose that lexicon with the above
defined interpretations to obtain interpretation of discourse into TAG de-
rived trees.

On the meaning side of the discourse, dmthen and dthen behave in the same
way: both model the succession rhetorical relation. We therefore interpret
them as follows: dmthen, dthen := succession : t → t → t. As one can see,
we interpret types DU and DUm, both as t.

7 Discussion and Summary

There are a number of insights that Montague’s works offer to the stud-
ies in semantics and in particular to the studies of the syntax-semantics
interface, such as, for instance, use of typed lamda calculus and higher-
order interpretations of noun phrases. Another important point in MG is
its uniform treatment of intransitive verbs, common nouns and adjectives.
As we already mentioned above, all of them are treated as one-place pred-
icates of type e → t. While this approach to intransitive verbs, common
nouns and adjectives has found a number of uses, there are other ways of
their modeling which were offered within other theories. Ranta [26] and
Luo [17, 18] propose grammars within frameworks of dependent types. In
their grammars, common nouns are not treated as predicates but types.
That is, human, book, tree etc. are types. The verbs are predicates. For
instance, talk is of type human → t. This makes sure that one would not
have a tree talks, because a tree is not of type human. Pkhakadze [23]
argues in favor of distinguishing between nouns, adjectives and verbs. In

109

AMIM Vol.25 No.2, 2020 A. Maskharashvili

his approach, verbs are predicates. A noun is either a set, or a constant
ranging on the set defined by that noun.

Meaning in natural language claimed attention of various communi-
ties, including linguistics, mathematics (logics, computer science), philos-
ophy, and psychology, and the syntax-semantics interface is only one way
of studying it, treating syntax as a pivot to semantics. In the studies fo-
cused on the syntax-semantics interface though, the main question is still
whether a syntactic analysis is sufficient to obtain a semantic one, or to
put it another way, is syntax a pure pivot for semantics, or syntax is also
shaped by semantics? After all, we, speakers, use natural language to cre-
ate and convey meanings, which allows us to think and communicate by
means of a language. In MG we already see an emergence of some seman-
tics inspired syntactic rules. (Montague’s trick shows this spirit as it offers
a new syntactic analysis in order to obtain one of the possible readings.)
A later developments of MG, such as ACGs, have been making use of se-
mantics inspired syntax in order to model various phenomena in studying
form-meaning relations.

References

1. Ajdukiewicz, K. Die syntaktische Konnexität. Stud. Philos. 1 (1935),
1–27.

2. Bar-Hillel, Y. A quasi-arithmetical notation for syntactic descrip-
tion. Language 29, 1 (1 1953), 47–58.

3. Barendregt, H. P. Lambda calculi with types. In Handbook of Logic
in Computer Science (Vol. 2), S. Abramsky, D. M. Gabbay, and S. E.
Maibaum, Eds. Oxford University Press, Inc., New York, NY, USA,
1992, pp. 117–309.

4. Bloomfield, L. Language. University of Chicago Press, Chicago,
1933.

5. Chomsky, N. On certain formal properties of grammars. Information
and Control 2, 2 (1959), 137 – 167.

6. Curry, H. B. Some logical aspects of grammatical structure. Journal
of Symbolic Logic 25, 4 (1960), 341–341.

7. Danlos, L. D-STAG : un formalisme d’analyse automatique de dis-
cours basé sur les TAG synchrones. Revue TAL 50, 1 (2009), 111–143.

110

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

8. Danlos, L., Maskharashvili, A., and Pogodalla, S. Interfacing
sentential and discourse TAG-based grammars. In Proceedings of the
12th International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+12) (Düsseldorf, Germany, June 2016), pp. 27–37.

9. de Groote, P. Towards abstract categorial grammars. In Associ-
ation for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter (Toulouse, France, July 2001),
pp. 148–155. Colloque avec actes et comité de lecture. internationale.

10. de Groote, P. Tree-Adjoining Grammars as Abstract Categorial
Grammars. In Proceedings of the Sixth International Workshop on
Tree Adjoining Grammars and Related Frameworks (TAG+6) (2002),
Università di Venezia, pp. 145–150.

11. Dowty, D. R., Wall, R. E., and Peters, S. Introduction to
Montague Semantics. Reidel, Dordrecht, 1981.

12. Forbes, K., Miltsakaki, E., Prasad, R., Sarkar, A., Joshi,
A. K., and Webber, B. L. D-LTAG system: Discourse parsing with
a Lexicalized Tree-Adjoining Grammar. Journal of Logic, Language
and Information 12, 3 (2003), 261–279. Special Issue: Discourse and
Information Structure.

13. Gamut, L. Logic, Language, and Meaning: Intensional logic and log-
ical grammar. Logic, Language, and Meaning. University of Chicago
Press, 1991.

14. Joshi, A. K., and Schabes, Y. Tree-adjoining grammars. In Hand-
book of Formal Languages, G. Rozenberg and A. Salomaa, Eds. Springer
Berlin Heidelberg, 1997, pp. 69–123.

15. Kanazawa, M. Parsing and generation as datalog queries. In Proceed-
ings of the 45th Annual Meeting of the Association of Computational
Linguistics (ACL) (Prague, Czech Republic, June 2007), Association
for Computational Linguistics, pp. 176–183.

16. Lambek, J. The mathematics of sentence structure. Americal Math-
ematical Monthly 65 (1958), 154–170.

17. Luo, Z. Common nouns as types. In Logical Aspects of Computational
Linguistics (Berlin, Heidelberg, 2012), D. Béchet and A. Dikovsky,
Eds., Springer Berlin Heidelberg, pp. 173–185.

18. Luo, Z. Formal semantics in modern type theories with coercive sub-
typing. Linguistics and Philosophy 35, 6 (Nov 2012), 491–513.

111

AMIM Vol.25 No.2, 2020 A. Maskharashvili

19. Montague, R. English as a formal language. In Linguaggi Nella
Società e Nella Tecnica, B. Visentini, Ed. Edizioni di Communita, 1970,
pp. 188–221.

20. Montague, R. Universal grammar. Theoria 36, 3 (1970), 373–398.

21. Montague, R. The proper treatment of quantification in ordinary
English. In Formal Philosophy: Selected Papers of Richard Mon-
tague, R. Thomason, Ed. Yale University Press, New Haven, CT, 1973,
pp. 247–270.

22. Moot, R., and Retoré, C. The Logic of Categorial Grammars: A
Deductive Account of Natural Language Syntax and Semantics. FoLLI-
LNCS. Springer, July 2012.

23. Pkhakadze, K. About logical declination and lingual relations in
georgian. Georgian language and logic 1, 1 (2005), 19–77.

24. Pogodalla, S. Advances in Abstract Categorial Grammars: Lan-
guage Theory and Linguistic Modeling. ESSLLI 2009 Lecture Notes,
Part II. ESSLLI 2009 Lecture Notes, 2009.

25. Pogodalla, S. A syntax-semantics interface for Tree-Adjoining
Grammars through Abstract Categorial Grammars. Journal of Lan-
guage Modelling 5, 3 (2017), 527–605.

26. Ranta, A. Type-theoretical Grammar. Indices (Claredon). Clarendon
Press, 1994.

27. Salvati, S. Problèmes de filtrage et problèmes d’analyse pour les gram-
maires catógorielles abstraites. PhD thesis, Institut National Polytech-
nique de Lorraine, 2005.

28. Salvati, S. On the complexity of Abstract Categorial Grammars. In
10th conference on Mathematics of Language (MOL 10), Los Angeles,
CA (July 2007), M. Kracht, G. Penn, and E. Stabler, Eds.

29. Salvati, S. A note on the complexity of abstract categorial grammars.
In The Mathematics of Language (Berlin, Heidelberg, 2010), C. Ebert,
G. Jäger, and J. Michaelis, Eds., Springer Berlin Heidelberg, pp. 266–
271.

30. Shaumyan, S. Structural Linguistics. Nauka, 1965.

31. Shaumyan, S. A semiotic theory of language. Advances in semiotics.
Indiana University Press, 1987.

112

The Syntax-Semantics Interface: ... AMIM Vol.25 No.2, 2020

32. Shieber, S. M. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy 8, 3 (1985), 333–343.

33. Weir, D. J. Characterizing Mildly Context-Sensitive Grammar For-
malisms. PhD thesis, University of Pennsylvania, Philadelphia, PA,
USA, 1988. Supervisor: Aravind K. Joshi.

113

