
UNIFICATION MODULO α-EQUIVALENCE IN A
MATHEMATICAL ASSISTANT SYSTEM

Temur Kutsia

RISC, Johannes Kepler University, Linz, Austria
kutsia@risc.jku.at

Abstract

We study unification modulo α-equivalence in a language that
combines permissive nominal terms and sequence unknowns. Such
unification problems originate from reasoning tasks in the mathemat-
ical assistant system Theorema. We propose an algorithm that com-
bines a version of permissive nominal unification with length-bounded
sequence unification. It is terminating, sound, minimal, and satisfies a
restricted version of completeness. We also consider two special cases
when the boundedness restriction can be lifted: (1) matching frag-
ment and (2) the fragment where sequence unknowns appear in the
last argument positions in subterms. They permit minimal and com-
plete algorithms. All three algorithms are implemented and included
in the unification package of the Theorema system.

Keywords and phrases: Permissive nominal unification, α-equiva-
lence, mathematical assistant systems, Theorema, sequence variables.

AMS subject classification (2010): 03B70, 68Q42, 68W30, 68T15.

1 Introduction

Unification is a procedure for symbolic equation solving, used as the main
computational mechanism in many automated deduction methods. Given
two logical expressions, unification algorithms try to find instantiations of
variables to make the expressions identical (syntactic unification) or equal
modulo an equational theory (equational unification). Unification is a key
ingredient in theorem provers, proof assistants, and declarative program-
ming systems.

In this paper we consider a particular variant: unification modulo α-
equivalence. Two logical expressions are α-equivalent, if they are the same
modulo renaming of bound variables. The algorithm described here cor-
responds to what is implemented in the mathematical assistant system
Theorema [10].

The specific features of Theorema influenced the design of the algorithm.
Theorema provides a pretty liberal higher-order syntax. Its expression may

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

be a constant, a variable, an application of an expression to a sequence of
expressions, or a quantified expression. Variables are of two kinds: for indi-
vidual expressions (individual variables, here called term variables) and for
sequences of expressions (sequence variables). Arities of function constants,
in general, are not fixed.

As an example of α-unification, consider an equation between two state-
ments about sets from [10]: X + 1 ∈ {x |x x > X} ≈?

α Y ∈ {y |y y > a},
where X and Y are individual variables to be instantiated, and x and y are
variables bound by the set quantifier. The algorithm computes the unifier
σ = {Y 7→ a + 1, X 7→ a}, which maps Y to a + 1 and X to a. Apply-
ing σ to the given problem, we get a + 1 ∈ {x |x x > a} in the left and
a+ 1 ∈ {y |y y > a} in the right, which are not identical, but equal modulo
renaming the bound variable y into x.

Sequence variables are very handy in knowledge representation and rule-
based programming. They play an important role both in Theorema and
in the programming language this system is implemented in: the Wolfram
language of the symbolic computation system Mathematica [65]. However,
the expressive power of sequence variables makes unification with them
pretty hard. There are problems which may have infinitely many inde-
pendent unifiers even for the syntactic case. For instance, the equation
f(x, a) =? f(a, x) has infinitely many solutions, mapping x to finite (in-
cluding empty) sequences of a’s: {x 7→ ()}, {x 7→ (a)}, {x 7→ (a, a)},

As it was pointed out in [10], despite the fact that Theorema provides
higher-order syntax, there is no hidden default higher-order logic behind
it. In the process of developing an α-unification algorithm for this lan-
guage, we chose a pragmatic, minimalistic approach, since α-equivalence
is the fundamental property of languages with binders. The idea was to
provide the basic algorithm that deals with language constructs such as
quantifiers/binders, applicative expressions, and sequence variables. In spe-
cific reasoners, the algorithm either can be used as provided, or it may be
extended/modified to meet the needs of that particular reasoner. For in-
stance, for a special prover for higher-order logic, one may wish to extend
the algorithm to deal with equalities modulo β and η rules, while, e.g., for
first-order reasoning, the provided algorithm would suffice.

To illustrate the mentioned features of this approach, we recall examples
from [10]: For instance, in our language, the equation X(a) ≈?

α f(a, a) does
not have a solution, because unification is not done modulo β (in contrast
to four unifiers when the β-rule is permitted). Note also that f(a)(a) and
f(a, a) are not seen as equal. The problem X(a) ≈?

α f(a)(a) can be solved
by {X 7→ f(a)}.

To distinguish between the variables that are bound in (the context of)
an expression, and the variables that are free and can be instantiated by

67

AMIM Vol.25 No.2, 2020 T. Kutsia

unification, we call the former atoms (as in nominal unification [61]) and
keep the word ‘variable’ only for the latter.

An important feature in the algorithm described in this paper is the use
of so called permission sets, like in permissive nominal unification [17]. The
permission set of a variable explicitly indicates which atoms may appear
in the instantiation of that variable during unification. For instance, x{a,b}

means that in the instantiations of x, only a and b are permitted from the
atoms: {a, b} is the permission set for x. Hence, x{a,b} may be unified, e.g.,
with the terms f(a, g(a)) or f(y{b}, a), but not with f(c), where c is an
atom, because c does not belong to the permission set.

We call pairs consisting of a variable and a permission set unknowns. In
Theorema, they arise in the context of proving. For instance, an attempt
to prove ∀x.∃y. f(x) = y gives a unification problem f(a) =? y{a}, where
a is an atom (an arbitrary but fixed constant obtained after removing the
universal quantifier) and y{a} is the unknown, whose instantiation is to be
computed. The atom a is permitted in the instantiation. The unification
problem can be solved by the substitution {y{a} 7→ f(a)}, which leads to
the proof of the statement. On the other hand, proving ∃y.∀x. f(x) = y
fails, because it gives the unification problem f(a) =? y∅, which does not
have a solution: f(a) is not permitted in y∅, since the empty permission
set forbids the atom a to appear in the instantiation.

In this work, we describe an algorithm Unif-Alg for solving such uni-
fication problems. They may contain unknowns for terms and sequences,
atoms, variadic function symbols, applications, and binders. To guarantee
the termination of the algorithm, the length of instantiations of sequence
unknowns is limited. Termination, soundness, and restricted completeness
of the algorithm are shown. The set of unifiers it computes is minimal.
We also identify two fragments, for which termination and completeness
can be obtained without limiting the length of sequence unknown instanti-
ations: matching fragment (equations where one side is unknown-free) and
the fragment, where sequence unknowns occupy the last argument positions
in subterms they occur.

The plan of the paper is following: after a brief overview of related
work, we introduce the language, define terms, substitutions, unification
problems and related notions in Section 2. In Section 3, we describe the
unification algorithm Unif-Alg and two other algorithms for special frag-
ments: Match-Alg and Unif-Alg-Last. Properties of these three algorithms
are investigated in Section 4, where theorems about termination, sound-
ness, completeness and restricted completeness are proved.

The algorithms are implemented in Mathematica and are a part of the
Theorema system.

68

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Related work

α-Unification

Unification modulo α-equivalence has been studied in [61] in the context
of nominal terms. Nominal techniques, introduced in [24, 25], extend first-
order syntax by names and bindings, where binders quantify names in their
arguments. The syntax still remains first-order. Functional abstraction λ,
logic quantifiers ∀, ∃, integral

∫
are some well-known examples of binders.1

The motivation for introducing nominal techniques was to formally rep-
resent and study systems with binding. These techniques syntactically
distinguish between atoms (object level variables), which can be bound,
and unknowns (meta-variables), which can be substituted. Substitutions
may cause atom capture by binders. Renaming of atoms is made explicit
by their name swapping (which avoids capture). Informal ‘fresh variable
conditions’ is made a part of the language under freshness constraints.

Nominal unification has good algorithmic properties: it is decidable,
unitary, and can be solved in polynomial time. Unification, matching, and
related problems in nominal setting are quite actively investigated nowa-
days. Various kinds of equation solving methods between nominal terms,
and their relations to similar problems have been studied by several authors,
see, e.g., [2,3,6,11–13,22,23,46,47,58]. Permissive nominal unification, in-
troduced in [17], differs from nominal unification in that it changes the idea
of ‘specifying which atoms are forbidden in instantiations’ into ‘specifying
which atoms are permitted in instantiations’. It has several advantages,
outlined in [17], including the possibility to always choose a fresh atom and
the substitution-only based notion of unifier. A nice survey on permissive-
nominal logic can be found in [26].

Permission sets, in general, may be infinite, but in the context of their
application in proof-search, finite ones suffice [27]. This applies to our case
as well, because our unification problems originate from tasks in Theorema
reasoners. Note that our unification problems avoid binding atoms from
permissive sets. Hence, substitutions do not cause atom capture. Also,
two distinct unknowns do not share the same variable. Another difference
from [17] is the way how atoms are renamed. In nominal techniques, this is
done by permutations, which has many advantages [27]. However, we stick
to a more familiar way of atom replacements such as [a := b] and rely on
the capabilities of the meta-language to generate fresh names.

1See [55] for rules about introducing new binders in the language.

69

AMIM Vol.25 No.2, 2020 T. Kutsia

Unification with sequence variables

Sequence variables come hand-in-hand with variadic symbols (i.e., those
without the fixed arity). Such symbols are pretty common. They can be,
e.g., names in Common Logic [33] and KIF [28], XML tags, symbols origi-
nated from different knowledge bases after their integration, functions and
constructors implemented in symbolic computation systems (e.g., Mathe-
matica), arithmetic operations written in variadic form, flexary symbols in
OpenMath [32], etc. Unification with sequence variables is infinitary (the
minimal complete set of unifiers for some problems can be infinite).

Incomplete unification algorithms, motivated by applications, have been
proposed in [29, 56]. A complete procedure was introduced in [39, 41]. De-
cidability was proved in [39, 43] and various terminating fragments have
been studied in [43, 45]. Matching with sequence variables modulo equa-
tional theories and its relation with the built-in pattern matching mecha-
nism of Mathematica was investigated in [21]. Among various applications
of equation solving with sequence variables one can mention knowledge rep-
resentation [50], rule-based and constraint (logic) programming [?,?,19,59],
rewriting [20], theorem proving [40], XML processing [14, 15, 44], etc. The
main variant we consider in this paper corresponds to bounded-length se-
quence unification. The idea of imposing such a length bound has been used
earlier for dealing with sequence equations and constraints in constraint
programming solver [59], program synthesis [56], ontology reasoning [54],
etc. To the best of our knowledge, sequence unification and permissive
nominal unification have not been combined before.

Theorema

The Theorema project has been initiated by Bruno Buchberger in the mid-
1990s [8]. The goal was to develop a software system that aids all the phases
of mathematical theory exploration. It includes invention of mathematical
concepts; formulation and proof of propositions; formulation of problems;
formulation, verification, and execution of algorithms for solving problems;
maintenance of knowledge bases developed and verified in this process,
and retrieval of mathematical knowledge. Many proof assistant systems
and dedicated tools support various aspects of theory exploration, see, e.g.,
[1,5,7,16,30,31,34–36,49,51–53,60]. Theorema has been used, for instance,
for the development and implementation of a new method for solving linear
boundary value problems [57], for the automated synthesis of Buchberger’s
algorithm for computing Gröbner bases [9], for formalizing pillage games
in theoretical economics [37], for theory exploration in reduction rings [48],
for synthesis of sorting algorithms for binary trees [18], just to name a few.

70

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

The object language of Theorema is a version of a higher-order lan-
guage with sequence variables. Its meta-language for implementing rea-
soners (provers, solvers, simplifiers) is Mathematica. Theorema provides a
modern GUI [64] and an infrastructure for developing special reasoners and
for combining them into more general tools. Examples of special reasoners
implemented in Theorema are provers for first-order predicate logic [38],
set theory [63], equational logic [42], elementary analysis [62], a package for
Green’s algebra [57], etc. They all rely in a way or another on the unifica-
tion package of Theorema. This package has been modified and improved
several times since its initial implementation in the first version of the sys-
tem at the end of 1990s. The algorithms we describe in this paper are a
part of the new unification package in Theorema 2.0 [10].

2 Preliminaries

We consider an alphabet A consisting of the following pairwise disjoint
countable sets of symbols:

� VT: the set of term variables,

� VS: the set of sequence variables,

� A: the set of atoms,

� F : the set of variadic function symbols,

� Q: the set of quantifiers.

Definition 1 (Terms, s-terms). A term t and an s-term s over the alphabet
A are defined by the grammar:

t ::= xP | a | f | t(s1, . . . , sn) | Qa.t
s ::= t | xP

where x ∈ VT, P ⊂ A, a ∈ A, f ∈ F , Q ∈ Q, x ∈ VS, and n ≥ 0. The set
P is assumed to be finite. It is called a permission set.

The expressions xP and xP are called term and sequence unknown, respec-
tively. Note that variadic function symbols may apply to arbitrary number
of arguments, the terms f and f() are not assumed to be the same, and
quantifiers operate on atoms. Note also a restricted use of sequence un-
knowns. Namely, a sequence unknown can be neither the head of a term
nor the body of a quantifier, i.e., expressions such as xP (a, b) and Qa.xP

are not terms.
We write sequences of s-terms in parentheses for readability. Below the

following meta-variables are used:

71

AMIM Vol.25 No.2, 2020 T. Kutsia

� for term variables: x, y, z,

� for sequence variables x, y, z,

� for term or sequence variables: v, w,

� for atoms: a, b, c, d,

� for function symbols: f, g, h,

� for quantifiers: Q,

� for terms: t, u,

� for s-terms: s, r,

� for finite sequences of terms: t̃, ũ,

� for finite sequences of s-terms: s̃, r̃.

Example 1. Let a, b, c ∈ A, f, g, h ∈ F , λ ∈ Q. Then the following
expressions are terms: f , f(), f(a, f, x∅), f(a, b)(c, x{a,c}), λa.f(a, x{a}),
(λa.f(a))(g), (λa.f(a)(b))(g(a, x({a,b})).

The head of a term t, denoted by head(t), is defined as head(xP) = xP ,
head(a) = a, head(f) = f , head(t(s̃)) = t, and head(Qa.t) = Q.

Definition 2 (Free, bound atoms). The sets of free and bound atoms of
an s-term s, denoted respectively by fa(s) and ba(s), are defined as follows:

fa(xP) = P, fa(xP) = P, fa(f) = ∅, fa(a) = {a},
fa(t(s1, . . . , sn)) = fa(t) ∪ ∪ni=1fa(si),

fa(Qa.t) = fa(t) \ {a}.

ba(xP) = ba(xP) = ba(f) = ba(a) = ∅,
ba(t(s1, . . . , sn)) = ba(t) ∪ ∪ni=1ba(si),

ba(Qa.t) = ba(t) ∪ {a}.

Further:

fa((s1, . . . , sn)) = fa(s1) ∪ · · · ∪ fa(sn).

ba((s1, . . . , sn)) = ba(s1) ∪ · · · ∪ ba(sn).

atoms(s) = fa(s) ∪ ba(s). atoms(s̃) = fa(s̃) ∪ ba(s̃).

The set of all unknowns of s (resp. of s̃) is denoted by unkn(s) (resp.
unkn(s̃)).

Definition 3 (Substitution). A substitution σ is a mapping, which maps
unknowns to terms and to sequences of s-terms and is defined as follows:

72

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

� for each xP , σ(xP) is a term,

� for each xP , σ(xP) is a finite sequence of s-terms

such that

� fa(σ(vP)) ⊆ P for all v ∈ VT ∪ VS,

� σ(xP) = xP for all but finitely many term unknowns,

� σ(xP) = (xP) for all but finitely many sequence unknowns,

� if σ(vP) 6= vP for some v ∈ VT ∪ VS and P , then σ(vR) = vR for the
same v and all B 6= R.

Usually, substitutions are written as finite sets of mapping pairs. For
instance, {x{a,b} 7→ Qa.f(a)(y{b}), y{a} 7→ g(a, f), x{a,b} 7→ (f(a), Qb.b, b),
y{b} 7→ ()} is a substitution, which maps x{a,b} to Qa.f(a)(y{b}), y{a} to
g(a, f), x{a,b} to the sequence (f(a), Qb.b, b), and y{b} to the empty se-
quence (). The other term unknowns are mapped to themselves, and the
other sequence unknowns are mapped to themselves as singleton sequences.

We use lower case Greek letters for substitutions. The only exception
is the identity substitution, denoted by Id . The domain and range of a
substitution σ are defined as

dom(σ) := {xP | σ(xP) 6= xP } ∪ {xP | σ(xP) 6= (xP)}
ran(σ) := {σ(vP) | vP ∈ dom(σ)}.

Given a set of unknowns S, the restriction of a substitution σ on S,
denoted by σ|S , is a substitution for which σ|S(vP) = σ(vP) if vP ∈ S, and
σ|S(vP) = vP otherwise.

Substitutions can be composed in the usual way, see, e.g., [4]. We write
σϑ for the composition of substitutions σ and ϑ (the order matters).

A substitution σ is idempotent, if σσ = σ. The defining property of
idempotent substitutions is dom(σ) ∩ unkn(ran(σ)) = ∅.

Definition 4 (Replacement). An atom replacement or, shortly, replace-
ment is a mapping from an atom to an atom, written as [a := b].

Replacements and substitutions can be applied to terms according to
the following definitions:

Definition 5 (Replacement application). Application of a replacement
[a := b] to an s-term s, denoted s[a := b], is defined as follows:

vP [a := b] = vP [a:=b], where

if a ∈ P , then P [a := b] = (P \ {a}) ∪ {b}, else P [a := b] = P .

73

AMIM Vol.25 No.2, 2020 T. Kutsia

f [a := b] = f, a[a := b] = b, c[a := b] = c if c 6= a,

t(s1, . . . , sn)[a := b] = t[a := b](s1[a := b], . . . , sn[a := b]),

(Qc.t)[a := b] = Qc[a := b].t[a := b].

Note that replacement application allows atom capture: Qa.f(a, b)[b :=
a] = Qa.f(a, a).

Definition 6 (Substitution application). Application of a substitution σ
to an s-term s, denoted sσ, is defined as follows:

vPσ = σ(vP), aσ = a, fσ = f,

t(s1, . . . , sn)σ = tσ(s1σ, . . . , snσ),

(Qa.t)σ = Qb.t[a := b]σ, where b /∈ atoms(t).

Substitution application avoids atom capture, unlike replacements. For
instance, we have Qa.f(a, x{a}){x{a} 7→ a} = Qb.f(b, a).

Definition 7 (The relation ≈α). The relation ≈α on s-terms is the smallest
relation that satisfies the following:

vP ≈α vP , a ≈α a, f ≈α f,
t1(s1

1, . . . s
1
n) ≈α t2(s2

1, . . . s
2
n) if t1 ≈α t2 and s1

i ≈α s2
i for i = 1, n,

Qa.t ≈α Qb.u,
if t[a := c] ≈α u[b := c] where c /∈ atoms(t) ∪ atoms(u).

It can be proved that ≈α is a congruence relation. It is called the
α-equivalence. Essentially, two s-terms are α-equivalent if they are equal
modulo bound atom renaming.

Definition 8 (Instantiation quasi-ordering). An s-term s is more general
than r (r is an instance of s), written s - r, if there exists a substitution
σ such that sσ ≈α r.

A substitution σ is more general than ϑ, written σ - ϑ, if there exists
a substitution ϕ such that xPσϕ ≈α xPϑ for any xP .

The relation - is quasi-ordering (a reflexive and transitive binary re-
lation). It is called instantiation quasi-ordering. It induces an equivalence
relation (both on terms and on substitutions), denoted by ∼.

Definition 9 (Unification problem, unifier). A unification problem Γ is a
finite set of unification equations (term pairs):

Γ = {t1 ≈?
α u1, . . . , tn ≈?

α un}.

74

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Γ does not contain two different unknowns with the same variable: If vP1

and vP2 occur in Γ, then P1 = P2. For each vP occurring in Γ, the atoms
in P are free in the equation where vP occurs.

A substitution σ is a unifier of Γ if tiσ ≈α uiσ for all 1 ≤ i ≤ n. It is
called a most general unifier, if σ - ϑ for any unifier ϑ of Γ.

It is known [41, 43] that when unification problems contains sequence
variables, there might be infinitely many unifiers, which are not comparable
with each other by -. (In other words, the problem is infinitary.) In such
cases, one talks about minimal complete sets of unifiers:

Definition 10 (Minimal complete set of unifiers). Let Γ be a unification
problem and S be a set of substitutions. Then S is called a complete set of
unifiers of Γ, if the following two properties are satisfied:

Soundness: Every σ ∈ S is a unifier of Γ.

Completeness: For each unifier ϑ of Γ, there exists σ ∈ Γ such that σ - ϑ.

S is a minimal complete set of unifiers of Γ, if, in addition, the minimality
property holds:

Minimality: If there exist σ1, σ2 ∈ S such that σ1 - σ2, then σ1 = σ2.

We denote S in this case by mcsu(Γ).

A simple example of a unification problem with infinite minimal com-
plete set of unifiers is Γ = {f(x{a}, a) ≈α f(a, x{a})}. We have mcsu(Γ) =
{{x{a} 7→ ()}, {x{a} 7→ (a)}, {x{a} 7→ (a, a)}, {x 7→ (a, a, a)}, . . .}.

Example 2. Here we show some unification problems Γ and their minimal
complete sets of unifiers. (∀, λ ∈ Q, p,>, 〈·〉 ∈ F):

Γ = {∀a.∀b.〈a > b, p(a, b)〉 ≈?
α ∀b.∀a.〈b > a, p(b, a)〉},

mcsu(Γ) = {Id}.

Γ = {∀a.p(a, x{b}) ≈?
α ∀b.p(b, b)},

mcsu(Γ) = ∅ : not unifiable.

Γ = {∀a.p(a, x{b}) ≈?
α ∀c.p(c, b)},

mcsu(Γ) = {{x{b} 7→ b}}.

Γ = {∀a.p(a, x{b}) ≈?
α ∀b.p(b, c)},

mcsu(Γ) = ∅ : not unifiable.

75

AMIM Vol.25 No.2, 2020 T. Kutsia

Γ = {∀a.p(a, x∅) ≈?
α ∀a.p(a, λb.b)},

mcsu(Γ) = {{x∅ 7→ λb.b}}.

Γ = {∀a.p(a, x∅) ≈?
α ∀a.p(a, b)},

mcsu(Γ) = ∅ : not unifiable.

Γ = {∀a.p(a, x{b}) ≈?
α ∀c.p(c, f(b, g))},

mcsu(Γ) = {{x{b} 7→ f(b, g)}}.

Γ = {∀a.p(a, x{b}, y{b,c,d}) ≈?
α ∀a.p(a, b, f(b), c)},

mcsu(Γ) = {{x{b} 7→ (), y{b,c,d} 7→ (b, f(b), c)},
{x{b} 7→ (b), y{b,c,d} 7→ (f(b), c)},
{x{b} 7→ (b, f(b)), y{b,c,d} 7→ (c)}}.

Γ = {p(x{a,b}) ≈?
α p(y

{a}, z{a,b,c})},
mcsu(Γ) = {{x{a,b} 7→ (y{a}, z′{a,b}), z{a,b,c} 7→ z′{a,b}}}.

Γ = {∀a.p(a, x{c,c′}) ≈?
α ∀b.p(b, f(y{c,c

′′}))},

mcsu(Γ) = {{x{c,c′} 7→ f(y′{c}), y{c,c
′′} 7→ y′{c}}}.

Γ = {x{a,b}(y{a,c}) ≈?
α f(y{a,c})(g(z{c}, a))},

mcsu(Γ) = {{x{a,b} 7→ f(g(z′∅, a)), y{a,c} 7→ g(z′∅, a), z{c} 7→ z∅}}.

Γ = {p(x{a,b}, y{a,c}) ≈?
α p(f(y{a,c}), g(z{b}, a))},

mcsu(Γ) = {{x{a,b} 7→ (f(g(z′∅, a))), y{a,c} 7→ (g(z′∅, a)), z{b} 7→ z∅},
{x{a,b} 7→ (f(), g(z{b}, a)), y{a,c} 7→ ()}}.

3 The algorithm

In this section we formulate our unification algorithm in a rule-based way.
Rules operate on states, which is a pair Γ;σ, where Γ is a unification prob-
lem and σ is a substitution. Intuitively, a state shows the problem “still to
be solved” and the unifier “computed so far”.

In the rules we use renaming substitutions, defined as follows: A sub-
stitution σ is called a renaming substitution if it injectively maps term un-
knowns to term unknowns and sequence unknowns to sequence unknowns.

76

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

The rules are the following (the symbol symb is use as a metavariable
for a function symbol, atom, or a term unknown):

T: Trivial

{t ≈?
α t}] Γ; σ Γ; σ.

HD: Head Decomposition

{t(s̃) ≈?
α u(r̃)}] Γ; σ {t ≈?

α u} ∪ Γ′ ∪ Γ; σ,

if t /∈ F ∪ A or u /∈ F ∪ A. If s̃ = r̃ = (), then Γ′ = ∅, otherwise
Γ′ = {f(s̃) ≈?

α f(r̃)}, where f is an arbitrary function symbol.

TD: Total Decomposition

{symb(t1, . . . , tn) ≈?
α symb(u1, . . . , un)}] Γ; σ

{t1 ≈?
α u1, . . . , tn ≈?

α un} ∪ Γ; σ,

where n > 0.

PD-L: Partial Decomposition Left

{symb(t1, . . . , tn, x
P , s̃) ≈?

α symb(u1, . . . , un, r̃)}] Γ; σ

{t1 ≈?
α u1, . . . , tn ≈?

α un, symb(xP , s̃) ≈?
α symb(r̃)} ∪ Γ; σ.

where n > 0.

Q: Quantifiers

{Qa.t ≈?
α Qb.u}] Γ; σ {t[a := c] ≈?

α u[b := c]} ∪ Γ; σ.

where c /∈ atoms(t) ∪ atoms(u).

TUE-L: Term Unknown Elimination Left

{xP ≈?
α u}] Γ; σ Γϑρ; σϑρ,

where

� xP /∈ unkn(u) = {vP1
1 , . . . , vPn

n },
� fa(u) \ (P1 ∪ · · · ∪ Pn) ⊆ P ,

� ρ = {vPi
i 7→ wPi∩P

i | i ∈ {1, . . . , n}, Pi ∩ P 6= Pi} is a renaming
substitution with fresh variables wi, and

� ϑ = {xP 7→ uρ}.

77

AMIM Vol.25 No.2, 2020 T. Kutsia

The rule below depends on the global parameter ` which specifies the max-
imum length of instantiations of sequence unknowns.2 It affects complete-
ness, but is necessary for termination.

FIXED-SUE-L: Fixed-Size Sequence Unknown Elimination Left

{symb(xP , s̃) ≈?
α symb(r̃)}] Γ; σ

({symb(xP , s̃) ≈?
α symb(r̃)} ∪ Γ)ϑ; σϑ,

where ϑ = {xP 7→ (xP1 , . . . , x
P
k)}, where the x’s are fresh variables and

k ≤ `.

We also have the Right counterparts of the Left rules. We do not
explicitly write them here to save space. They are just dual to the corre-
sponding Left rules: If a Left rule operates on t ≈?

α u, the right rule would
apply to an equation of the form u ≈?

α t. The names of Right rules have
the suffix -R is place of -L.

To unify two terms t and u, we create the initial state {t ≈?
α u}; Id

and apply the abovementioned rules exhaustively, generating derivations.
When the Trivial rule T applies to the selected equation, the other rules
are not used. If an elimination rule and its right counterpart (i.e., TUE-L
and TUE-R, FIXED-SUE-L and FIXED-SUE-R) are applicable to the same
equation at the same time, we use only one of them (usually the left one).

FIXED-SUE-L (and FIXED-SUE-R) can transform the same equation in
finitely many ways, depending on the choice of k. It can cause branching
in the derivation tree, leading to computing multiple answers.

The derivations stop in two cases. Either a state of the form ∅;σ is
generated, or no rule can be applied to the last state Γ;ϑ where Γ 6= ∅. In
the first case, the derivation is called successful and σ|unkn(Γ) is called the
computed answer. In the second case, the derivation is called failed.

The described algorithm is denoted by Unif-Alg. The set of answers
computed by Unif-Alg for a unification problem Γ with a given ` is denoted
by Unif-Alg(Γ, `).

There are special fragments of terminating sequence unification (see,
e.g., [45]). We can accommodate them in our framework as well, replacing
FIXED-SUE-L by rules suitable to the particular fragment. Here we consider
two such special cases: (1) when no unknown occurs in the right hand side of
an unification problem (sequence matching fragment, Seq-Match) and (2)
when all sequence unknowns occur in the last argument positions (sequence
last fragment, Seq-Last).

2Instead of the global parameter `, we could impose individual length-bounds for each
sequence unknown occurring in the given unification problem. It would not change the
algorithm and its properties.

78

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

For Seq-Match, the rule that replaces FIXED-SUE-L is MATCH-SUE.

MATCH-SUE: Sequence Unknown Elimination, Seq-Match

{symb(xP , s̃) ≈?
α symb(r̃1, r̃2)}] Γ; σ

({symb(s̃) ≈?
α symb(r̃2)} ∪ Γ)ϑ; σϑ,

where fa(r̃1) ⊆ P and ϑ = {xP 7→ r̃1}.

We do not need the Right counterpart of this rule and also for the
other elimination rules, since in the matching fragment no unknown occurs
in the right hand side.

For Seq-Last, FIXED-SUE-L is replaced by LAST-SUE-L.

LAST-SUE-L: Sequence Unknown Elimination Left, Seq-Last

{symb(xP) ≈?
α symb(r̃)}] Γ; σ Γϑρ; σϑρ,

where

� xP /∈ unkn(r̃) = {vP1
1 , . . . , vPn

n },
� fa(r̃) \ (P1 ∪ · · · ∪ Pn) ⊆ P ,

� ρ = {vPi
i 7→ wPi∩P

i | i ∈ {1, . . . , n}, Pi ∩ P 6= Pi} is a renaming
substitution with fresh variables wi, and

� ϑ = {x 7→ r̃ρ}.

We have also the Right counterpart of this rule, called LAST-SUE-R.
If both LAST-SUE-L and LAST-SUE-R are applicable to the same equation,
we apply only LAST-SUE-L.

For Seq-Match and Seq-Last fragments, there is no global parameter
` anymore. Derivations are performed as defined above. The MATCH-SUE
rule causes branching, depending on the choice of r̃1, and leads to finitely
many answers. LAST-SUE-L and LAST-SUE-R do not introduce branching.
We denote by Match-Alg and Unif-Alg-Last the corresponding algorithms,
and by Match-Alg(Γ) and Unif-Alg-Last(Γ) the sets of answers computed by
them for Γ.

Example 3. Let Γ be the unification problem {f(x{a,b}, λb.y{a,c}(b)) ≈?
α

f(f(y{a,c}), λd.g(z{c}, a)(d))}. Then Unif-Alg generates the following deri-
vation:

{f(x{a,b}, λb.y{a,c}(b)) ≈?
α f(f(y{a,c}), λd.g(z{c}, a)(d)); Id TD

{x{a,b} ≈?
α f(y{a,c}), λb.y{a,c}(b) ≈?

α λd.g(z{c}, a)(d)}; Id TUE-L

{λb.y{a}1 (b) ≈?
α λd.g(z{c}, a)(d)};

79

AMIM Vol.25 No.2, 2020 T. Kutsia

{x{a,b} 7→ f(y
{a}
1), y{a,c} 7→ y

{a}
1 } Q

{y{a}1 (d′) ≈?
α g(z{c}, a)(d′)}; {x{a,b} 7→ f(y

{a}
1), y{a,c} 7→ y

{a}
1 } HD

{y{a}1 ≈?
α g(z{c}, a), d′ ≈?

α d
′}; {x{a,b} 7→ f(y

{a}
1), y{a,c} 7→ y

{a}
1 } T

{y{a}1 ≈?
α g(z{c}, a)}; {x{a,b} 7→ f(y

{a}
1), y{a,c} 7→ y

{a}
1 } TUE-L

∅; {x{a,b} 7→ f(g(z∅1 , a)), y{a,c} 7→ g(z∅1 , a), y
{a}
1 7→ g(z∅1 , a), z{c} 7→ z∅1}.

Hence, the computed answer is {x{a,b} 7→ f(g(z∅1 , a)), y{a,c} 7→ g(z∅1 , a),
z{c} 7→ z∅1}.

Example 4. Let Γ = {f(x{a,b}, a, b) ≈?
α f(a, b, x{a,b})}. Let ` = 2. Then

Unif-Alg generates the following derivations:

1. {f(x{a,b}, a, b) ≈?
α f(a, b, x{a,b})}; Id FIXED-SUE-L, k=0

{f(a, b) ≈?
α f(a, b)}; {x{a,b} 7→ ()} T

∅; {x{a,b} 7→ ()}

2. {f(x{a,b}, a, b) ≈?
α f(a, b, x{a,b})}; Id FIXED-SUE-L, k=1

{f(x
{a,b}
1 , a, b) ≈?

α f(a, b, x
{a,b}
1)}; {x{a,b} 7→ (x

{a,b}
1)} TD

{x{a,b}1 ≈?
α a, a ≈?

α b, b ≈?
α x
{a,b}
1 }; {x{a,b} 7→ (a)} TUE-L

{a ≈?
α b, b ≈?

α a}; {x{a,b} 7→ (a), x
{a,b}
1 ≈?

α a}
FAIL

3. {f(x{a,b}, a, b) ≈?
α f(a, b, x{a,b})}; Id FIXED-SUE-L, k=2

{f(x
{a,b}
1 , x

{a,b}
2 , a, b) ≈?

α f(a, b, x
{a,b}
1 , x

{a,b}
2)};

{x{a,b} 7→ (x
{a,b}
1 , x

{a,b}
2)} TD

{x{a,b}1 ≈?
α a, x

{a,b}
2 ≈?

α b, a ≈?
α x
{a,b}
1 , b ≈?

α x
{a,b}
2 };

{x{a,b} 7→ (x
{a,b}
1 , x

{a,b}
2)} TUE-L

{x{a,b}2 ≈?
α b, a ≈?

α a, b ≈?
α x
{a,b}
2 };

{x{a,b} 7→ (a, x
{a,b}
2), x

{a,b}
1 7→ a} TUE-L

{a ≈?
α a, b ≈?

α b};

{x{a,b} 7→ (a, b), x
{a,b}
1 7→ a, x

{a,b}
2 7→ b} 2

T

∅; {x{a,b} 7→ (a, b), x
{a,b}
1 7→ a, x

{a,b}
2 7→ b}.

Hence, Unif-Alg(Γ, 2) = {{x{a,b} 7→ ()}, {x{a,b} 7→ (a, b)}}.

80

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Example 5. Let Γ = {f(x{a}, y{a,b,c}) ≈?
α f(a, b, c)}. It is a matching prob-

lem and we can apply Match-Alg, which generates the following derivations:

1. {f(x{a}, y{a,b,c}) ≈?
α f(a, b, c)}; Id MATCH-SUE

{f(y{a,b,c}) ≈?
α f(a, b, c)}; {x{a} 7→ ()} MATCH-SUE

{f() ≈?
α f()}; {x{a} 7→ (), y{a,b,c} 7→ (a, b, c)} T

∅; {x{a} 7→ (), y{a,b,c} 7→ (a, b, c)}.

2. {f(x{a}, y{a,b,c}) ≈?
α f(a, b, c)}; Id MATCH-SUE

{f(y{a,b,c}) ≈?
α f(b, c)}; {x{a} 7→ (a)} MATCH-SUE

{f() ≈?
α f()}; {x{a} 7→ (a), y{a,b,c} 7→ (b, c)} T

∅; {x{a} 7→ (a), y{a,b,c} 7→ (b, c)}.

Hence, Match-Alg(Γ) = {{x{a} 7→ (), y{a,b,c} 7→ (a, b, c)}, {x{a} 7→ (a),
y{a,b,c} 7→ (b, c)}}.

If we apply Unif-Alg with ` = 1, there will be no answer computed. All
the derivation branches will fail. For any ` > 1 we get the same answers as
those computed by Match-Alg.

Example 6. Let Γ = {f(x{a}) ≈?
α f(y{a,b,c})}. Application of Unif-Alg

with ` = 2 gives three computed answers:

{x{a} 7→ (), y{a,b,c} 7→ ()}, {x{a} 7→ (z{a}), y{a,b,c} 7→ (z{a})},

{x{a} 7→ (z
{a}
1 , z

{a}
2), y{a,b,c} 7→ (z

{a}
1 , z

{a}
2)}.

The problem also falls in the Seq-Last fragment. Unif-Alg-Last gives

only one computed answer: {x{a} 7→ (y
{a}
1), y{a,b,c} 7→ (y

{a}
1)}.

4 Properties of the algorithm

First, we define the sizes of an s-term, an equation, and a unification prob-
lem:

size(f) = size(a) = 1

size(xP) = size(xP) = 2.

size(t(s1, . . . , sn)) = size(t) + size((s1, . . . , sn)) + 1.

size(Qa.t) = size(t) + 1.

size(()) = 0.

size((s1, . . . , sn)) = size(s1) + · · ·+ size(sn).

81

AMIM Vol.25 No.2, 2020 T. Kutsia

size(t ≈?
α u) = size(t) + size(u).

size(Γ) = {{size(t ≈?
α u) | t ≈?

α u ∈ Γ}}, where {{·}} stand for multiset.

Theorem 1. Unif-Alg, Match-Alg, and Unif-Alg-Last terminate.

Proof. With each state Γ;σ, we associate its complexity measure, a triple
〈n1, n2,M〉, where n1 and n2 are respectively the numbers of distinct term
and sequence unknowns occurring in Γ, and M = size(Γ). The measures are
compared lexicographically, where the first two components are compared
by the standard ordering on natural numbers, and the third component
is compared by the multiset extension of the standard natural number
ordering. The obtained ordering on complexity measures is well-founded.
The table below shows that each rule of our algorithms strictly reduces this
measure (i.e., if a rule transforms Γ1;σ1 into Γ2;σ2, then the measure of
Γ2 is strictly smaller than the measure of Γ1), which implies that Unif-Alg,
Match-Alg and Unif-Alg-Last terminate.

Rules n1 n2 M

FIXED-SUE-L, FIXED-SUE-R >

LAST-SUE-L, LAST-SUE-R >

MATCH-SUE >

TUE-L, TUE-R = >

T ≥ ≥ >

TD = ≥ >

HD, PD-L, PD-R, Q = = >

For the other properties of our algorithms, we need the following lemma:

Lemma 1. If Γ1;σ Γ2;σψ is a rule application, then Γ1ψ and Γ2 have
the same sets of unifiers.

Proof. Assume the derivation step is made by the TUE-L rule. Then ψ =
ρϑ, Γ1 = {xP ≈?

α u}]Γ, and Γ2 = Γρϑ, where ρ and ϑ are as defined by the
rule. We have xPρϑ = uρ, uρϑ = uρ and, hence, Γ1ρϑ = {uρ ≈?

α uρ}∪Γρϑ.
Obviously, Γ1ρϑ and Γρϑ have the same set of unifiers i.e., Γ1ψ and Γ2 have
the same set of unifiers.

The proof is analogous for the other elimination rules. For trivial, de-
composition, and quantifier rules the theorem follows directly from the
definition of α-equivalence.

Theorem 2 (Soundness of Unif-Alg). For a unification problem Γ and a
length bound `, every substitution σ ∈ comp(Unif-Alg,Γ, `) is a unifier of Γ.

82

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Proof. Since σ ∈ comp(Unif-Alg,Γ, `), there exists a derivation in Unif-Alg
(with `) of the form Γ; Id + ∅;σ. Then the theorem can be proved by
using the induction on the length of the derivation and Lemma 1.

The Match-Alg and Unif-Alg-Last algorithms are sound as well. The
corresponding theorems below can be proved similarly to Theorem 2.

Theorem 3 (Soundness of Match-Alg). If Γ is a matching problem, then
every σ ∈ Match-Alg(Γ) is a matcher of Γ.

Theorem 4 (Soundness of Unif-Alg-Last). If Γ is a unification problem
where every sequence unknown appears in the last argument position, and
Unif-Alg-Last(Γ) = {σ}, then σ is a unifier of Γ.

Unif-Alg is not complete, in general. It is obvious, since the length
restriction on the instantiation of sequence unknowns, imposed by the pa-
rameter `, prevents to compute unifiers in which the lengths of sequence
unknown instances are larger than `. For example, when ` = 2, Unif-Alg
can not compute the unifier {x{a} 7→ (a, a, a)} of the unification problem
f(x{a}, a) ≈?

α f(a, x{a}).
Interestingly, there is another reason of incompleteness of Unif-Alg,

which is caused by the fact that a sequence unknown is always replaced by
a sequence of term unknowns. Because of this, Unif-Alg can not compute
a most general solution {xP 7→ (yP)} of Γ = {f(xP) ≈?

α f(yP)}. Instead,
it returns ` solutions {xP 7→ (), xP 7→ ()}, {xP 7→ (xP), yP 7→ (xP)}, . . . ,
{xP 7→ (xP1 , . . . , x

P
`), yP 7→ (xP1 , . . . , x

P
`)}.

However, the following restricted version of completeness holds:

Theorem 5 (Restricted completeness of Unif-Alg). Let Γ be a unifica-
tion problem and ϕ be its unifier such that ran(ϕ) does not contain se-
quence unknowns. Then there exist ` and σ ∈ comp(Unif-Alg, `) such that
σ|unkn(Γ) - ϕ.

Proof. First, consider the case when Γ does not contain sequence unknowns.
Assume without loss of generality that ϕ is idempotent and dom(ϕ) ⊆
unkn(Γ).

We will construct a derivation Γ1;σ1 + Γn;σn, where Γ1 = Γ, σ1 = Id ,
Γn = ∅, and for each 1 ≤ i ≤ n, there exists a substitution ψi such that

� ϕψi is an idempotent unifier of Γi,

� dom(ψi|unkn(Γ)) ⊆ dom(ϕ),

� σi - ϕψi.

83

AMIM Vol.25 No.2, 2020 T. Kutsia

(For i = 1 such a ψi obviously exists: it is Id .)
If we build such a derivation, we get σn - ϕψn, which implies that

σn|unkn(Γ) - (ϕψn)|unkn(Γ) = ϕ and we can take σ = σn.
Assume we have constructed Γ1;σ1 ∗ Γi;σi in this derivation and

show how to make the step Γi;σi Γi+1;σi+1.
We pick up an equation arbitrarily from Γi, represent the unification

problem as Γi = {t ≈?
α u}]Γ′i, and proceed by case distinction on the form

of t ≈?
α u.

If t = u, then the step is made by the T rule and Γi+1;σi+1 obviously
satisfies all the desired properties. Assume t 6= u. We distinguish the
following cases:

head(t) = head(u). The applicable rules are TD or Q. In each case, it is
easy to see that the obtained state is what we need.

head(t) 6= head(u) and none of these terms is an unknown. Then the
only possible case is head(t) /∈ F ∪ A, or head(u) /∈ F ∪ A. Otherwise Γi
would not be unifiable. We apply the HD rule. Again, the obtained state
satisfies the desired properties.

head(t) 6= head(u) and at least one of them is an unknown xP . Assume
without loss of generality that it is t. hence, we have an equation xP ≈?

α u.
If xP ∈ unkn(u), then for any substitution ϑ we will have size(xPϑ) <
size(uϑ) and Γi would not be unifiable.

Assume xP /∈ unkn(u). Then we apply TUE-L rule and get Γi+1 =
Γ′ϑi+1ρi+1, σi+1 = σiϑi+1ρi+1, where

ρi+1 = {vR 7→ wP∩R | vR ∈ unkn(u), P ∩R 6= R,w is fresh},
ϑi+1 = {xP 7→ uρi+1}.

We need to find ψi+1 such that

� σi+1 = σiϑi+1ρi+1 - ϕψi+1,

� dom(ψi+1|unkn(Γ)) ⊆ dom(ϕ), and

� ϕψi+1 is an idempotent unifier of Γi+1.

Since σi - ϕψi, there exists a substitution ν such that vRσiν ≈α vRϕψi
for all vR. On the other hand, ϕψi is a unifier of xP ≈?

α u. This gives
xP ν = xPσiν ≈α uσiν = uν. (The σ’s are idempotent, therefore, xP and
unknowns from u are not in the domain of σi.)

Besides, we have

vRϑi+1ρi+1νµ ≈α vRνµ for any vR. (1)

Define µ as

µ = {vRρi+1 7→ vRν | vR ∈ unkn(u)}.

84

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

It is a well-defined substitution: vR ∈ unkn(u) and we have fa(vRν) ⊆ R,
since ν is a unifier of xP ≈?

α u.
Let ψi+1 = ψiµ. Then we have dom(ψi+1|unkn(Γ)) ⊆ dom(ϕ). Since ϕψi

is an idempotent unifier of Γi, we get that ϕψi+1 is an idempotent unifier
of Γi+1.

Note that ρi+1, ϑi+1, µ and ψi+1 are idempotent. Besides, vRρi+1µ =
vRϕψiµ for every vR ∈ dom(ρi+1) ∪ ran(ρi+1). Therefore, we get

� vRρi+1νµ = vRννµ = vRνµ = vRϕψiµ = vRϕψi+1 for every vR ∈
dom(ρi+1) ∪ ran(ρi+1),

� vRρi+1νµ = vRνµ = vRϕψiµ = vRϕψi+1 for every other vR.

In order to show σi+1 - ϕψi+1, we will prove wTσi+1νµ ≈α wTϕψi+1

for all wT .
Let wT be xP . Since ϕψi solves xP ≈?

α u, we have

xPσi+1νµ = xPσiϑi+1ρi+1νµ = xPϑi+1ρi+1νµ

≈α uρi+1ρi+1νµ = uρi+1νµ = uννµ = uνµ

≈α xP νµ = xPϕψiµ

= xPϕψi+1.

(2)

Now let wT 6= xP . For every unknown vR from wTσiϑi+1 we have
vRρi+1ϕψiµ = vRϕψiµ. Therefore using (1), we get

wTσi+1νµ = wTσiϑi+1ρi+1νµ = wTσiνµ = wTϕψiµw
Tϕψi+1. (3)

Hence, σi+1 - ϕψi+1. It finishes the proof that for any unifier ϕ of Γ,
the algorithm Unif-Alg computes σ with the property σ|unkn(Γ) - ϕ, when
Γ does not contain sequence unknowns.

Now assume Γ contains sequence unknowns. Let l := max{|xRϕ| | x ∈
dom(ϕ)}, i.e., l is the length of the longest sequence to which a sequence
unknown from dom(ϕ) is mapped. By fixing ` = l, we can compute σ ∈
Unif-Alg(Γ, `) with the property σ|unkn(Γ) - ϕ.

The completeness theorems for Match-Alg and Unif-Alg-Last are easier
to prove. We just state them here:

Theorem 6 (Completeness of Match-Alg). Let ϕ be a matcher of a match-
ing problem Γ. Then Match-Alg computes a σ such that σ = ϕ|unkn(Γ).

Theorem 7 (Completeness of Unif-Alg-Last). Let Γ be a unification problem
where every sequence unknown appears in the last argument position, and
ϕ be its unifier. Then there exists σ ∈ Unif-Alg-Last(Γ) such that σ - ϕ.

85

AMIM Vol.25 No.2, 2020 T. Kutsia

The sets Unif-Alg(Γ, `) and Match-Alg(Γ) are minimal. This follows from
the fact that if there are two distinct σ1 and σ2 in such a set, then there
exists xP ∈ dom(σ1)∩ dom(σ2) such that the length of their instantiations
are different: |xPσ1| 6= |xPσ2|. Such a difference can not be repaired by a
substitution composition, because the ranges of σ’s do not contain sequence
markers by construction. Hence, we have neither σ1 - σ2 nor σ2 - σ1,
which implies minimality.

The set Unif-Alg-Last(Γ) is singleton, since there is no branching in the
derivation tree. The computed unifier is most general.

5 Conclusion

We described three algorithms for solving unification problems and their
fragments for terms containing unknowns with permission sets, variadic
function constants, atoms, applications, and binders that bind atoms. The
design is guided by the syntax of Theorema system, where higher-order
expressions are permitted. Unification and matching equations are solved
modulo α-equivalence. Termination, soundness, and (restricted) complete-
ness of algorithms are proved. They are implemented as a part of the
Theorema system.

Acknowledgment

This work is partially supported by the Austrian Science Fund (FWF)
under the project P 28789-N32.

References

1. Asperti, A., Ricciotti, W., and Sacerdoti Coen, C. Matita
tutorial. J. Formalized Reasoning 7, 2 (2014), 91–199.

2. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M.,
and Nantes-Sobrinho, D. Nominal C-unification. In Logic-Based
Program Synthesis and Transformation - 27th International Sympo-
sium, LOPSTR 2017, Namur, Belgium, October 10-12, 2017, Re-
vised Selected Papers (2017), F. Fioravanti and J. P. Gallagher, Eds.,
vol. 10855 of Lecture Notes in Computer Science, Springer, pp. 235–
251.

3. Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho, D.
Fixed-point constraints for nominal equational unification. In 3rd In-
ternational Conference on Formal Structures for Computation and De-

86

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

duction, FSCD 2018, July 9-12, 2018, Oxford, UK (2018), H. Kirchner,
Ed., vol. 108 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, pp. 7:1–7:16.

4. Baader, F., and Snyder, W. Unification theory. In Handbook of
Automated Reasoning (in 2 volumes), J. A. Robinson and A. Voronkov,
Eds. Elsevier and MIT Press, 2001, pp. 445–532.

5. Bancerek, G., Bylinski, C., Grabowski, A., Kornilowicz, A.,
Matuszewski, R., Naumowicz, A., Pak, K., and Urban, J.
Mizar: State-of-the-art and beyond. In Intelligent Computer Math-
ematics - International Conference, CICM 2015, Washington, DC,
USA, July 13-17, 2015, Proceedings (2015), M. Kerber, J. Carette,
C. Kaliszyk, F. Rabe, and V. Sorge, Eds., vol. 9150 of Lecture Notes
in Computer Science, Springer, pp. 261–279.

6. Baumgartner, A., Kutsia, T., Levy, J., and Villaret, M.
Nominal anti-unification. In 26th International Conference on Rewrit-
ing Techniques and Applications, RTA 2015, June 29 to July 1, 2015,
Warsaw, Poland (2015), M. Fernández, Ed., vol. 36 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 57–73.

7. Bertot, Y., and Castéran, P. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

8. Buchberger, B. Mathematica: Doing mathematics by computer? In
Advances in the Design of Symbolic Computation Systems, A. Miola
and M. Temperini, Eds., RISC Book Series on Symbolic Computation.
Springer Vienna, 1997, pp. 2–20.

9. Buchberger, B., and Craciun, A. Algorithm synthesis by Lazy
Thinking: Examples and implementation in Theorema. Electr. Notes
Theor. Comput. Sci. 93 (2004), 24–59.

10. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., and
Windsteiger, W. Theorema 2.0: Computer-assisted natural-style
mathematics. J. Formalized Reasoning 9, 1 (2016), 149–185.

11. Calvès, C., and Fernández, M. A polynomial nominal unification
algorithm. Theor. Comput. Sci. 403, 2-3 (2008), 285–306.

12. Calvès, C., and Fernández, M. Matching and alpha-equivalence
check for nominal terms. J. Comput. Syst. Sci. 76, 5 (2010), 283–301.

87

AMIM Vol.25 No.2, 2020 T. Kutsia

13. Cheney, J. Equivariant unification. J. Autom. Reasoning 45, 3 (2010),
267–300.

14. Coelho, J., Dundua, B., Florido, M., and Kutsia, T. A rule-
based approach to XML processing and Web reasoning. In Web Rea-
soning and Rule Systems - Fourth International Conference, RR 2010,
Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings (2010),
P. Hitzler and T. Lukasiewicz, Eds., vol. 6333 of Lecture Notes in Com-
puter Science, Springer, pp. 164–172.

15. Coelho, J., and Florido, M. CLP(Flex): Constraint logic pro-
gramming applied to XML processing. In On the Move to Meaningful
Internet Systems 2004: CoopIS, DOA, and ODBASE, OTM Confed-
erated International Conferences, Agia Napa, Cyprus, October 25-29,
2004, Proceedings, Part II (2004), R. Meersman and Z. Tari, Eds.,
vol. 3291 of Lecture Notes in Computer Science, Springer, pp. 1098–
1112.

16. Colton, S. Automated Theory Formation in Pure Mathematics. Dis-
tinguished dissertations. Springer, 2002.

17. Dowek, G., Gabbay, M. J., and Mulligan, D. P. Permissive
nominal terms and their unification: an infinite, co-infinite approach
to nominal techniques. Logic Journal of the IGPL 18, 6 (2010), 769–
822.

18. Dramnesc, I., Jebelean, T., and Stratulat, S. Mechanical syn-
thesis of sorting algorithms for binary trees by logic and combinatorial
techniques. J. Symb. Comput. 90 (2019), 3–41.

19. Dundua, B. Programming with Sequence and Context Variables:
Foundations and Applications. PhD thesis, University of Porto, 2014.

20. Dundua, B., Kutsia, T., and Marin, M. Strategies in Pρlog. In
Proceedings Ninth International Workshop on Reduction Strategies in
Rewriting and Programming, WRS 2009, Brasilia, Brazil, 28th June
2009 (2009), M. Fernández, Ed., vol. 15 of EPTCS, pp. 32–43.

21. Dundua, B., Kutsia, T., and Marin, M. Variadic equational
matching. In Intelligent Computer Mathematics - 12th International
Conference, CICM 2019, Prague, Czech Republic, July 8-12, 2019, Pro-
ceedings (2019), C. Kaliszyk, E. Brady, A. Kohlhase, and C. Sacerdoti
Coen, Eds., vol. 11617 of Lecture Notes in Computer Science, Springer,
pp. 77–92.

88

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

22. Fernández, M., and Gabbay, M. Nominal rewriting. Inf. Comput.
205, 6 (2007), 917–965.

23. Gabbay, M., and Pitts, A. M. A new approach to abstract syntax
involving binders. In 14th Annual IEEE Symposium on Logic in Com-
puter Science, Trento, Italy, July 2-5, 1999 (1999), IEEE Computer
Society, pp. 214–224.

24. Gabbay, M., and Pitts, A. M. A new approach to abstract syntax
with variable binding. Formal Asp. Comput. 13, 3-5 (2002), 341–363.

25. Gabbay, M. J. A Theory of Inductive Definitions with alpha-
Equivalence. PhD thesis, University of Cambridge, UK, 2001.

26. Gabbay, M. J. Nominal terms and nominal logics: from foundations
to meta-mathematics. In Handbook of Philosophical Logic, vol. 17.
Kluwer, 2013, pp. 79–178.

27. Gabbay, M. J., and Wirth, C. Quantifiers in logic and proof-search
using permissive-nominal terms and sets. J. Log. Comput. 25, 2 (2015),
473–523.

28. Genesereth, M. R., and Fikes, R. E. Knowledge Interchange
Format, Version 3.0 Reference Manual. Tech. Rep. Logic-92-1, Stanford
University, Stanford, CA, USA, 1992.

29. Ginsberg, M. L. The MVL theorem proving system. SIGART Bul-
letin 2, 3 (1991), 57–60.

30. Gordon, M. J. C., and Melham, T. F., Eds. Introduction to HOL:
a theorem proving environment for higher order logic. Cambridge Uni-
versity Press, 1993.

31. Harrison, J. HOL light: An overview. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Mu-
nich, Germany, August 17-20, 2009. Proceedings (2009), S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, Eds., vol. 5674 of Lecture Notes
in Computer Science, Springer, pp. 60–66.

32. Horozal, F., Rabe, F., and Kohlhase, M. Flexary operators
for formalized mathematics. In Intelligent Computer Mathematics -
International Conference, CICM 2014, Coimbra, Portugal, July 7-11,
2014. Proceedings (2014), S. M. Watt, J. H. Davenport, A. P. Sexton,
P. Sojka, and J. Urban, Eds., vol. 8543 of Lecture Notes in Computer
Science, Springer, pp. 312–327.

89

AMIM Vol.25 No.2, 2020 T. Kutsia

33. ISO/IEC. Information technology—Common Logic (CL): A frame-
work for a family of logic-based languages. International Standard
ISO/IEC 24707:2018, 2018. https://www.iso.org/standard/66249.
html.

34. Johansson, M. Automated theory exploration for interactive theo-
rem proving: - an introduction to the Hipster system. In Interactive
Theorem Proving - 8th International Conference, ITP 2017, Braśılia,
Brazil, September 26-29, 2017, Proceedings (2017), M. Ayala-Rincón
and C. A. Muñoz, Eds., vol. 10499 of Lecture Notes in Computer Sci-
ence, Springer, pp. 1–11.

35. Johansson, M., Dixon, L., and Bundy, A. Conjecture synthesis
for inductive theories. J. Autom. Reasoning 47, 3 (2011), 251–289.

36. Kaufmann, M., Moore, J. S., and Manolios, P. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

37. Kerber, M., Rowat, C., and Windsteiger, W. Using The-
orema in the formalization of theoretical economics. In Intelligent
Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th
International Conference, MKM 2011, Bertinoro, Italy, July 18-23,
2011. Proceedings (2011), J. H. Davenport, W. M. Farmer, J. Urban,
and F. Rabe, Eds., vol. 6824 of Lecture Notes in Computer Science,
Springer, pp. 58–73.

38. Konev, B., and Jebelean, T. Combining level-saturation strategies
and meta-variables for predicate logic proving in Theorema. RISC
Report Series 00-40, Research Institute for Symbolic Computation
(RISC), Johannes Kepler University Linz, Austria, 2000.

39. Kutsia, T. Solving and proving in equational theories with sequence
variables and flexible arity symbols. RISC Report Series 02-09, Re-
search Institute for Symbolic Computation (RISC), Johannes Kepler
University Linz, Austria, 2002. PhD Thesis.

40. Kutsia, T. Theorem proving with sequence variables and flexible arity
symbols. In Logic for Programming, Artificial Intelligence, and Reason-
ing, 9th International Conference, LPAR 2002, Tbilisi, Georgia, Octo-
ber 14-18, 2002, Proceedings (2002), M. Baaz and A. Voronkov, Eds.,
vol. 2514 of Lecture Notes in Computer Science, Springer, pp. 278–291.

41. Kutsia, T. Unification with sequence variables and flexible arity sym-
bols and its extension with pattern-terms. In Artificial Intelligence,

90

https://www.iso.org/standard/66249.html
https://www.iso.org/standard/66249.html

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Automated Reasoning, and Symbolic Computation, Joint International
Conferences, AISC 2002 and Calculemus 2002, Marseille, France, July
1-5, 2002, Proceedings (2002), J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, Eds., vol. 2385 of Lecture Notes in Com-
puter Science, Springer, pp. 290–304.

42. Kutsia, T. Equational prover of Theorema. In Rewriting Techniques
and Applications, 14th International Conference, RTA 2003, Valen-
cia, Spain, June 9-11, 2003, Proceedings (2003), R. Nieuwenhuis, Ed.,
vol. 2706 of Lecture Notes in Computer Science, Springer, pp. 367–379.

43. Kutsia, T. Solving equations with sequence variables and sequence
functions. J. Symb. Comput. 42, 3 (2007), 352–388.

44. Kutsia, T., and Marin, M. Can context sequence matching be used
for querying XML? In Proceedings of the 19th International Workshop
on Unification (UNIF’05) (Nara, Japan, 22 Apr. 2005), L. Vigneron,
Ed., pp. 77–92.

45. Kutsia, T., and Marin, M. Solving, reasoning, and programming in
common logic. In 14th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC 2012, Timisoara,
Romania, September 26-29, 2012 (2012), A. Voronkov, V. Negru,
T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie, Eds., IEEE
Computer Society, pp. 119–126.

46. Levy, J., and Villaret, M. An efficient nominal unification algo-
rithm. In Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh,
Scottland, UK (2010), C. Lynch, Ed., vol. 6 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, pp. 209–226.

47. Levy, J., and Villaret, M. Nominal unification from a higher-order
perspective. ACM Trans. Comput. Log. 13, 2 (2012), 10:1–10:31.

48. Maletzky, A. Mathematical theory exploration in Theorema: Re-
duction rings. In Intelligent Computer Mathematics - 9th International
Conference, CICM 2016, Bialystok, Poland, July 25-29, 2016, Proceed-
ings (2016), M. Kohlhase, M. Johansson, B. R. Miller, L. de Moura, and
F. W. Tompa, Eds., vol. 9791 of Lecture Notes in Computer Science,
Springer, pp. 3–17.

49. McCasland, R. L., Bundy, A., and Smith, P. F. MATHsAiD:
Automated mathematical theory exploration. Appl. Intell. 47, 3 (2017),
585–606.

91

AMIM Vol.25 No.2, 2020 T. Kutsia

50. Menzel, C. Knowledge representation, the World Wide Web, and the
evolution of logic. Synthese 182, 2 (2011), 269–295.

51. Montano-Rivas, O., McCasland, R. L., Dixon, L., and Bundy,
A. Scheme-based theorem discovery and concept invention. Expert
Syst. Appl. 39, 2 (2012), 1637–1646.

52. Owre, S., Rushby, J. M., and Shankar, N. PVS: A prototype
verification system. In Automated Deduction - CADE-11, 11th Inter-
national Conference on Automated Deduction, Saratoga Springs, NY,
USA, June 15-18, 1992, Proceedings (1992), D. Kapur, Ed., vol. 607
of Lecture Notes in Computer Science, Springer, pp. 748–752.

53. Paulson, L. C., Nipkow, T., and Wenzel, M. From LCF to
Isabelle/HOL. Formal Asp. Comput. 31, 6 (2019), 675–698.

54. Pease, A., and Sutcliffe, G. First order reasoning on a large
ontology. In Proceedings of the CADE-21 Workshop on Empirically
Successful Automated Reasoning in Large Theories (2007), G. Sutcliffe
and S. Schulz, Eds., no. 257 in CEUR Workshop Proceedings, pp. 59–
69.

55. Pkhakadze, S. Some problems of the notation theory. Tbilisi Univer-
sity Press, Tbilisi, Georgia, 1977. In Russian.

56. Richardson, J., and Fuchs, N. E. Development of correct trans-
formation schemata for prolog programs. In LOPSTR (1997), N. E.
Fuchs, Ed., vol. 1463 of Lecture Notes in Computer Science, Springer,
pp. 263–281.

57. Rosenkranz, M. A new symbolic method for solving linear two-point
boundary value problems on the level of operators. J. Symb. Comput.
39, 2 (2005), 171–199.

58. Schmidt-Schauß, M., Kutsia, T., Levy, J., and Villaret,
M. Nominal unification of higher order expressions with recursive
let. In Logic-Based Program Synthesis and Transformation - 26th In-
ternational Symposium, LOPSTR 2016, Edinburgh, UK, September
6-8, 2016, Revised Selected Papers (2016), M. V. Hermenegildo and
P. López-Garćıa, Eds., vol. 10184 of Lecture Notes in Computer Sci-
ence, Springer, pp. 328–344.

59. Scott, J. D., Flener, P., Pearson, J., and Schulte, C. Design
and implementation of bounded-length sequence variables. In Integra-
tion of AI and OR Techniques in Constraint Programming - 14th In-
ternational Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017,

92

Unification Modulo α-Equivalence ... AMIM Vol.25 No.2, 2020

Proceedings (2017), D. Salvagnin and M. Lombardi, Eds., vol. 10335 of
Lecture Notes in Computer Science, Springer, pp. 51–67.

60. Steen, A., and Benzmüller, C. The higher-order prover Leo-III
(extended abstract). In KI 2019: Advances in Artificial Intelligence -
42nd German Conference on AI, Kassel, Germany, September 23-26,
2019, Proceedings (2019), C. Benzmüller and H. Stuckenschmidt, Eds.,
vol. 11793 of Lecture Notes in Computer Science, Springer, pp. 333–
337.

61. Urban, C., Pitts, A. M., and Gabbay, M. Nominal unification.
Theor. Comput. Sci. 323, 1-3 (2004), 473–497.

62. Vasaru Dupre, D. Automated Theorem Proving by Integrating Prov-
ing, Solving and Computing. RISC Report Series 00-19, Research In-
stitute for Symbolic Computation (RISC), Johannes Kepler University
Linz, Austria, 2000.

63. Windsteiger, W. An automated prover for Zermelo-Fraenkel set
theory in Theorema. J. Symb. Comput. 41, 3-4 (2006), 435–470.

64. Windsteiger, W. Theorema 2.0: A graphical user interface for
a mathematical assistant system. In Proceedings 10th International
Workshop On User Interfaces for Theorem Provers, UITP 2012, Bre-
men, Germany, July 11th, 2012 (2012), C. Kaliszyk and C. Lüth, Eds.,
vol. 118 of EPTCS, pp. 72–82.

65. Wolfram, S. The Mathematica book, 5th Edition. Wolfram-Media,
2003.

93

	Introduction
	Preliminaries
	The algorithm
	Properties of the algorithm
	Conclusion

