
A SHORT PROOF OF THE DECIDABILITY OF
NORMALIZATION IN RECURSIVE PROGRAM

SCHEMES

Zurab Khasidashvili

Intel Corporation, Haifa, Israel
zurab.khasidashvili@intel.com

Dedicated to work of Shalva Pkhakadze on the centenary of his birth

Abstract

We give a short and simple proof of the decidability of normal-
ization in Recursive Program Schemes (RPSs). As a side result, we
obtain an algorithm that effectively transforms any RPS into an ir-
reducible one, in which shortest normalizing reductions are easy to
construct.

1 Introduction

It is shown in [6] that normalization is decidable in Recursive Program
Schemes (RPSs). The proof there is quite complex as it employs the con-
cept of essential chains of rules: An essential chain of rules is a sequence
of rules r1, r2, . . . such that an ri+1-redex has an essential occurrence in the
right-hand side of ri, for all i = 1, 2, . . .. Here a subterm (in particular,
a redex) is called essential if it has a descendant under any reduction of
the term (where the concept of descendant is a refinement of that of resid-
ual; it allows to trace subterms along reductions).1 It is shown in [6] that
a term t in an RPS R is normalizable iff all essential chains of the rules
corresponding to essential redexes in t are finite. Showing the decidability
of normalization thus required showing the decidability of essentiality in
RPSs.

In this paper we give a much shorter and simpler (thus less informative)
proof. We assume that the reader is familiar with the basic concepts of
Term Rewriting: All needed information can be found in [9, 4, 13]. We
use t and s to denote terms, u to denote redexes, and r to denote rules.

1For the reader familiar with the concept of neededness of redexes [4], we remark that
essentiality is a refinement of neededness in that it makes sense for all subterms, and not
redexes only.



AMIM Vol.25 No.2, 2020 Z. Khasidashvili

We write t → s or t
u→s if s is obtained from t by reducing a redex u, and

→→ denotes the transitive reflexive closure of →; we write
∅→→ when the

number of steps is 0.

2 The proof

We start by introducing RPSs [2, 9].2 RPSs have been studied in [11, 12]
under the name of contracting symbols of type I.

Definition 1. An RPS R is a Term Rewriting System (TRS) [9, 13] whose
alphabet consists of a finite set F of unknown function symbols, a finite set
G of basic function symbols, and variables. The rules of R have the form

r : f(x1, . . . , xn) → s,

where f is an unknown function symbol in F , xi are pairwise distinct vari-
ables, and s is an arbitrary term built from function symbols (basic or un-
known) and variables. There is exactly one rule in R for every unknown
function symbol in F .

A rule r as above is called irreducible if s is an R-normal form, and
is called reducible otherwise. We call an RPS irreducible if every rule in
it with normalizable right-hand side is irreducible. That is, an irreducible
RPS may contain rules whose right-hand sides are not in normal form, but
these right-hand sides are not normalizable. Clearly, if a rule r ∈ R is
irreducible, for any term t in R, the normal form of t w.r.t. {r} can be
computed in (at most) as many steps as the number of r-redexes in t. This
is why irreducible rules are attractive.

Lemma 1. If all rules of an RPS R are reducible, then no reducible term
t in R has a normal form.

Proof. Suppose on the contrary that t has a normalizing reduction t →→ t′
u→t∗.

Then the right-hand side of the rule for the redex u must be a normal-form
– a contradiction.

Lemma 2. Let R be an RPS containing an irreducible rule r. Further, for
any term s in R, let sr denote its {r}-normal form. And finally, let Rr be
the RPS obtained from R by {r}-normalizing the right-hand sides of rules
in R (i.e., by replacing all rules t1 → t2 in R with t1 → tr2, respectively),
and then by removing r. Then a term t in R is normalizable in R iff tr is
normalizable in Rr.

2RPSs are called Recursive Applicative Program Schemes in [2].

62



A Short Proof of the Decidability ... AMIM Vol.25 No.2, 2020

Proof. (⇐) Any step in Rr can be decomposed into an R\{r}-step followed
by a number of r-steps (contracting all created r-redexes). Hence, tr is R-
normalizable (since it is Rr-normalizable), and thus so is t (since t →→ tr

in R).
(⇒) By induction on the length of a shortest R-normalizing reduction

t
u→t1 → . . . → tn starting from t. Using the Parallel Moves Lemma (PM) [9,

4], we can construct the following diagram in R, where tr →→ t′1 is an R-
reduction that contracts all residuals of u in tr, which are disjoint, if any.

t
u
- t1

PM

tr
??

-- t′1

??

Let t′1 →→ tr1 be a reduction that contracts all r-redexes created by con-
tracting the disjoint residuals of u along tr →→ t′1 (in fact, there are no
other r-redexes in t′1). By the decomposition property of Rr-steps men-
tioned above, tr →→ tr1 in Rr if u is not an r-redex, and tr = tr1 otherwise.
By the induction assumption, tr1 is normalizable in Rr, hence so is tr.

t
u
- t1 -- tn

PM

tr
??

-- t′1

??

Ind

tr1

??
--

--

trn = tn

∅

??

Theorem 1. Normalization is decidable in any RPS R.

Proof. By induction on the number of rules in R. By Lemma 1, we can
assume that R contains an irreducible rule, r. By Lemma 2, a term t has
a normal form in R iff tr has a normal form in Rr, and we conclude (since
Rr has fewer rules than R).

3 Concluding remarks

Decidability of normalization in RPSs can also be derived from an advanced
result of Nagaya and Toyama [10, page 264], stating that for a left-linear
growing TRS R and a regular tree language L, the set of ground terms s

63



AMIM Vol.25 No.2, 2020 Z. Khasidashvili

such that s →→ Rt for some t ∈ L is regular. Here R is growing if for any
rule r ∈ R and any variable x that occurs both in left- and right-hand sides
of r, x occurs in the left-hand side of r at depth 1 (i.e., just below the root
symbol). RPSs are clearly growing.

Unlike the proof in [10], our proof gives an algorithm for transformation
of RPSs into simpler and more efficient ones: Given an RPS R and a term
t in R, we can construct (using Lemma 2) an irreducible RPS R′ such
that any term in R is normalizable in R iff it is normalizable in R′, and
the normal forms coincide. Note that R′ = R′irr ∪ R′red, where all rules
in R′irr are irreducible, and the right-hand sides of rules in R′red are not
normalizable. (Clearly, it does not make sense to compute R′red-redexes,
since such redexes do not have normal forms.) Then, if t contains an R′red-
redex that is not in an erased argument of an R′irr-redex, then t has no
normal form in R or R′. Otherwise, we normalize t w.r.t. R′irr (e.g., using
the innermost essential strategy, which is optimal in orthogonal TRSs in
general [6]; a subterm of t is essential w.r.t. Rirr iff it is not in an erased
argument of an R′irr-redex in t). The obtained Rirr-normal form is also the
normal form of t in R. (Cf. [1], where family-reductions are designed to
achieve optimal evaluation of RPSs.)

We note that the proof presented in this work is based on the fact
that the only redexes that can be created by reducing a redex are present
explicitly already in the right-hand side of the applied rewrite rule. We
therefore expect that the proof can be generalized to Higher Order Re-
cursive Program Schemes [8] and Persistent TRSs [7] and ERSs [5, 8, 3].
Higher Order RPSs correspond to contracting symbols of types IV and IV ′

studied in [11, 12].

References

1. Berry G., Lévy J.-J. Minimal and optimal computations of recursive
programs. JACM 26, 1979, p. 148-175.

2. Courcelle B. Recursive Applicative Program Schemes. In: J. van
Leeuwen, ed. Handbook of Theoretical Computer Science, Chapter 9,
vol. B, 1990, p. 459-492.

3. Glauert J., Kesner D., Khasidashvili Z. Expression Reduction
Systems and Extensions: An Overview. Processes, Terms and Cycles:
Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop
on the Occasion of His 60th Birthday, A. Middeldorp, V. van Oostrom,
F. van Raamsdonk, R. de Vrijer, eds. Springer LNCS 3838, 2005, p. 496-
553.

64



A Short Proof of the Decidability ... AMIM Vol.25 No.2, 2020

4. Huet G. and Lévy J.-J. Computations in orthogonal rewriting sys-
tems. Computational Logic, Essays in Honor of Alan Robinson, J. -
L. Lassez and G. Plotkin, eds. MIT Press, 1991, p. 394-443.

5. Khasidashvili Z. Expression reduction systems. Proceedings of I.
Vekua Institute of Applied Mathematics of Tbilisi State University,
v. 36, 1990, p. 200-220.

6. Khasidashvili Z. Optimal normalization in orthogonal term rewriting
systems. Proceedings of the 5th International Conference on Rewrit-
ing Techniques and Applications, RTA’93, C. Kirchner, ed., Springer
LNCS, vol. 690, 1993, p. 243-258.

7. Khasidashvili Z. On the equivalence of persistent term rewriting sys-
tems and recursive program schemes Proceedings of the 2nd Israel Sym-
posium on Theory of Computing and Systems, ISTCS’93, IEEE Com-
puter Society Press, 1993, p. 240-249.

8. Khasidashvili Z. On higher order recursive program schemes. Pro-
ceedings of the 19th International Colloquium on Trees in Algebra and
Programming, CAAP’94, S. Tison, ed., Springer LNCS, vol. 787, 1994,
p. 172-186.

9. Klop J.W. Term rewriting systems. Handbook of Logic in Computer
Science, vol. 2, S. Abramsky, D. Gabbay, and T. Maibaum eds., Oxford
University Press, 1992, p. 1-116.

10. Nagaya T. and Toyama Y. Decidability for left-linear growing term
rewriting systems. Proceedings of the 10th International Conference
on Rewriting Techniques and Applications, RTA’99, P. Narendran and
M. Rusinowich, eds., Springer LNCS, vol. 1631, 1999, p. 256-270.

11. Pkhakadze Sh. Some problems of the notation theory. (In Russian)
Tbilisi University Press, Tbilisi, 1977.

12. Pkhakadze Sh. A N. Bourbaki type general theory and the properties
of contracting symbols and corresponding contracted forms. Georgian
Mathematical Journal, Vol. 6, No. 2, 1999, 179-190.

13. Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical
Computer Science, Volume 55, 2003.

65


