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Abstract

The equation of motion of a viscoelastic rod of density ρ is consid-
ered when the constitutive relationship contains fractional derivatives
(in the Caputo sense) of order β, 0 < β < 1. Analytical form received
the solution of the task. .
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1 Introduction

Let us Consider the following equations of motion of a homogeneous vis-
coelastic, infinite (in both directions) rod of density ρ, which performs lon-
gitudinal oscillations under the actions of external load f(t, x) (expressed
in terms of units of volume)

∂σ(t, x)

∂x
+ f(t, x) = ρ

∂2u

∂t2
, (1)

ε(t, x) =
∂u(t, x)

∂x
. (2)

Here x is the rod point coordinate, t the time, σ the stress, ε the strain, u
the displacement of a material element of the rod. We close the system of
equations of motions by the stess–strain relation

σ(t, x) = EηβDβ
Cε(t, x), 0 < β < 1. (3)

Here Dβ
C is a fractional derivative in the Caputo sense.

Assume that f(t, x) depends only on a spatial variable x

f(t, x) = f(x).
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Differentiating (3) with respect to the variable and taking into account
(2), we obtain

∂σ(t, x)

∂x
= EηβDβ ∂

2u

∂x2
. (4)

Upon substituting (4) in (1), we have

∂2u)

∂t2
= a2Dβ ∂

2u

∂x2
+

1

ρ
f(x), (5)

Where a2 = Eηβ

ρ . Note that a2 has a dimension L2T−2+β.

By using tension and compression we can always manage that the co-
efficient of Dβ ∂2u

∂x2
in equation (5) become equal to one.

In an analogous manner we can get an equation of motion in terms of
stress and strain.

2 Preliminaries

The Fractional calculus is a generalization of classical calculus concerned
with operations of integration and differentiation of non–integer order. The
concept of fractional operators has been introduced almost simultaneously
with the Classical ones. The Applications of Fractional calculus are very
wide nowadays. It safe to say that almost no discipline of modern engineer-
ing and science in general, remains untouched by the tools and techniques
of fractional calculus. For example, wide and fruitful applications can be
found in rheology, viscoelasticity, acoustic, optics, chemical and statistical
physics, electrical and mechanical engineering, bioengineering, etc.

Fractional Calculus is an Extension of ordinary calculus with more 300
years of History.

There are many different form of fractional operators In use today.
Environments of them are self popular Riemann – Liouville, Grunvald –
Letnikov and Caputo derivatives and Integrals (see [1]).

Definition 1. Suppose that β > 0, t > a, β, t, a ∈ R. The fractional
operator

Dβ
Cf(t) =


1

Γ(n− β)

∫ t

a

f (n)(τ)

(t− τ)β+1−n , n− 1 < β < n ∈ N,

dn

dtn
f(t), β = n ∈ N

(6)

Is called the Caputo fractional derivative or Caputo fractional differential
operator of order β. This operator is introduced by the Italian mathemati-
cian Caputo in 1967 (see [2]).
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The fractional derivative Caputo has the following basic properties
1. Let n− 1 < α < n, ??? and f(t) be such that Dβ

Cf(t) exist, then

Dα
Cf(t) = In−αDnf(t).

This means that the Caputo fractional operator is equivalent to (n − α)
fold integration after nth order differentiation.

2. Let n − 1 < α < n, ??? and f(t) be such that Dβ
Cf(s) exist. Then

following properties hold for the Caputo operator

lim
α→n

Dα
Cf(t) = f (n)(t),

lim
α→n−1

Dα
Cf(t) = f (n−1)(t)− f (n−1)(0).

3. Let n − 1 < α < n, ??? and functions f(t) and g(t) be such that
both Dα

Cf(t) and Dα
Cg(t) exist. The Caputo fractional derivative is a linear

operators

Dα
C(λf(t) + g(t)) = λDα

Cf(t) +Dα
Cg(t).

4. Let n− 1 < α < n, ??? and f(t) be such that Dβ
Cf(t) exist. Then in

general

Dα
CD

mf(t) = Dα+m
C f(t) 6= DmDβ

Cf(t).

The benefit of using the Caputo definitions is that it not only allows
for the consideration of easily interpreted initial conditions, but it is also
bounded, meaning that the derivative of a constant is equal to 0. When
applying a fractional Caputo derivative, need standard initial conditions
in terms of derivatives of integer order. These initial conditions have clear
physical interpretation as an initial position y(a) a point a, the initial ve-
locity y′(a), initial acceleration y′′(a) and so on.

In formula (6) Γ is Euler’s gamma function. For complex argument
with positive real part it is defined as

Γ(z) =

∫ ∞
0

e−xxz−1dx, Rez > 0. (7)

By analytic continuation the function is expanded to whole complex plane
except for the points {0,−1,−2,−3, · · ·} where it has simple poles.

While the Gamma function is a generalization of factorial function, the
Mittag–Leffler function is a generalization of exponential function as a one
function by the series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, α, β ∈ (8)
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Later the two parameter generalization introduced by Agarwal

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, α, β ∈ (9)

The Laplace transform is a powerful means for solving differential equa-
tions.

Let f(t) be a function of a variable t such that the function e−stf(t) is
integrable in [0,∞) for some domain of values of s. Then Laplace transform
of the function f(t) is defined for above domain values of s and it is denoted
by

L{f(t)} =

∫ ∞
0

e−stf(t)dt.

The Laplace transform of function f(t) = tα is given for α as non–integer
order n− 1 < α ≤ n

f(t) = tαL{tα} =
Γ(α+ 1)

sα+1
.

The laplace transform of Caputo fractional differential operator of order
α is given by

L{Dα
Cf(t)} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0),

where
F (s) = L{f(t)},

which can also obtain in the form

L{Dα
Cf(t)} =

snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

sn−α
. (10)

Let α, β, λ ∈, α, β > 0, m ∈. Then the Laplace transform of
two–parameter function of Mittag–Leffler type is given by

L{tαm+β−1E
(m)
α,β (±λtα)} =

m!sα−β

(sα ∓ λ)m+1
, Res > |λ|

1
α . (11)

3 The Main Problem

Since we now consider the rod which is infinite in both direction, it is
natural to seek for a solution in of (5) in the domain

Ω = {(t, x) : t > 0, −∞ < x <∞}.
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Let boundary and initial conditions have the form

u(t,∞) = u(t,−∞) = 0, t > 0, (12)

u(0+, x) =
u(0+, x)

∂t
= 0, −∞ < x <∞. (13)

We observe that by virtue of (13) and (14) longitudinal oscilations of
rod particles arise under the action of external force which is assumed to
depend only on the spatial variable x.

So, we are to solve the problem

∂2u

∂t2
= Dβ ∂

2u

∂x2
+

1

ρ
f(x), −∞ < x <∞;

u(t,∞) = u(t,−∞) = 0, t > 0;

u(0+, x) =
u(0+, x)

∂t
= 0, −∞ < x <∞.

(14)

Applying the Fourier transform to problem (15) with respect to the
variable x, we obtain

∂2ū(t, ω)

∂t2
+ ω2Dβū(t, ω) =

1

ρ
f̄(ω), t > 0;

ū(0+, ω) =
u(0+, x)

∂t
= 0,

(15)

where

ū(t, ω) =

∫ ∞
−∞

u(t, x)eiωxdx. (16)

On formula (11)

L{Dα
Cf(t)} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0),

where
F (s) = L{f(t)}.

Applying the Laplace transformation to problem (16) with respect to the
variable t, we get

s2Ū(s, ω) + sβŪ(s, ω) =
f̄(ω)

ρ
s−1 ⇒

(
s2−β + ω2

)
Ū(s, ω) =

f̄(ω)

ρ
s−1−β ⇒
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Ū(s, ω) =
f̄(ω)

ρ

s−1−β

s2−β + ω2
. (17)

If (18) is compared to (12), note that m = 0, α = 2− β, β = 3.
From (18) we will receive

ū(t, ω) =
f̄(ω)

ρ
t2E2−β,3(−ω2t2−β). (18)

Formula (19) implies that a solution of our problem (15) has the form
u(t, x) =

1

ρ

∫ ∞
−∞

G(t, x− ξ)f(ξ)dξ,

G(t, x) =
1

π

∫ ∞
0

t2E2−β,3(−ω2t2−β) cosωxdω.

(19)

Note that in order to obtain the later formula, we have used the evenness
of the function

t2E2−β,3(−ω2t2−β)

with respect to the variable ω.
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