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Abstract

The article considers irreversible deformation of solid under thermo-
mechanical loading, using the phenomenological approach. It is as-
sumed that the strains are small. On the basis of the dilatometric
curves and the stress-strain curves, the condition was formulated for
the stability of material, and the major inequality and constitutive
equations for the irreversible strains under thermo-mechanical load-
ing were obtained. These equations describe the pattern of inelastic
deformation of a wide class of metallic materials in the temperature
ranges of the phase transformations.
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1 Introduction

Thermomechanical loading of a number of metallic materials under cer-
tain conditions causes inelastic deformation, characterized by irreversible
volume change. Under torsion of tubular specimens from shape memory
materials with the change in temperature within the temperature ranges
of direct martensitic transformations, there are accumulated inelastic shear
strains.

Irreversible volume change is observed during welding and heat treat-
ment of metallic materials accompanied by phase changes. During the
martensitic transformation in iron-based alloys, the volume changes are
significant (about 4%), which causes plastic deformation in the surround-
ing parent phase. Multiple thermal cycling of uranium specimens causes
irreversible form change [1]. In addition to uranium and its alloys, the
form change was also reliably recorded on metals such as α-iron, titanium,
copper, aluminum, nickel, and zinc. In specimens, whose material has a
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texture, irreversible thermal changes were recorded even in the absence of
stress.

The constitutive equations for plastic deformations were obtained on
the basis of the stability condition proposed by Drucker [2, 3]. This idea
was further extended by Koiter [4], Naghdi [5], who proposed constitutive
equations based on Drucker’s inequalities.

2 A Condition for the Stability of Material and
Major Inequality

The phenomenological theory of the deformation of materials, as is well-
known, is built on the basis of the experimental data of testing of specimens,
regardless of whether the constitutive equations are derived from the gen-
eral postulates or through the generalization of the simplest relationships.
Let us build a theory of the irreversible deformation of materials under
thermomechanical loading based on two series of the experimental data:
tension of specimens at a constant temperature and fluctuating stress, and
the deformation of specimens at a constant stress and variable temperature.

At each step of stress and temperature, the specimen is under steady
state, and therefore, the deformation process is also steady. Considering
the steady irreversible process of deformation, it is sufficient to indicate
the behavior of material during loading and unloading. It is obvious that
during thermomechanical loading, this mode applies both to mechanical
and thermal factors. Deformations are considered small.

On the basis of these experimental data, using the well-known method of
combining two inequalities of different dimensions used in thermodynamics
of irreversible processes [7], the paper [8] formulates the following condition
for a closed path of thermomechanical loading - ”loading-unloading-heating
cooling”: ∮ (

σij − σ0ij
)
dεij + aij

(
εij − ε0ij

)
dT ≥ 0, (1)

where σij is a true stress state, εij are their corresponding strains, σ0ij is

a some permissible stress state; ε0ij are their corresponding strains, T is a

temperature, aij is a tensor, the components of which measured in Pa/0C,
inserted into (1) to align the dimensions of the additive components.

True stress state satisfies the condition f(σij , T,Q) = 0, while per-
missible stress state satisfies inequality f(σij , T,Q) < 0 (Q - some struc-
tural parameter, f - loading surface). Integration is carried out in a space
”temperature-stress”, along a path that comes out of the point and returns
back to the same point. The integral value in (1) for the reversible processes
on a closed path of thermomechanical loading equals to zero.
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Figure 1: On formulating the condition for the stability of deformation and
major inequality

For the components of full strain, we shall consider fair the additivity
concept:

εij = εeij + εTij + εnij , dεij = dεeij + dεTij + dεnij , (2)

where εeij , ε
T
ij , ε

n
ij are the components of elastic, temperature and irre-

versible deformations, respectively.

In order to interpret restrictions imposed on material by the condition
(1), let us examine the element of work-hardening solids (Fig. 1). Suppose
is a current position of a loading surface, while f ′ - is a new, infinitely near
position of a loading surface.

Consider some loading path A→ B → C. A starting point A represents
the initial stress-strain state σ0ij , ε

0
ij . From a point B, infinitesimal thermo-

mechanical additional loading is carried out causing theincremental elastic,
temperature and irreversible strains. Let us go back to the point A following
some path CA. Over the cycle ABCA, the condition of the stability of
material (1) is fulfilled.

The elastic and temperature strains are reversible. Therefore, the closed
path ABCA, considering the additivity conditions (2) in the integral of (1),
leaves only the irreversible strains, and therefore, it can be written as [8,
9]: ∮ (

σij − σ0ij
)
dεnij + aij

(
εnij − ε0nij

)
dT > 0. (3)

Since the irreversible strain occurs only on the infinitesimally small
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Figure 2: The possible shape of the loading surface

section BC (Fig.1), the last inequality becomes:(
σij − σ0ij

)
dεnij + aij

(
εnij − ε0nij

)
dT > 0, (4)

from which the major inequality follows:

σijε
n
ij + aijε

n
ijdT > σ0ijdε

n
ij + aijε

0n
ij dT. (5)

Inequality (5) is necessary for establishing constitutive equations. When
the initial stress-strain state is a state σij , ε

n
ij , matching the point B on a

loading surface f , then for the cycle BCB, the following inequality can be
written:

σijε
n
ij + aijε

n
ijdT > 0. (6)

Inequality (6) is a condition for stable deformation of material.
Drucker’s postulate is built on the basis of the stress-strain curve, from

which the major inequality of plasticity and the condition of the stability of
deformation follow [2]. It follows that the surface of plasticity is convex [2,
11]. The relationship (4) allows for the case when the additive components
satisfy the following inequalities: (σij − σ0ij)dεnij < 0, aij(ε

n
ij − ε0nij )dT >

0, the first of which geometrically means that the loading surface can be
concave, and the angle between the vectors σij−σ0ij and d̄εnij can be obtuse
(Fig. 2). In principle, such a state for metallic materials takes place in the
temperature range of phase transformations, when the temperature factor
prevails in the development of the irreversible strains.

3 Constitutive Equations

In H. Ziegler’s work [10], the extreme principles are widely used to obtain
constitutive equations. According to major inequality (4), the increment
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function dΩ = σijdε
n
ij +aijε

n
ijdT at prescribed increments of the irreversible

strains and temperatures has a maximum on the real stresses and irre-
versible strains. Irreversible strains are a function of stress and tempera-
ture, therefore, the function dΩ, is ultimately a function of the components
of stress and temperature, which, during the irreversible deformation satisfy
the condition:

f(σij , T,Q) = 0. (7)

As a structural parameter Q, during the deformation of shape memory
alloys in the temperature range of the direct martensitic transformations,
we should take the fraction of the martensitic phase [17], while during the
deformation of structural steel beyond the limits of elasticity, the measure
of hardening is taken as a structural parameter (the Odqvist parameter, or
the work on the plastic strains).

We shall use the Lagrange method to find the conditional extremum
of a function of several variables, which are connected by an additional
condition (7). Let us generate an auxiliary function dL = dΩ − dλ · f ,
and from the extremum condition, we shall obtain an expression for the
increments of the irreversible strains [11]:

dεnij = −
∂(aklε

n
kl)

∂σij
dT + dλ

∂f

∂σij
, (8)

where dλ is Lagrange’s indefinite scalar multiplier.
Let us introduce the following notation:

denij = dεnij +
∂(aklε

n
kl)

∂σij
dT. (9)

Applying (9) to the expression for the equivalent quantity of the incre-
mental strains dεnl = (2denijde

n
ij/3)1/2 [11], we shall determine the Lagrange

multiplier value:

dλ =

√
3

2
dεnl /

√
∂f

∂σij

∂f

∂σij
. (10)

With the appropriate choice of function f , the equation (8), taking into
account the relationships (10), connects the increments of the components
of the irreversible strain, the temperature increment and stress components.

If we apply the formula (8) to the second expression (2), then a thermal
coefficient of linear expansion can be represented as:

αij = αδij − ∂(aklε
n
kl)/∂σij ,

where α is mean value of a thermal coefficient of linear expansion, which
is used typically in calculating the temperature stresses, δij is Kronecker
delta.
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Equation (8) geometrically means that the vector den with the com-
ponents denij , and the gradient vector of function f , with the components
∂f/∂σij are collinear, while the full vector increment of the irreversible
strain is not directed perpendicularly to the loading surface. In general,
determination of the direction of the vector increment of the irreversible
strain is difficult enough. Similar difficulties arise during the visco-plastic
flow of material, when the vector increment of the plastic strains directed at
an angle to the normal of the surface of visco-plasticity. However, according
to the assumption of Naghdi and Murch [6], it is believed that the vector
increment of the plastic strains directed along the normal to the surface of
visco-plasticity. Similar allegation is also used in the simplest theories of
creep. The adoption of a particular loading law also makes a change in the
development of the irreversible strains. The issue of the direction of the
vector of irreversible flow has not always found its solution. This is partly
due to the fact that, constitutive equations, which most fully describe the
properties of material, remain critical for the practical calculations.

The formulas (8) and (10) are used in [16] to calculate the increments
of the inelastic strains associated with the phase transformations, when
calculating a shape memory cylinder in the temperature range of the direct
martensitic transformations. During plastic flow of isotropic material, the
most acceptable and simplest is a law of hardening (loading) used in the
flow theory [11]: f = 3SijSij/2 − 2[φ(χ, T )]2 = 0, where Sij - are the
components of the stress deviator, χ - a hardening measure. Then, from
the formula (10), we have dλ = dεpl /(2σl) (σl - equivalent stress) and the
equation (8) becomes:

dεpij = −
∂(aklε

p
kl)

∂σij
dT +

3

2

dεpl
σl
Sij , (11)

where dεpl - equivalent quantity of the plastic strain increments.

It is believed that the components of the tensor aij do not depend on the
stress and are the parameters of material. For isotropic structural metallic
materials, the tensor aij is a spherical tensor, whose components we denote
by a0. Then, from the equations (3.5) we have:

dεpij = −3
∂(a0ε

p
0)

∂σij
dT +

3

2

dεpl
σl
Sij , (12)

where εp0 is a mean plastic strain εp0 = εpii/3, the value a0 is determined
through processing the dilatometric curves in the temperature range of
the phase transformations and the stress-strain curves beyond the range of
elasticity.
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Using the above formulas (2), (12) and the relationships of thermoelas-
ticity, the increment of the relative volume change is determined as:

dε0 =
dσ0
3K

+ αdT −
[
∂(a0ε

p
0)

∂σ11
+
∂(a0ε

p
0)

∂σ22
+
∂(a0ε

p
0)

∂σ33

]
dT, (13)

where ε0 - a mean strain, σ0 - a mean normal stress, K - a volumetric
modulus of elasticity.

Let us represent the condition (7) as follows:

f(σij , T,Q) = ψ(σij , T )−H(Q) = 0.

With the developing irreversible strain, the loading and unloading con-
ditions can be written in the form of a non-isothermal theory of plasticity
[12]:

f = 0, ∂ψ/∂σijdσij + ∂ψ/∂TdT < 0, dH = 0, unloading
f = 0, ∂ψ/∂σijdσij + ∂ψ/∂TdT = 0, dH = 0, neutral process
f = 0, ∂ψ/∂σijdσij + ∂ψ/∂TdT > 0, dH 6= 0, loading
With neglect of the plastic volume deformation, and if we suppose that

the tensor components aij = 0, i 6= j, then from the relationships (11), we
obtain the constitutive equations of thermoplasticity, given in paper [13].

4 Determination of the Components of Tensor aij

For material, the components of tensor aij are determined on the basis
of the experimental data of testing specimens with the certain paths of
thermo-mechanical loading, which are shown in Figure 3 for pure shear
and uniaxial tension.

For shape memory alloys, the accumulation of inelastic strains is asso-
ciated with thermoelastic martensitic transformations, in which the change
in volume is very small. It has been established experimentally [14] that
the inelastic phase shear strains are accumulated with temperature change
in the temperature range of the direct martensitic transformations, even
with a complete stress relief.

Therefore, the tensor components aij , i = j can be considered as zero,
while in order to determine the components aij , i 6= j, it is necessary to
use the experimental data on torsion test of tubular specimens [14]. With
an arbitrarily small constant value of shearing stress, with the change in
temperature, the inelastic phase shear strains are accumulated in specimen.
In this case, from the relationships (11), we obtain the following equation
(the plane coincides with the pivoting plane of the cross section):

dγnxy = axy
∂γnxy
∂τ

dT. (14)
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Figure 3: The types of thermo-mechanical loading in specimens testing

The value of a derivative on the right side of (14) is calculated as follows:

∂γnxy/∂τ ≈ (γn2 − γn1 )/(τ2 − τ1), (15)

where γn1 , γ
n
2 are the irreversible shear strains for a given temperature at

shearing stresses τ1 and τ2.

It is easy to see that ∂γnxy/∂τ ≈ (γ2 − γ1)/(τ2 − τ1) − 1/G, where γ1,
γ2 are total shear strains at stresses τ1 and τ2, G is shearing modulus of
elasticity.

The value dγnxy/dT is calculated upon the formula:

dγnxy/∂τ ≈ (γni+1 − γni−1)/(2∆T ), (16)

where ∆T is temperature increment, γni is the value of inelastic shearing
strain at the i - th point of curve.

It is obvious that γni+1 − γni−1 = γi+1 − γi−1 (γi is total shear strain at
the i - th point of curve). Then, dγnxy/∂τ ≈ (γni+1−γni−1)/(2∆T ). Using the
relationships (15) and (16), from the formula (14) we determine the value
axy.

For isotropic structural steel, tensor aij is a spherical tensor, the com-
ponents of which (a0) characterize a volume change of an inelastic nature.
An inelastic volume change is associated with the structural transforma-
tions with the formation of a bainitic, martensitic or bainitic-martensitic
structure, accompanied by the maximum strains εn0 ≈ 0, 5??? [15].

To determine the value a0, the dilatometric curves and the stress-strain
curves are used at a constant temperature in the temperature range of
the phase transformations. When processing the dilatometric curves, it
is necessary to take into account that the inelastic strain associated with
stress does not arise dλ∂f/∂σij = 0. Then, it follows from the equation (8)
for uniaxial stress:

dεn = −a0dT∂εn/∂σ. (17)
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Irreversible strain is equivalent to the difference between the total and
temperature strains. The derivative dεn/dT ≈ (εni+1 − εni−1)/(2∆T ), where
εni is the irreversible strain at the i - th point of curve. Processing of
dilatograms in the temperature ranges of the phase transformations for
technological processes of welding is given in the paper [15]. The determi-
nation of the value ∂εn/∂σ at a constant temperature is well-known in the
theory of plasticity. Upon calculating the values dεn/dT and ∂εn/∂σ, from
the formula (17) we find a0.

Thus, the constitutive equations obtained above allow taking into in to
account in the calculations an irreversible volume change associated with a
temperature change in the ranges of phase transformation and the inelas-
tic shearing strains that occur the cooling of shape memory alloys in the
temperature range of the direct martensitic transformations.
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