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Abstract

An initial boundary value problem is considered for the nonlinear
integro-differential system, which describes the dynamic behavior of
the beam. The solution is approximated by the finite element method,
an implicit difference scheme and a Picard type iteration method. The
algorithm has been checked by the tests. The results of calculations
are given.
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1 Statement of the Problem

We consider the problem of geometrically nonlinear vibration of a beam. To
this end, we use the well known model of Timoshenko which is the second
generation theory. As compared with the classical Kirchhoff-Love model,
in the Timoshenko model, deformation due to cross force and rotary inertia
is taken into account, which is rather important for many problems.

Let us consider the system of equations

wtt =

(
cd− a+ b

∫ 1

0
w2
xdx

)
wxx − cdψx + α(x, t) ,

ψtt = cψxx − c2d(ψ − wx) + β(x, t) ,

0 < x < 1, 0 < t ≤ T,

(1)
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with the initial and boundary conditions

wt(x, 0) = w(1)(x), w(x, 0) = w(2)(x),

ψt(x, 0) = ψ(1)(x), ψ(x, 0) = ψ(2)(x),

wt(0, t) = wt(1, t) = 0, ψt(0, t) = ψt(1, t) = 0,

0 ≤ x ≤ 1, 0 ≤ t ≤ T.

(2)

The unknown functions w and ψ are respectively the transverse deflec-
tion of the beam centerline and the rotary displacement of the cross-section,
α(x, t) and β(x, t) are the given functions of the force components.

In (2) w(l), ψ(l) are the given functions,

w(l)(x) ∈W 2
2 (0, 1), ψ(l)(x) ∈W l+1

2 (0, 1), l = 1, 2.

In (1)
a, b, c, d > 0, cd− a > 0, (3)

where

a = Al∆/I1, b = Al2/(2I1), c = Al2/I2, d = GI2/(EI1) , (4)

E is Young’s modulus, G is the shear modulus, A is the cross-section area,
l is the length, I1 is the moment of inertia of the cross-section about the
axis perpendicular to the beam centerline, I2 is the polar moment of inertia
of the cross-section, and ∆ is the end shortening of the beam.

By virtue of (4) we come to a conclusion that the second relation in (3)
is a natural requirement for moderately compressed slender beams, which
is equivalent to the condition ∆ < lG/E.

System (1) was obtained in [9] when describing a dynamic beam using
Timoshenko theory [10]. The solvabiity of this system is investigated in [11]
and [6]. Our goal consists in constructing an approximate algorithm of the
solution of problem (1), (2) and describing results of some computational
testing. Numerical methods for system (1) and other type Timoshenko
beam models are investigated in [1], [2], [3], [4], [5], [6], [7], [8], [12].

2 Reducing (1) to a system of first order equations

Let us write a set of functions

u, v, f, ϕ, ψ, (5)

of which the first four are the new ones defined by the formulas

u = wt, v = wx, f = ψt, ϕ = ψx . (6)
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Using (1) and (6), we write a system of equations with respect to func-
tions (5) as

ut =

(
cd− a+ b

∫ 1

0
v2dx

)
vx − cdϕ+ α(x, t) ,

vt = ux, ft = cϕx − c2d(ψ − v) + β(x, t) ,

ϕt = fx, ψt = f ,

0 < x < 1, 0 < t ≤ T .

(7)

Let us complement (7) with the initial and boundary conditions which
follow from (2)

u(x, 0) = w(1)(x), v(x, 0) = w(2)
x (x), f(x, 0) = ψ(1)(x),

ϕ(x, 0) = ψ(2)
x (x), ψ(x, 0) = ψ(2)(x),

u(0, t) = u(1, t) = 0, f(0, t) = f(1, t) = 0 ,

0 ≤ x ≤ 1, 0 ≤ t ≤ T .

(8)

Thus, instead of (1), (2), we have obtained the initial-boundary problem
(7), (8) for functions (5) which will be considered below.

3 Algorithm

1. Finite element method

We discretize problem (7), (8) with respect to the spatial variable by means
of the finite element method.

Assume that the interval [0, 1] is covered by a net with the step h = 1/N ,
where N is a positive integer number. To each node xi = ih, i = 0, 1, . . . , N ,
we assign the base function from the set

ωhi(x) =


x− xi−1

h
, x ∈ (xi−1, xi),

xi+1 − x
h

, x ∈ (xi, xi+1),

0, x 6∈ (xi−1, xi+1),

i = 1, 2, . . . , N − 1,

ωh0(x) =


x1 − x
h

, x ∈ (x0, x1),

0, x 6∈ (x0, x1),

ωhN (x) =


x− xN−1

h
, x ∈ (xN−1, xN ),

0, x 6∈ (xN−1, xN ).

13
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Denote by (·, ·) the scalar product in L2(0, 1). An approximate solution
of problem (7), (8) will be sought in the form

uh(x, t) =
N−1∑
i=1

ui(t)ωhi, vh(x, t) =
N∑
j=0

vj(t)ωhj ,

fh(x, t) =
N−1∑
i=1

fi(t)ωhi, ϕh(x, t) =
N∑
j=0

ϕj(t)ωhj , ψh(x, t) =
N∑
j=0

ψj(t)ωhj .

Besides, we will use the following approximations of functions α(x, t) and
β(x, t)

αh(x, t) =

N∑
j=0

αj(t)ωhj , βh(x, t) =

N∑
j=0

βj(t)ωhj ,

where αj(t) = α(xj , t), βj(t) = β(xj , t).

The functions ui(t), vj(t), fi(t), ϕj(t), ψj(t) are defined by the system
of ordinary differential equations

(uht, ωhi) = ((cd− a+ b

∫ 1

0
v2hdx)vhx − cdϕh + αh(x, t), ωhi) ,

(vht, ωhj) = (uhx, ωhj), (fht, ωhi) = (cϕhx − c2d(ψh − vh) + βh(x, t), ωhi) ,

(ϕht, ωhj) = (fhx, ωhj), (ψht, ωhj) = (fh, ωhj) ,
(9)

0 < t ≤ T , with the initial conditions

ui(0) = w(1)(xi), vj(0) = w(2)
x (xj), fi(0) = ψ(1)(xi),

ϕj(0) = ψ(2)
x (xj), ψj(0) = ψ(2)(xj).

(10)

In (9), (10), i = 1, 2, . . . , N − 1, j = 0, 1, . . . , N .

Let us introduce some notation. To functions λh and µh of the form

λh =
N−1∑
i=1

λi(t)ωhi, µh =
N∑
j=0

µj(t)ωhj

we assign the vectors

λh(t) = (λ1(t), λ2(t), . . . , λN−1(t))
′,

µh(t) = (µ0(t), µ1(t) . . . , µN (t))′.
(11)

Here the symbol ′ means the operation of transformation.

14
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Now (9), (10) can be rewritten as system

M
duh

dt
= (cd− a+ bhv′hKvh)Qvh − cdLϕh + Lαh,

K
dvh
dt

= −Q′uh,

M
dfh

dt
= cQϕh − c2dL(ψh − vh) + Lβh,

K
dϕh

dt
= −Q′fh,

K
dψh

dt
= L′fh,

(12)

0 < t ≤ T , with the initial conditions

uh(0) = w(1), vh(0) = w(2)
x , fh(0) = ψ(1),

ϕh(0) = ψ(2)
x , ψh(0) = ψ(2).

(13)

In (12) and (13)

K =
1

h
((ωhi, ωhj))0≤i,j≤N =

1

6



2 1
1 4 0

·
·
·

0 4 1
1 2


,

L =
1

h
((ωhi, ωhj))1≤i≤N−1

0≤j≤N
=

1

6


1 4 1

· 0
·

0 ·
1 4 1

 ,

M =
1

h
((ωhi, ωhj))1≤i,j≤N−1 =

1

6


4 1
1 · 0

·
0 · 1

1 4

 ,

Q = −1

h
((ωhix, ωhj))1≤i≤N−1

0≤j≤N
=

1

2h


−1 0 1

· 0
·

0 ·
−1 0 1
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and

w(1) =
(
w(1)(x1), w

(1)(x2), . . . , w
(1)(xN−1)

)′
,

w(2)
x =

(
w(2)
x (x0), w

(2)
x (x1), . . . , w

(2)
x (xN )

)′
,

ψ(l) =
(
ψ(l)(x2−l), ψ

(l)(x3−l), . . . , ψ
(l)(xl+N−2)

)′
, l = 1, 2,

ψ(2)
x =

(
ψ(2)
x (x0), ψ

(2)
x (x1), . . . , ψ

(2)
x (xN )

)′
.

2. Difference scheme

Let us derive an approximate solution of problem (12), (13). On the time
interval [0, T ] we introduce a net with the step τ = T

P and nodes tn = nτ ,
n = 0, 1, . . . , P . On the n-th layer, i.e. for t = tn, the approximate values
of vectors (11) are denoted by λn

h and µn
h, n = 0, 1, . . . , P . We use the

modified Crank–Nicolson type scheme [6]

M(un
h − un−1

h ) =
τ

4
{2(cd− a) + bh[(vnh)′Kvnh

+(vn−1h )′Kvn−1h ]}Q(vnh + vn−1h )

−τcd
2
L(ϕn

h +ϕn−1
h ) +

τ

2
L(αn

h +αn−1
h ) ,

2K(vnh − vn−1h ) = −τQ′(un
h + un−1

h ) ,

M(fn
h − fn−1

h ) =
τc

2
Q(ϕn

h +ϕn−1
h )

−τc
2d

2
L(ψn

h +ψn−1
h − vnh − vn−1h ) +

τ

2
L(βn

h + βn−1
h ) ,

2K(ϕn
h −ϕn−1

h ) = −τQ′(fn
h + fn−1

h ) ,

2K(ψn
h −ψn−1

h ) = τL′(fn
h + fn−1

h ),

(14)

n = 1, 2, . . . , P , with the initial conditions

u0
h = w(1), v0h = w(2)

x , f0
h = ψ(1), ϕ0

h = ψ(2)
x , ψ0

h = ψ(2). (15)

We introduce into consideration the vectors ynh = (un
h,v

n
h,f

n
h,ϕ

n
h,ψ

n
h)′,

gh = (w(1),w
(2)
x ,ψ(1),ψ

(2)
x ,ψ(2))′ and ρnh = (αn

h, 0,β
n
h, 0, 0)′, where 0 is the

(N − 1)-dimensional zero vector.
System (14) can be rewritten as

A
ynh − y

n−1
h

τ
=

1

2
(B+C(vnh)+C(vn−1h ))(ynh+yn−1h )+

1

2
D(ρnh+ρn−1h ) (16)

and (15) as
y0h = gh. (17)

16
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In (16) A, B and C are the block square matrices of order five defined
by the formulas

A =


M

2K 0
M

0 2K
2K

 ,

B =


0 (cd− a)Q 0 −cdL 0
−2Q′ 0 0 0 0

0 c2dL 0 cQ −c2dL
0 0 −2Q′ 0 0
0 0 2L′ 0 0

 ,

C(ν) =
bh

2
ν ′Kν


0 Q · · · 0
0 0 · · · 0
· · · · · ·
0 0 · · · 0

 , ν ∈ RN+1,

D =


L

0 0
L

0 0
0

 .

In A, B and C 0 are the rectangular zero matrices whose dimensions are
defined as follows: the number of rows (columns) in the matrix is equal to
N − 1 if the matrix is in the first or the third row (column) of the block
matrix, and to N+1 in all other cases. In D 0 is the rectangular zero matrix
whose dimensions are defined as follows: the number of rows (columns) in
the matrix is equal to N −1 (N +1) if the matrix is in the first or the third
row (column) of the block matrix, and to N + 1 (N − 1) in all other cases.

3. Iteration process

Let us derive a numerical solution of problem (16), (17). If in this system we
perform calculations from layer to layer and assume that yn−1h is known,
then the problem reduced to finding ynh. For this we use a Picard type
iteration process of the form

Ayn,mh = Ayn−1h

+
τ

2
(B + C(vn,m−1h ) + C(vn−1h ))(yn,m−1h + yn−1h ) +

τ

2
D(ρnh + ρn−1h ).

(18)
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Here
yn,mh = (un,m

h ,vn,mh ,fn,m
h ,ϕn,m

h ,ψn,m
h ) (19)

is the m-th iteration approximation of the vector ynh and moreover, un,m
h ,

fn,m
h ∈ RN−1, vn,mh ,ϕn,m

h ,ψn,m
h ∈ RN+1. Not to complicate the discus-

sion we assume that yn−1h is defined with such an accuracy that the corre-
sponding error can be ignored. Suppose that yn−1h is chosen as the initial
approximation for iteration process on the upper neighboring n-th layer.
Therefore, let in (18) yn,0h = yn−1h .

Remark. The sought functions of the initial problem (1), (2) are the
functions w(x, t) and ψ(x, t). The algorithm we have used here allows
us to find approximate values of the derivatives wt, wx, ψt, ψx and of
the function ψ. Using function w(2)(x) and vector un,m

h it is possible to
construct an approximation for function w(x, t).

4 Definition of the total error of the algorithm

Let us introduce a scalar product and vector norms. If we assume that λ and
µ are vectors of the same dimension, whose l-th components are equal to λl
and µl, then the scalar product (λ, µ)h = h

∑
l λlµl, where the summation

involves all components of λ and µ and the norm ‖λ‖h = (λ, λ)
1
2
h .

Let λ(x, t) and µ(x, t) be any functions defined on [0, 1]× [0, T ] and let
the first of these functions satisfy the boundary condition λ(0, t) = λ(1, t) =
0. Consider the vectors

λ(t) =
(
λ(x1, t), λ(x2, t), . . . , λ(xN−1, t)

)
,

µ(t) =
(
µ(x0, t), µ(x1, t), . . . , µ(xN , t)

)
.

Using this notation and functions (5) we introduce the vector

y(t) =
(
u(t),v(t),f(t),ϕ(t),ψ(t)

)
. (20)

From this definition it follows that the vector y(t) consists of the values of
the exact solution of problem (7), (8) at the nodes xi of the interval [0, 1].

For chosen h and τ and for t = tn, the vector yn,mh (19) is the result
of the considered algorithm, the purpose of which is to approximate the
vector of exact solution y(t) (20) at m-th iteration step at the time node
t = tn. By virtue of this reasoning we can characterize the total error of
the algorithm by the difference ∆zn,mh = y(tn) − yn,mh . Note that by (20)
and (19)

‖∆zn,mh ‖h =

(
‖u(tn)− un,m

h ‖2h + ‖v(tn)− vn,mh ‖2h

18
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+ ‖f(tn)− fn,m
h ‖2h + ‖ϕ(tn)−ϕn,m

h ‖2h + ‖ψ(tn)−ψn,m
h ‖2h

) 1
2

. (21)

An estimation of total error (21), when α(x, t) = β(x, t) = 0 is obtained
in [7].

5 Numerical realization

In this section some numerical examples are given.

Example 1. Let

a = 0.3, b = 0.2, c = 1.0, d = 0.5, T = 1.0,

α(x, t) = π2 sinπx
(
0.2 + 0.1π2(t+ 1)4

)
(t+ 1)2

+ 2 sinπx+ 0.5(t− 1)2π cosπx,

β(x, t) = 0.5
(
(t− 1)2 sinπx− (t+ 1)2π cosπx

)
+
(
2 + (t− 1)2π2

)
sinπx,

with the initial functions w(1)(x) = 2 sinπx, w(2)(x) = π cosπx, ψ(1)(x) =
−2 sinπx, ψ(2)(x) = sinπx.

An exact solution and functions (5) have the form w = (t + 1)2 sinπx,
ψ = (t − 1)2 sinπx and u = 2(t + 1) sinπx, v = (t + 1)2π cosπx, f =
2(t− 1) sinπx, ϕ = (t− 1)2π cosπx, ψ = (t− 1)2 sinπx.

Table 1: Total error of the algorithm

No. h τ n tn m ‖∆zn,mh ‖h
1 0.1 0.01 100 1.0 11 0.0698511

2 0.02 0.002 500 1.0 7 0.0026944

3 0.01 0.001 1000 1.0 6 0.0006710

The values of the norm of the total error (21) of algorithm for some
variants are given in Table 1.

Example 2. Let

a = 0.3, b = 0.2, c = 1.0, d = 0.5, T = 1.0,

and

α(x, t) =
2

5
t+

2

15
t3 +

1

2
exp(xt)(t(1− x)− 1),

19
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β(x, t) = exp(xt)
((
x2 − t2 +

1

2

)
(1− x) + 2t

)
− 1

2
t(1− 2x),

with the initial functions w(1)(x) = x(1−x), w(2)(x) = 0, ψ(1)(x) = x(1−x),
ψ(2)(x) = 1− x.

An exact solution and functions (5) have the form w = x(1 − x)t,
ψ = (1− x) exp(xt) and u = x(1− x), v = t(1− 2x), f = x(1− x) exp(xt),
ϕ = (t(1− x)− 1) exp(xt), ψ = (1− x) exp(xt).

Table 2: Total error of the algorithm

No. h τ n tn m ‖∆zn,mh ‖h
1 0.1 0.1 10 1.0 91 0.0170368

2 0.1 0.01 100 1.0 7 0.0172243

3 0.01 0.01 100 1.0 62 0.00016576

The values of the norm of the total error (21) of algorithm for some
variants are given in Table 2.

Example 3. Let

a = 0.3, b = 0.2, c = 1.0, d = 0.5, T = 1.0,

and

α(x, t) =

(
2

5
+

2

15
sin2 πt− π2x(1− x)

)
sinπt

+
1

2
(1 + exp(xt)(t(1− x)− 1)),

β(x, t) = exp(xt)
((
x2 − t2 +

1

2

)
(1− x) + 2t

)
− 1

2
(1− x+ (1− 2x) sinπt),

with the initial functions w(1)(x) = πx(1 − x), w(2)(x) = 0, ψ(1)(x) =
−x(x− 1), ψ(2)(x) = 0.

An exact solution and functions (5) have the form w = x(1− x) sinπt,
ψ = (1 − x)(exp(xt) − 1) and u = πx(1 − x) cosπt, v = (1 − 2x) sinπt,
f = x(1−x) exp(xt), ϕ = 1−exp(xt)(1+(x−1)t), ψ = (x−1)(1−exp(xt)).

The values of the norm of the total error (21) of algorithm for some
variants are given in Table 3.

20
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Table 3: Total error of the algorithm

No. h τ n tn m ‖∆zn,mh ‖h
1 0.1 0.1 5 0.5 10 0.0369772

2 0.05 0.05 10 0.5 20 0.0135773

3 0.025 0.025 40 1.0 20 0.0096951

Conclusion

In the paper, the dynamic behavior of the beam is described by using a
nonlinear system of Timoshenko differential equations. For this model, the
sought functions are the transverse deflection function and the function of
the normal slope change. The goal was to construct an efficient numerical
algorithm for an initial boundary value problem. The proposed algorithm
was checked by means of the test examples and showed a satisfactory result.
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