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Abstract

I. Vekua constructed several versions of the refined linear theory
of thin and shallow shells, containing the regular processes by means
of the method of reduction of 3-D problems of elasticity to 2-D ones.
By means of I. Vekua’s method the system of differential equations
for the nonlinear theory of non-shallow shells is obtained. The gen-
eral solutions of the approximation of Order N =0, 1, 2, 3, 4 are
obtained.
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1 Introduction

In the present paper, by means of Vekua’s method, the system of differential
equations for the nonlinear theory of non-shallow shells is obtained [1, 2].
By thin and shallow shells I.Vekua means 3-D shell type elastic bodies
satisfying the following conditions
a?

[0}

— el —h<ad=u,<b =12, (%)

where ag and bg are mixed components of the metric and curvature tensors
of the midsurface of the shell, 23 is the thickness coordinate and h is the
semi-thickness.

The assumption of the type (*) means that the interior geometry of the
shell does not vary in thickness and there such kind of shells are usually
called non-varying geometry.

In the sequel, under non-shallow shells we wean elastic bodies free from
the assumption of the type (*) or, more exactly, the bodies with the con-
ditions

ag — b # af = |hbBa| < q < 1.
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Such kind of shells are called shells with varying-in-thickness geometry
[5, 6], or non-shallow shells.

2 Non-Shallow and Shallow Shells

To construct the theory of non-shells is used the coordinate system which
is normally connected with the midsurface S. This means that the radius-
vector R can be represented in the form

Rzt 22, 2%) = #(at, %) + ®a (e, 2?) (25 = 3),

where 7 and 77 are respectively the radius-vector and the unit vector of the
normal of the surface S(z3 = 0) and (z',2?) are the Gaussian parameters
of the midsurfaces S.

The covariant and contravariant basis vectors ﬁl and R of the sur-
faces S'(x3 = const), and the corresponding basis vectors 7; and 7% of the
midsurface S(x® = 0) are connected by the following relations:

ﬁa = (%R' = (a’g — xgbg)Fg,

=a _ (Z% + l'g(bg — 2HCL%)T_,B (1)
1—-2Hz3+ Ka%

—

Ry = R =1,

where (aqs,a%?, ag) and (by, 5,b%", bg) are the components (covariant, con-

travariant and mixed) of the metric and curvature tensors of the midsurface
S, H and K are, respectively, middle and Gaussian curvature of the surface
S,

2H = b = bl + 03, K = blb2 — bib3.

The main quadratic forms of the midsurface S have the forms
I =ds* = aagd:vadajﬁ, Il = K.ds®> = balgdxo‘dazﬁ, (2)

where k; is the normal courvative of the S and

QB = F()A’Fﬁa baﬁ = _ﬁafﬂp ks = baﬁsasﬁ, (3)
dx®
o = OaT, Tla = Oail = —b2Fg, s = —
S

Note that, sometimes under non-shallow shells be meant the following
approximate equalities

Ro =~ (af + xgbg)f’@, (Koiter, Haghdi, Lurie)
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which are the first approximations of the general case (1).
In reality we have (general case) [4, 5, 6]

S0 _ af +x3(b% — 2Haf) ag + x3(b3 — 2Ha$)

= i
1—2H$3+KCU§ [1_(H+\/E)$3][1—(H—\/E)$3]
= {a + 23b3 + 23((3H? + E)af + 2H (b3 — 2Ha})] + - }7? =
R 2 (0 + b)) @)

where £ = H? — K (Euler’s difference).
For shallow shells it may be assumed that

R =, Ro=ra.

The first and second quadratic forms of the surfaces S(z® = const) are
expressed by the formulas

I =d§?* = gopda®da®, II = Kgds® = bagdz®da®, (5)

where Lo
Jop = RaRp = anp — 223bap + 23(2Hbag — Kang), -
Baﬁ = (1 — 2H$3)ba5 + .TgKaag

and l%s = Bagsasﬂ is the normal courvature of the S.

3 System of Geometrically Nonlinear Equations
for Non-Shallow Shells

The equations of equilibrium of an elastic shells-type bodies in a vector
form may be written as

1 8\/§T’i .
— IV U = i =1,2
N +¥=0, (i=1,2,3) (7)

where g is the discriminant of the metric quadratic form of the 3-D domain,
T" are the contravariant constituents of the stress vector, ¥ is an external
force

g=10%, 9=1-2Hz3+ Kz3, a=ajja —al. (8)

The stress-strain relations the geometrically nonlinear theory of elastic-
ity has the form

T' = T9(R; + 0;U) = E"ep(R; + 0;0), 9)
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where T are contravariant components of the stress tensor, e;; are covari-
ant components of the strain tensor, U is the displacement vector. E"P?
and e;; are defined by the formulas:

E'IPt = \glght + p(g'Pgit + giigi?), (g9 = RIRY),
€ij = i(RﬁjUJer&iUJraanjU) (i,7,p,9 = 1,2,3).

To reduce the 3-D problems of the theory of elasticity to 2-D ones,
it is necessary to rewrite the relation (7-10) in terms of the bases of the
midsurface S of the shell .

Relation (7) can be written as follows:

1 9y/adT® N ouT?
Vva 0z dz3

+90 =0, (9=1-2Hxs+kz?). (11)

Let & = 9T° and ® = ﬁ\ff, then making use of tensor notation the
equilibrium equation (11) can be written as follows:

Vo i+ 055 +d=0 =

Voo™ — 080 + 930%° + @F =0,
vaaa?; — bago'a'g + 830’33 + P53 = 0,

where v are covariant derivatives to the coordinates (z!, x?):

o =5, o =%k, o3 =, 0% =%

4 Isometric System of Coordinates

The isometrical system of coordinates in the surface S is of the special
interest, since in this system we can obtain bases equations of the theory of
shells in a complex form, which in turn, allows one for a rather wide class
of problems to construct complex representation of general solutions by
means of analytic functions of one variable z = x! +iz2. This circumstance
makes is possible to apply the methods developed by N. Muskhelishvili and
his disciples by means of the theory of functions of a complex variable and
integral equations.
The main quadratic forms in this of coordinates are of the type

I =ds? = A(zh, 2?)[(dat)? + (d2?)?] = A(z,2)dzdz, (A > 0)
ag..B L5 2 = =2
IT = bopdx“dx” = i[QdZ + 2Hdzdz + Qdz7],
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where )
Q = 5 (b — b3 +2ib}), 2H =]} + 3.

Introducing the well-known differential operators

o_1/(o 90\ o0 _1(90 .0
0z 2\ Oxt 0x2 )7 9z 2\ ozt Ox?
and the notations
7= 9T, & =9V,

For the nonlinear theory of non-shallow shells from (12) we obtain the
following complex writing both for the system of equations of equilibrium
and for stress-strain relation

1 -
1 [0: (A577y) + 0 (AGTF, )] - A [HET + Q5] it
+05 (37) + 7 =0, 3
13
1 = 24 —
A [0. (AG"71) + 05 (AGT7)] — Re [HO‘+T+ + Q0+r+} i
+85 (737) + Bt = 0,
where
Fr=5 +id? =0 { [Aa tu (émzﬁ + RYoPU + zazﬁaZU')}
X (R’+ + Qagﬁ) Yo [é+03(7 +2 (ﬁ + agﬁ) aZﬁ} (ﬁ n agﬁ)} :
(14)

=9 { {/\9 +ou <n83U +z (agU) )] (ﬁ + a3z7)
0 Bmagﬁ o azﬁagﬁ] (7 + 282(7)} ,
Here
oty = (6" +id?) (L + i), ¢7i =03 +io3, FFy =0} +ios
§+ — R, + iRy = (1 — Has)7y + 23Q7,,
Rt =R'+iR? =97 '[(1 — Has)P" + 23Q7]
6 = 2Re [(ﬁmf ) B U] +05Us + = (agU)
20°0 = (RTR)0,0, + (]?TFR*)@EU
U, =Ur, =Uy +il, UT=UF" =U"+iU>
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_ 2 -
=7 i, P =+ i, FJFFJF:K’ T =2,
— 4o A — Huxsg = = 279"‘2332@@
+p+ _ 3 +tpt 27 T 23w w
_, 20Q) =
R+_' = 5 9 RJ’_—’ =3 1 H ’
+ 9 T3 T+ ( z3) (15)
| .
Fro.U = XaZU+ — HUs, 710:U = 8:U" — QUs,

. 1 _ _
ﬁagU == 05U3 + §(QU+ + HU+),

Uy =Ul, Uy =Us.

5 Vekua’s Method of Reduction

There are many different methods of reducing 3-D problems of the theory
of elasticity to 2-D one of the theory shells [2, 4].

In the present paper, we realize the reduction by the method suggested
by I. Vekua. Since the system of Legender polynomials { P, (%2)} is com-
plete in the interval [-h,h] for equation (11) we obtain the equivalent infinite
system of 2-D equations

h — -
1 0y/adT® o9T? -
/[ﬁ T 0L

—h

or in the form

where

(£) )
9 =1+2Hh+ Kh?, T3 =T3',2% +h), —h<z3<h

and V,, are covariant derivatives on the surface S(z® = 0).

40



On the Nonlinear Theory of ... AMIM Vol.24 No.2, 2019

6 Vekua’s Method of Reduction

3-D shell-type bodies are characterized by inequalities of the type [4, 7]
Wb <q<1, (a,B=1,2). (17)
Therefore, they can be represented in the form
[ebFR| < q <1, (18)

where ¢ is a small parameter which is expressed in the form
h
e=5<4 (19)

Here h is the semi-thickness of the shell and R is a certain characteristic
radius of curvature of the midsurface S.

Having introduced a small parameter, we represent the system of equa-
tions (13)-(15) of approximation of order in the complex form

h 0 f(m) (m) . ftm)  (m)
Ao (011 — 0929 +1 <012+U21>)

9 fim m m) (m (m) (m)
+ho <(01)1 G i <(01)2 +(02)1>> — (H o +Qa6% | R
(m=1) (m-3) (m)
—@2m+1) | o} +o’ +- | +hFL =0,
(m) (m)
h|oocd 053
A 0z 0z

(m) _((m)  (m) (m)  (m)
+ed Ho%4Re |Q | ol —o5+i | o) +0?

(m—=1) (m-3) (m)
~@Cm+1)| oF + 05+ | +hF3=0

}R

(m=0,1,---,N).

where (now we write only linear part in explicit form)
h (%’nl)l —(2'12)2 +1 <(g'11)2 +(312)1>> = h&’;i_f;_
(m) (m)
=4pA | ho:UT —eQ Us R
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N (m,s) (m,s)
Ao -E D o

s=0

(s) (s)
A+ 1) <h § —2He Us R)

ho () (s) (m.5) () (9
+2 | $0:Ua—cHUs R | + L Q [(A+p) [ h0:U —eQUs R |  (21)

(m,s) () (m) (s)
Lo Iy QUL+ <U> :

(m) (m) m) (m) (m) (m)
h| ol—o3+ilot+a? | | =hdtFr=200+p)| 6 —2HeQ U3 R
N (m,s) (m,s)

_ (s) (s)
23 0 -H L) |(A+30Q0+ 1) (h(?z Ut —cQUs R)

s=0
() _(s)
+A+w)Q [ h0. Ut —eQUs R

()
+(A +3w)Q <h(9 Ut —eQ U:)g R)

(ms) _ () (s)
+ LQQ|(MN+pho —2H5U3R>

(ms)\ () (m) /(s)
+2)\ (an—H 13 U3+L2 (U> )
3 o (m) (m) (m)
ho’ 7y = p |2h0; Uz +¢ | HUL +Q UL

G (s)
+2u | £0.Uy ~eHUs R

N (s (s) (s) (5)
+2u2 I QQ |2hd;Us+e | HUL +QU,

R
(m s) (m,s) _ (5
L —H I, |Q +Q Uy
(m) (s) () \ (m,s)
+ U6, — (HUL+QUy | I3 R+L3 )
(m) (m)
= u 2h85 U3 +e HU+ +Q U+

(s (s)
2h0, U3+E< Uy

(22)

he i i

N | ms) (s) H((’JS) +Qz(f)
+2u> I Q h&ﬂﬁs%ﬁt
s=0
(5)

(s) S
(s) H U (m,s) (5) (m) /(s)
—-H h@z U3 +€[]—|—+C2+R + I4 U++L4 <U) )

(m) (m) N (s) (s)
hoi = \ (h 9 —2HeQ Us R) +2) {)\ [Q <h8 Ut —eQUs R

s=0
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_ (s) (s) (s) () "\ (mys)
+Q | ho: Ut —eQUsR| —H|h 9 —2HeUsR| I3
(23)

YN+ 2u) I U + Ls (U) :

(m) s

where L; (U) (i =1,--- ,s) are the nonlinear parts of relations (21-23).
Then we have (general case of non-shallow shells)

) (m) (m)  (m)  (m) (m+1)  (m+3)

(
A(a Uy +0:U)+Us, Ul =m+1)( U + U +---),

6

h
() _ 2m 41 / 23 Py Podw
DY) 1 —2Hzy + K2’

—h
h
(”}75) _ 2m+1 / a:%PmPdeg
ST 1—2Haxs + Ka?’
- - (24)
m,s 2m +1
I3 = oh /333Pmpsd$3)
—h
(m,s) 9 1 i
m,s
I = ”;;r /(1 — 2Hzs + Ka2) Py Pdas.
—h

The above integrals can be calculated explicitly and their expressions
with regard to £ have the form, for example

| ~
(m,s) (
T 2m Z - 65 m+2(r+p) {{(H%- /E)R]s—m+2(r+p)

r=0 p=0

~[(H = VE)R— 2|

where
) (<1)7(2m = 20)l(s £ p)(s + 20)!
M, =2 .
ri(m —r)l(m — 2r)Ipl(2s + 2p + 1)!

Now, following Signiorini we assume the validity of the expansions for

approximation of order IV
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Substituting the above expansions into the relations (20-23), then equal-
izing the coefficients of expansion for €™ we obtain the following 2-D infinite

system of equilibrium equations with respect to components of displacement
vector in the isometric coordinates:

(m,n) (mm) 9 (mn)
4. (A—laz Uy ) LoA+ 0§+ Aa Ul
(m—1,n) (m—3,n)
—thJrlu 28;( Us + Us +>
(m—l,n) (m_?’vn) (m7n)
vy Ul )|+ E =0,

(mmn)  (mn) ) 1 (m—=1,n) (m—3,n)
<v2 Us + 6 )— mh+ {)\( 0+ 0 +>
(mflvn) (m737n)

A+2p)| U3 + U +--,

where

(m,n)
+ F3 :07

(m)  (m) (m) (m) (m) (m)
Up=U1+ilUs, § =A1|0,U,.40:U, |,

(m) 9 41 [(m+1)  (m+3) 4 0?
Ul = U, U. e V2 = .

T Th AR 920z
Obviously, in passing from the n-th step of approximations to the n+ 1-

th step only the right-hand sides of equations are changed and the boundary

conditions after the initial step may be considered homogenous
Below it will be omit upper index n

The beharmonic solution of the homogeneous system (25) we can find
the form [1]

(m) (m) — \m
Uy =0z (Vl +1 V2> // 20(8 k1<p0 f)dSs — o€ | do
ol // ¢1(€

+772<P1( )52 )

N\-G

o (26)
d5£+17190 [(2) = 2¢1(2) | 61"

= - // @) ¢ — 2l — (1) + () | o7
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S () + A@) i+ (42 + A1) 7).

0 0 0 o
Vi+Ve=0, Us=1(2)+9i(z), if N=0,

where V; (i = 1.2.3) are unknown metaharmonic functions, ©0, 0, Yo, Y1
are analytic functions of z, §] - Kroneeker delta, dS¢ = A(E, €)dédn, & =
& + in, then

Nbu
A+ 3 N=0 7
=) At . At _
5)\—|—6u 40 At 2 ’
3h+ 2 ! BA+AUL
5(A+2u)’ ’
4 43\ +4p
27330+ 20 7727175)\4-2;1'

7 Approximation of Order N =0,1,2,3,4

For them the general solutions of the homogeneous system (26) can be

represented by formulas:
// 2O = a5 - 5,

Case N =0
(0) -
(C=¢&+1in, dSc = A(¢,()dédn),

where » = &f’i, f(2), v(z), ¥(z) are the holomorphic functions of z =

o+ iz
Note that for approximation of order N = 0, when A(z,z) = 1, the

(0)
expression for U,, coincides with well-known representation of Kolosov-

Muskhelishvili for plane deformation

(0)
Uy = sp(2) — 2¢/(2) — 0(2).
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Case N =1
(19*) + = REAACPPR (2),
T 6(>\ + 1) O // 5 ¢
o/( 2N +2
U+ =i0z:x + — // Q ng + M@’({) — 2h¥/(z2)
¢— 3p
(0)
Us = ¥(2) - = // Y+ @(0) ln |¢ — 2|dS¢,
) Y N S —
Us =w(z2) + 550 [#(2) + )]
where
3 3N+ p « DA+ 6p
2 PR — — 2 B = =
Vox 72X 0, Vw (/\+2u)hw , T
Case N =2
) g — 2 &1
(1) AN+ p—r~ (¢ A
= i0sx+-——P"(z dS —2hV! (2)— ————Bsw,

(2) 2 (. as_g 20—
= — & aZV /" ,
U 3(18w—|—kz:1 o k+3/\+2ug0 (z)>

0= 0(:) + 00 - [ (F0 + 2(0)) n](©) - 2ldsic +

7r 2N+ p)
(1) 2\ , -
Us V1+V2—3)\+2M(%0()+<P(Z)),
@) 2\ ,
9 — — (b/
Us =w = 3505 (¥(2) + 7(3)),
where
12(N\ + p) 1804(\ + )
2 2
— — =0, (k=1,2
VoV = Vi, oy Nt 2 Qg O+ 20)2 , ( ,2)
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V2 = Ww, V2y =3y, Vi = 15w,

Case N =3

(0) /77 / -
U+ = l // Mds§ - ¢(2’) - 2 Z iang,
T $—z 1 Yk
S

At 2p &=

W) S Xsk 61 1 1 [] @'(c) + D)
U+—Z<Z 3 0zx _>\+2/L")/ka2wk>_7r//g_—§ ds’g
S

k=1
423\ 4+ 2u——
_77\1}/
15 A+2u (2),
)

@ 2 3. 2\
—_ “ 19 _ 11
Uy = 3 (z@zw + kg_l + A0V, + T QIucp (z)> ,

(3) 2 . 2Y3—k 4 3N+ 2pu——
U+ = Z (lasz + 3 zwk) 15 + W@ (2),

el Vk
1 _ _
- @O+ T@ ) - 2lds. + v + T,
S
Pa=3 - 2 () + 7))
3—k:1kkz 3)\+2M¢Z Y \z)))
D=3 2 (@) + T2)
=y wy————7—(P(z 2))),
= IO
3
U3:ZVI€7
k=1
where
V2w + 15w =0

VQVk + ap Vi =0,
(k=1,2,3)
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o3 180+ p) 5 120(A+p)(TA + 15p) 2700p (N + 1)
oo+ F (A 4 2u)2 A+2p)2 7
1) 3 60(A + 1)
= 4 et sk AL 72
Ar=3T9, [(M FAmor — =
[ , 1200+ p) 180p(\ + u)} !
X ap — B )
A+2p (A +2p)
2) 10 120\ + p) 180p(A + )]
=— —12(\ 2 _
Ok N2 s T 12O+ )] [ak At2u P T 022 |
v2 _
Wi = VEWEk,
V2Xk = @ Xk
(k=1,2),
A+ (A + 1)
2_ 1202 —
T~ 0053 o T 2z T
a; — 452, + 105 = 0,
(k=1,2).
Case N =4 (for the plate)
1 0) 2 1 3
MA(u)+2(A + )0z 0 + —-0 (&2 + %3)) =0,
(2) @) 10N, 3 Bur, (1) 373 @\
PAU 4 + 2N+ )0z 0 + Taﬂ% T [aEUB + E<U+ + U+)} =0,
4 49X 1 3 32 10 (4
wa o0 o - 2 foon (4 8) + 2+ 108] o
h h h
1n 3,2 @ 31, O X42u 1) @)N]
H[AU3+h(9+9) — = A0+ (us+1us) | =0,
(3) T 7 1 (2 A+ 2u (1) (3)
_M(AU3+E0)—E|:)\(9+9>+ (U3+6U3)] 0,

Uy = Uy +iUs,

(k) (k) (k) (k) (k) (%)

0 =0.Uy +0:Uy4,
81 = az + 827 az = Z(az - 82)7
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4

[ 0  BA+6u ) - 2\ 1+ B
= — — W' (z) — Oz Xk,
Ut 3+ 2 (2) — 2¢/(2) (2) )\+2Mk2:1 ~oh Xk
4
2 . (€1 + c2Bk) vk + 3Bk 4h? A
= 62 V V 2 (92 - " 5
uy =1i0:(Vi + Vo) + kZ:I " Xk + 3 3)\+2M<P (2)
(4)  ih? 15 15
= o (-2 ) v (== 52) v
4
4o Z (di + d2Bk) vk + di + dafB Doxi
Vi
k=14
(1 2X\h , -
u?)—;x;c oo, )
(3) 4
uz = > BrXk,
L k=1
’7]%+a1’7k+a3
B = +—---—
a2Vk + ag
Axk —yaxe =0, A=42- (k=1,2,3,4)
i+ (a1 + b2)73 + (a1by — asby + az + by)7?
+(a1bs — asby + azby — a2bz )y + azbs — asbz = 0,
o 122 4+ 59\ + 1242 e — 3(9A2 + 8 \u + 4u?)
PO mO+2mh2 T T (N p) (A + 2p)h?
3-260(\ + ) 3 [260p(A+p) 1754
W= " ro2h2 MT A 2 ’
(A4 2u)2h h (A +2p) A+ p
7 100\ — (A +2p)?] — 4(\ 2
b= Ler by = A — (A +2p)7] — 4(A + ) by =90
3 A+ 1) (A + 2p0) k2 49
725 [4u(\ + p) 5/
b4: + s
ht | (AN +2u)?2  A+p
o MR 3 5A+2u
1 )\"—M’ 2 — 717 3 — h>\—|—,UJ’
A 3 4 X +p
= 4 = d3 — c3,

1 MCL 2 Cc2 7617 3 h)\+2,u’
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AV =& V7,
A‘/Q :%2‘/27

& t+& 3057

1 2= T 33 5. 5.7
h &2—35736—1—3579:0.
3:5-7-9 h? h*
X1X2 = A
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