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Abstract

In the article is considered stationary flow of viscous incompressible electrically

conducting liquid in infinite length pipe at existence of transversal magnet field. The

motion is originated due applied in the initial moment of time constant longitudinal

drop of pressure. The exact solution of problem in the general form is obtained.
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1 Introduction

Subject of presented work is presented by research of stationary motion of
electrically conducting viscous incompressible liquid in infinite length pipe,
arranged in external uniform magnet field in perpendicular to axis of pipe.
Is accepted that motion is originated by applied in the initial moment
of time constant transverse drop of pressure, although is not difficult to
generalize problem on case of existence of initial distribution of velocity as
well as on the case of moving walls.

2 Basic Part

Hartmann flows currently are rather detailed studied [1-4, 9,12], and possi-
bilities of obtaining new analytical exact solutions appears as quite limited.
Nevertheless, these possibilities at the same time are existing and are pos-
sible to found, as it was expressed below, to found simple new solution that
simultaneously have the rather interesting quality singularities.

It is know [1-8] that if viscous incompressible liquid is moving in the
direction, perpendicular to uniform field (H0), then the equations of mag-
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netohydrodynamics are reduced to the following system

∆h+
∂u

∂ξ
= 0, ∆u+M2∂h

∂ξ
= −Q. (1)

There is introduced the following dimensionless values

u =
v

v0
, h =

H

H0Rm
, Q =

Pa2

v · v0
, ξ =

x

a
, (2)

where v0 is the certain characteristic velocity, a is the characteristic dimen-
sion, Rm is the magnetic Reynolds number, M is the Hartmann number,
v is the coefficient of viscosity, P is the drop of pressure applied in the
direction of motion.

Is assumed that applied magnetic field is directed along the axis Ox,
and velocity and induced magnetic field have the components v = vz(x, y)
and H = Hz(x, y) only along the axis z.

Due the introductions of

F = e
M
2
ξ

(
u+Mh+

Qξ

M

)
, Φ = e−

M
2
ξ

(
u−Mh− Qξ

M

)
(3)

the main system (1) would be reduced to two separate following equations

∆F − µ2F = 0, ∆Φ− µ2Φ = 0, µ =
M

2
. (4)

If the flow is carried out in the given profile pipe (Γ), walls of that
would be assumed as non- conducting, then the boundary condition of
such problem will be as

F |(Γ) =

[
eµξ
(
v̄

v0
+
Qξ

2µ

)]
(Γ)

, Φ|(Γ) =

[
e−µξ

(
v̄

v0
− Qξ

2µ

)]
(Γ)

(5)

(is accepted that walls of pipe are moving with constant velocity v̄).
For the case of rectangular cross-section the exact solution of problem

(at v̄ = 0) is obtained by Shercliff. In the presented paper is considered the
circular cross-section of radius a (such problem is naturally to consider as
generalized of known one-dimensional Hartmann problem).

The solution of equation (4) on axis of pipe is represented by trigono-
metric series

F =
A0

2
I0(µρ) +

∞∑
n=0

AnIn(µρ) cos(nθ),

Φ =
B0

2
I0(µρ) +

∞∑
n=0

BnIn(µρ) cos(nθ),

(6)
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where ρ = r
a ; r, θ are the polar coordinates (ξ = ρ cos θ); In(x) are the

modified cylindrical functions [11].
The boundary conditions

F |ρ=1 =
Q

2µ
eµ cos θ cos θ, Φ|ρ=1 = − Q

2µ
e−µ cos θ cos θ (7)

gives the possibility to found the coefficients An and Bn:

An = (−1)nBn =
Q

πµIn(µ)

π∫
0

eµ cos θ cosnθ cos θdθ =
Q

2πµ
(Cn+1 + Cn−1),

where

Cm =

π∫
0

eµ cos θ cosmθdθ = πIm(µ).

The final solution of this problem is given by following formulae

µ

Q
u = ch(µρ cos θ)

[
I ′0(µ)

2I0(µ)
I0(µρ) +

∞∑
k=0

I ′2k(µ)

I2k(µ)
I2k cos 2kθ

]

−sh(µρ cos θ)
∞∑
k=0

I ′2k+1(µ)

I2k+1(µ)
I2k+1 cos(2k + 1)θ,

(8)

2µ2

Q
h = −ρ

2
cos θ + ch(µρ cos θ)

∞∑
k=0

I ′2k+1(µ)

I2k+1(µ)
I2k+1 cos(2k + 1)θ

−sh(µρ cos θ)

[
I ′0(µ)

2I0(µ)
I0(µρ) +

∞∑
k=0

I ′2k(µ)

I2k(µ)
I2k cos 2kθ

]
.

(9)

Similarly would be stated the exact solution of according problem for
circular cross-section pipe for case of external flow past of cylinder and so
on.

Lets state, in particular, formula for distribution of velocities in the
flow, surrounding non- conducting cylinder, moving with constant velocity
v0.

u = ch(µρ cos θ)

[
K0(µρ)

2K0(µ)
I0(µ) + 2

∞∑
k=0

K2k(µρ)

K2k(µ)
K2k cos 2kθ

]

−2sh(µρ cos θ)

∞∑
k=0

K2k+1(µρ)

K2k+1(µ)
I2k+1 cos(2k + 1)θ,

(10)

where Kn(x) is the function of MacDonalds.
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3 Conclusion

Thus, the obtained solution (8, 9, 10) in contrary of results in the works
[1-3, 9, 11, 12], is convenience for calculations at large values of parameter

µ =
M

2
. It should be noticed that in routine hydrodynamics such problem

has only trivial solution v ≡ v0, while in the magnetic hydrodynamics the
velocity vanish at r →∞.
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