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Abstract

The paper deals with boundary contact problems of the linear theory of mixture statics

of two isotropic elastic materials. Research is carried out by the method of potential and

singular integral equations.
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The paper deals with boundary contact problems of the linear theory of
mixture statics of two isotropic elastic materials. Research is carried out by
the method of potential and singular integral equations.[1], [2] Boundary value
problems of statics and dynamics for a mixture are investigated with the sim-
ilar method in [3].

Let R3 be a three-dimensional Euclidean space and let the inhomogeneous
medium area a mixture of two isotropic elastic material occupies all of the
space. Imagine that R3 consist of two homogenous parts of D1 - final domain
and D2 = R3\D1 and D1 and D2 both are separated by the surface S, on
which specific conditions are given.

Consider the so called main contact problem: Find in the areas D1 and

D2 regular vectors
(1)

U and
(2)

U satisfying the equations

(l)

A(Dx)
(l)

U (x) = 0, x ∈ Dl, l = 1, 2. (1)

and the contact conditions


[
(1)

U (z)]+ − [
(2)

U (z)]− = f(z),

z ∈ S

[
(1)

P (Dz, n)
(1)

U (z)]+ − [
(2)

P (Dz, n)
(2)

U (z)]− = F (z),

(2)



where

(l)

U = (
(l)

u′,
(l)

u′′), l = 1, 2,

(2)

U j(x) = O(|x|−1),
∂
(2)

U j(x)

∂xi
= o(|x|−1),

(3)

f and F vectors set on S,

A(Dx) =

∥∥∥∥∥∥∥
A(1)(Dx) A(2)(Dx)

A(3)(Dx) A(4)(Dx)

∥∥∥∥∥∥∥
6×6

, A(i)(Dx) =
∥∥∥A(i)

kp(Dx)
∥∥∥
3×3

,

A
(1)
kp (ξ) = a1|ξ|2δkp + b1ξkξp, A

(2)
kp (ξ) = A

(3)
kp (ξ) = c|ξ|2δkp + dξkξp,

A
(4)
kp (ξ) = a2|ξ|2δkp + b2ξkξp, ξ = (ξ1, ξ2, ξ3), i = 1, 2, 3.

(4)

The operator P is called a generalized operator of stress and has the form
[3]

P =

∥∥∥∥∥∥
(1)

P
(2)

P
(3)

P
(4)

P

∥∥∥∥∥∥
6×6

,
(k)

P =
∥∥∥(k)P ij

∥∥∥ , k = 1, 4,

(1)

P ij(D,n) = (µ1 − λ5)δij
∂

∂n
+ (µ1 + λ5)njDi +

(
λ1 −

α2ρ2
ρ

)
niDj ,

(2)

P ij(D,n) = (µ3 + λ5)δij
∂

∂n
+ (µ3 − λ5)njDi +

(
λ3 −

α2ρ1
ρ1

)
niDj ,

(3)

P ij(D,n) = (µ3 + λ5)δij
∂

∂n
+ (µ3 − λ5)njDi +

(
λ4 +

α2ρ2
ρ

)
niDj ,

(4)

P ij(D,n) = (µ2 − λ5)δij
∂

∂n
+ (µ2 + λ5)njDi +

(
λ2 +

α2ρ1
ρ

)
niDj ,

(5)

Note that a
(2)

P ij =
(3)

P ij , P ̸= P ′, P(ξ, ξ) = A(ξ).
Theorem 1. The homogeneous problem corresponding to Problem (1), (2)

has only the trivial solution.
Green formulas for D1 and D2 have the form

∫
D1

(1)

W (
(1)

U ,
(1)

U )dx =

∫
S

[
(1)

U ]+[
(1)

P
(1)

U ]+ ds, (6)

37



∫
D2

(2)

W (
(2)

U ,
(2)

U )dx = −
∫
S

[
(2)

U ]−[
(2)

P
(2)

U ]− ds, (7)

where [3]

W (U,U) = ε′rrε
′
ii

(
λ1 −

α2ρ2
ρ

)
+ ε′′rrε

′′
ii

(
λ2 +

α2ρ1
ρ

)
+ 2µ1ε

′
ijε

′
ij + 2µ2ε

′′
ijε

′′
ij + 4µ3ε

′
ijε

′′
ij + 2

(
λ3 −

ρ1α2

ρ

)
ε′iiε

′′
rr

− 2λ5hijhij .

(8)

Here ε′ij and ε
′′
ij are two strain tensors, hij are rotating components. From (6)

and(7) we have

∫
D1

(1)

W (
(1)

U ,
(1)

U )dx+

∫
D2

(2)

W (
(2)

U ,
(2)

U )dx

=

∫
D

{
[
(1)

U ]+[
(1)

P
(1)

U ]+ − [
(2)

U ]−[
(2)

P
(2)

U ]−

}
ds

=

∫
S

{[
[
(1)

U ]+ − [
(2)

U ]−

]
[
(1)

P
(1)

U ]+ +

[
[
(1)

P ][
(1)

U ]+ − [
(2)

P
(2)

U ]−

]
[
(2)

U ]−

}
ds.

By virtue of the homogeneity of the contact conditions of the last equation we
get

(1)

W (
(1)

U ,
(1)

U ) = 0, x ∈ D1,
(2)

W (
(2)

U ,
(2)

U ) = 0, x ∈ D2.

The general solution of these equations has the form

(1)

U = (
(l)

u′,
(l)

u′′),
(l)

u′ = [a′l · x] + b′l,
(l)

u′′ = [a′l · x] + b′′l ,

where a′1, a
′
2, b

′
l, b

′′
l are arbitrary three component vectors ( arbitrary unre-

stricted). Considering the conditions (3) we obtain

(1)

U = 0, x ∈ Dl (l = 1, 2),

what was required to prove.
The solution to the problem (1), (2) will be sought in the form of a simple

layer potential:
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(1)

U (x) =

∫
S

(1)

Ψ(x− y)
(1)
g (y)dyS, x ∈ D1, (9)

(2)

U (x) =

∫
S

(2)

Ψ(x− y)
(2)
g (y)dyS, x ∈ D2, (10)

where
(1)
g ,

(2)
g - are the unknowns of six-component vectors class Co,γ′

(S), γ′ >
0.

From the condition (2) we obtain

∫
S

(1)

Ψ(z − y)
(1)
g (y)dyS −

∫
S

(2)

Ψ(z − y)
(2)
g (y)dyS = f(z), (11)

(1)
g (z) +

∫
S

[
(1)

P (Dz, n)
(1)

Ψ(z − y)

]
(1)
g (y)dyS +

(2)
g (z)

−
∫
S

[
(2)

P (Dz, n)
(2)

Ψ(z − y)

]
(2)
g (y)dyS = F (z), (12)

Let’s rewrite (11), (12) in the form

(1)

H
(1)
g −

(2)

H
(2)
g = f, (13)

(J +
(1)

K )
(1)
g − (−J +

(2)

K )
(2)
g = F, (14)

where

Hg(z) =

∫
S

Ψ(z − y)g(y)dyS, z ∈ S, (15)

Kg(z) =

∫
S

[P(Dz, n)Ψ(z − y)] g(y)dyS, z ∈ S, (16)
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Let’s set notation [3]

K∗g(z) =

∫
S

[P(Dz, n)Ψ(y − z)]∗ g(y)dyS, z ∈ S, (17)

L±g(z) = lim
D±∋x→z∈S

[P(Dx, n)W (x; g)] = [P(Dz, n)W (z; g)]± , (18)

where H is the self-conjugate completely continuous operator, and K and K∗

are mutually conjugate singular integral operators, a J ± K and J ± K∗ are
normal type operators with an index of zero.

The equations (−J + K)φ = 0 and (−J + K∗)Ψ = 0 have only trivial
solutions, the equation (J + K)φ = 0 and (J + K∗)Ψ = 0 have six linearly
independent solutions each. The complete system solution of equation (J +
K∗)Ψ = 0 is written clearly

(1)

Ψ(z) = (1, 0, 0, 0, 0, 0),
(4)

Ψ(z) = (0,−z1, z2, 1, 0, 0),
(2)

Ψ(z) = (0, 1, 0, 0, 0, 0),
(5)

Ψ(z) = (z3, 0,−z1, 0, 1, 0),
(3)

Ψ(z) = (0, 0, 1, 0, 0, 0),
(6)

Ψ(z) = (−z2, z1, 0, 0, 0, 1).

(19)

Let us apply the operator
(1)

L to equation (13), then the system (13), (14) can
be rewritten as

(1)

L
(1)

H
(1)
g −

(1)

L
(2)

H
(2)
g =

(1)

L f (20)

(J +
(1)

K )
(1)
g − (−J +

(2)

K )
(2)
g = F, (21)

If we consider that [3] LHφ = −φ+K2φ, we will get:

(−J +
(1)

K2)
(1)
g −

(1)

L
(2)

H
(2)
g =

(1)

L f, (22)

(J +
(1)

K )
(1)
g − (−J +

(2)

K )
(2)
g = F, (23)

System (22), (23) is a system of singular integral equations and it is obvious
that if the system (13), (14) is solvable in the class of C0,γ′

(S) then in the same
class is solvable system (22), (23).
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Lemma 1. If system( 13),(14) is solvable in the class C0,γ′
(S) then it is

uniquely solvable.
Indeed, suppose that the homogeneous system corresponding to the system

(13), (14) has a nontrivial solution g0 = (
(1)
g 0,

(2)
g 0), then by the uniqueness of

the solution of the problem, we find that
(1)

U 0(x) and
(2)

U 0(x) certain to (9)

and (10) and are identically equal to zero in D1 and D2, but then
(1)

U 0(x) and
(2)

U 0(x) will be equal identically in R3, which implies that
(1)
g 0 =

(2)
g 0 = 0, which

proves the Lemma.

Theorem 2. If system (20), (21) is solvable, then
(2)
g is uniquely deter-

mined, and
(1)
g - with precisely composed form

6∑
l=1

al
(l)
φ , {

(l)
φ}6l=1 is a complete

system of linearly independent solutions of (J +
(1)

K )φ = 0.
Let’s show that the general solution of the homogeneous system corre-

sponding to system (20),( 21), takes the form

(1)
g =

6∑
l=1

al
(l)
φ,

(2)
g = 0.

Indeed from relations

(1)

L [
(1)

H
(1)
g −

(2)

H
(2)
g ] = 0, (J +

(1)

K )
(1)
g − (−J +

(2)

K )
(2)
g = 0, (24)

By Lemma 1, we should get
(1)

H
(1)
g −

(2)

H
(2)
g =

6∑
j=1

bl
(j)
φ ,

(J +
(1)

K )
(1)
g −

(
−J +

(2)

K

)
(2)
g = 0,

(25)

Here bj are arbitrary constants,
(j)

Ψ (j = 1, 6) are vectors a determined by
formulas (19), they constitute a complete system of linearly independent so-

lutions of (J +
(1)

K∗)Ψ = 0.

We have (J +
(1)

K∗)
(1)

H
(j)
φ 1 = 0, j = 1, 6, {

(j)
φ }6j=1 a complete system of

linearly independent solutions of the equation (J +
(1)

K )φ = 0, And system

{
(j)

ψ }6j=1, and system {
(1)

H
(j)
φ }6j=1 - are linearly independent, so each of these
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vector from this systems is expressed by a linear combination of the vectors
of the second system, i.e.

(j)

ψ (z) =
6∑

j=1

cjl
(1)

H
(l)
φ1(z).

Then from (25) we have


(1)

H

[
(1)
g −

6∑
j,l=1

cjlbj
(l)
φ1

]
−

(2)

H
(2)
g = 0,

(J +
(1)

K )

[
(1)
g −

6∑
j,l=1

cjlbj
(l)
φ1

]
− (−J +

(2)

K )
(2)
g = 0.

(26)

Lemma 1 implies that (26) has only the trivial solution, i.e.
(1)
g =

6∑
l=1

al
(l)
φ1,

(2)
g = 0, where al =

6∑
l=1

cjlbj are arbitrary constants, i.e. we have found that if

g0 = (
(1)
g 0,

(2)
g 0) is a solution of system (25), then for arbitrary a1 the solution

will be a vector

g =

(1)
g 0 +

6∑
j=1

al
(1)
φ 1,

(2)
g 0

 . (27)

Q.E.D.
Theorem 3. If (20), (21) be solvable, then its solution when choosing a1

will satisfy the system (13), (14).

Indeed, let (20), (21) is solvable and its solution is g0 = (
(1)
g 0,

(2)
g 0), then

(
−J +

(1)

K2

)
(1)
g 0 −

(1)

L
(2)

H
(2)
g 0 ≡

(1)

L
(1)

H
(1)
g 0 −

(1)

L
(2)

H
(2)
g 0 =

(1)

L f, (28)

from

(1)

L

[
(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f

]
= 0. (29)

From here, considering that [3]−ψ(z) + (K∗)2ψ(z) = HLψ(z), from (29)
we obtain
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(1)

H
(1)

L

[
(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f

]

= −

(
(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f

)
+ (K∗)2

(
(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f

)
= 0.

by the virtue of the operators H and L± , is equivalent to equation (29), which

means that
(1)

H
(1)
g 0−

(2)

H
(2)
g 0−f is a solution of equation (−J +(K∗)2)h = 0 and

therefore it is expressed by a linear combination of vectors

(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f =

6∑
j=1

bj
(j)

ψ , (30)

where bj are permanents, uniquely determined by g0 = (
(1)
g 0,

(2)
g 0).

As (J +
(1)

K )
(l)
φ1 = 0, l = 1, 6,

(1)

H
(l)
φ1 +

(l)

H
(1)

K
(l)
φ1 = 0, where considering

that HKφ(z) = K∗Hφ(z), we obtain
(1)

H
(l)
φ1 +

(1)

K∗
(1)

H
(l)
φ1 = 0; Therefore, (J +

(1)

K∗)
(1)

H
(l)
φ1 = 0 and

(1)

H
(l)
φ1 (l = 1, 6), is a solution of equation (J +

(1)

K∗)h = 0,

however
(1)

H
(l)
φ1 can be expressed as follows

(1)

H
(l)
φ1 =

6∑
j=1

ajl
(l)

ψ, l = 1, 6, ajl = const (31)

where det ∥ alj ∦= 0.

Let us assume that g = (
(1)
g ,

(2)
g ) is the solution of system (22), (23), defined

by the formula (27), where a1 are arbitrary constants. Taking into account
(30), (31), let’s consider the expression

(1)

H
(1)
g −

(2)

H
(2)
g − f =

(1)

H
(1)
g 0 +

6∑
l=1

al
(1)

H
(1)
φ 1 −

(2)

H
(2)
g 0 − f

=
(1)

H
(1)
g 0 −

(2)

H
(2)
g 0 − f +

6∑
l=1

6∑
j=1

ajlalψ
(j)

=
6∑

l=1

bj
(j)

ψ +
6∑

j=1

(
6∑

l=1

ajlal

)
(j)

ψ =
6∑

j=1

(
6∑

l=1

ajlal + bj

)
(j)

ψ ,
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Since det ∥ ajl ∥≠ 0.
then al can be chosen so, that

6∑
l=1

ajlal + bj = 0, j = 1, 6. (32)

The solution of this system is denoted by
(0)
a l, then

(l)
g (z) =

(l)
g 0(z) +

6∑
l=1

(0)
a l

(l)
φ1(z),

(2)
g (z) =

(2)
g 0(z) (33)

will be a solution of system (13), (14). Theorem 3 is proved.
We prove that the determinant of the symbolic matrix of the system (20)

(21) ((22) (23)) is different from zero, and the system is normally a solvable
system of singular integral equations and for it Noether’s theorem is valid.

Finally, we have the following. If s ∈ L2(γ), f ∈ C1,γ′
(s), F ∈ C0,γ′

(s),
0 < γ′ < γ < 1, problem (1), (2) is uniquely solvable in the class of regular
vectors and the solution is represented in the form of (9), (10), where the

vector g = (
(1)
g ,

(2)
g ) ∈ C0,γ′

(s) is the solution of uniquely solvable system (11),
(12).
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