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Abstract

The purpose of this paper is to consider the two-dimensional version of the linear

theory of elasticity for solids with triple-porosity in the case of an elastic Cosserat

medium. Using the analytic functions of a complex variable and solutions of the

Helmholtz equation the second fundamental problem for the infinite plane with a

circular hole are solved explicitly.
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1 Introduction

In the past half century, the mathematical models of multi-porosity media,
as originally developed for the mechanics of naturally fractured reservoirs,
have found applications in many branches of civil engineering, geotechnical
engineering, technology and, in recent years, biomechanics [1-5]. Significant
progress has been made towards understanding and modeling of flow pro-
cesses in fractured rock. However, fractured rock may be considered as a
multiporous medium but the most studies have focused naturally fractured
reservoirs with double and triple porosities [6-11].

The triple porosity model represents a new possibility for the study of
important problems of engineering and mechanics. The intended applica-
tions of the theories of elasticity and thermoelasticity for materials with
a triple porosity structure are to geological materials such as oil and gas
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reservoirs, rocks and soils, manufactured porous materials such as ceramics
and pressed powders, and biomaterials such as bone [12, 4].

It should be noted that all the papers mentioned above dealt with a
classical (symmetric) medium. We consider the problem of elasticity for
solids with triple-porosity in the case of an elastic Cosserat medium [13].

2 Basic three-dimensional relations

Let an elastic body with triple-porosity occupy the domain Ω ⊂ R3. De-
note by (x1, x2, x3) a point of the domain Ω in the Cartesian coordinate
system. Let the domain Ω be filled with an elastic Cosserat medium having
triple-porosity. The considered solid body is characterized by the displace-
ment vector u = (u1, u2, u3), rotation vector ω(ω1, ω2, ω3) and also by the
fluid pressures p1(x1, x2, x3), p2(x1, x2, x3) and p3(x1, x2, x3) occurring re-
spectively in the pores and fissures of the porous medium.

Then a homogeneous system of static equilibrium equations is written
in the form [14, 16]{

∂iσij = 0,
∂iµij+ ∈jik σik = 0, j = 1, 2, 3

in Ω, (1)

where σij are stress tensor components, µij are moment stress tensor com-
ponents, ∈jik is the Levi-Civita symbol, ∂i ≡ ∂

∂xi
, the summation over the

recurring index i is assumed to be done from 1 to 3.
Formulas that interrelate the stress and moment stress components, the

displacement and rotation vector components and the pressures p1,p2, p3
have the form

σij = (λdivu− β1p1 − β2p2 − β3p3)δij + (µ+ α)∂iuj
+(µ− α)∂jui − 2α ∈ijk ωk,

µij = σdivωδij + (ν + β)∂iωj + (ν − β)∂jωi, j = 1, 2, 3,
(2)

where λ and µ are the Lam parameters, α, β, ν, σ are the constants char-
acterizing the microstructure of the considered elastic medium, β1, β2 and
β3 are the effective stress parameters, δij is the Kronecker delta.

In the stationary case, the values p1, p2 and p3 satisfy the following
system of equations

a1∆p1 + a12(p2 − p1) + a13(p3 − p1) = 0,
a2∆p2 + a21(p1 − p2) + a23(p3 − p2) = 0,
a3∆p3 + a31(p1 − p3) + a32(p2 − p3) = 0,

(3)

where aij is the fluid transfer rate between phase i and phase j, a1 =
κ1
µ′ , j,

a2 =
κ2
µ′ , j, a3 =

κ3
µ′ , (for the fluid phase, each phase i carries its respectively
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permeability κi), µ
′ is fluid viscosity, ∆ ≡ ∂11 + ∂22 + ∂33 is the three-

dimensional Laplace operator.
The three-dimensional system of equations (1), (2) and (3) describes the

static equilibrium of a porous elastic Cosserat medium with triple-porosity.
Substituting relations (2) into (1), we obtain equilibrium equations with
respect to the components of the displacement and rotation vectors

(µ+ α)∆uj + (λ+ µ− α)∂j(∂kuk)− 2α ∈ijk ∂iωk

−∂j(β1p1 + β2p2 + β3p3) = 0,
(ν + β)∆ωj + (σ + ν − β)∂j(∂kωk) + 2α ∈jik ∂iuk
−4αωj = 0, j = 1, 2, 3

in Ω,

If to the system of equilibrium equations we add boundary conditions
on the boundary ∂Ω of the domain Ω, then we can consider various classical
boundary value problems.

3 The plane deformation case

From the basic three-dimensional equations we obtain the basic equations
for the case of plane deformation. Let Ω be a sufficiently long cylindrical
body with generatrix parallel to the Ox3-axis. Denote by V the crosssection
of this cylindrical body, thus V ⊂ R2. In the case of plane deformation
u3 = 0, ω1 = 0, ω2 = 0, while the functions u1, u2, ω3, p1, p2 and p3 do not
depend on the coordinate x3 [17].

As follows from formulas (2), in the case of plane deformation

σα3 = 0, σ3α = 0, µαβ = 0, µ33 = 0, α, β = 1, 2.

Therefore the system of equilibrium equations (1) takes the form
∂1σ11 + ∂2σ21 = 0,
∂1σ12 + ∂2σ22 = 0,
∂1µ13 + ∂2µ23 + (σ12 − σ21) = 0,

in V, (4)

Relations (2) are rewritten as

σ11 = λθ + 2µ∂1u1 − β1p1 − β2p2 − β3p3,
σ22 = λθ + 2µ∂2u2 − β1p1 − β2p2 − β3p3,
σ12 = (µ+ α)∂1u2 + (µ− α)∂2u1 − 2αω3,
σ21 = (µ+ α)∂2u1 + (µ− α)∂1u2 + 2αω3,
σ33 = λθ − β1p1 − β2p2 − β3p3,
µ13 = (ν + β)∂1ω3, µ23 = (ν + β)∂2ω3,
µ31 = (ν − β)∂1ω3, µ32 = (ν − β)∂2ω3,

(5)

5



AMIM Vol.22 No.2, 2017 B. Gulua, R. Janjgava, T. Kasrashvili +

where θ = ∂1u1 + ∂2u2.
Equations (3) take the form

a1∆2p1 + a12(p2 − p1) + a13(p3 − p1) = 0,
a2∆2p2 + a21(p1 − p2) + a23(p3 − p2) = 0,
a3∆2p3 + a31(p1 − p3) + a32(p2 − p3) = 0,

(6)

where ∆2 = ∂11 + ∂22 is the Laplace operator in two dimensions.
If relations (5) are substituted into system (4), then we obtain the

following system of equilibrium equations with respect to the functions u1,
u2 and ω3

(µ+ α)∆2u1 + (λ+ µ− α)∂1θ + 2α∂2ω3

−∂1(β1p1 + β1p3 + β1p3) = 0,
(µ+ α)∆2u2 + (λ+ µ− α)∂2θ + 2α∂1ω3

−∂2(β1p1 + β1p3 + β1p3) = 0,
(ν + β)∆2ω + 2α(∂1u2 − ∂2u1)− 4αω3 = 0,

in V, (7)

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =
reiϑ, (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and ∆2 = 4∂z∂z̄.

To write system (4) in the complex form, the second equation of this
system is multiplied by i and summed up with the first equation{

∂z(σ11 − σ22 + i(σ12 + σ21)) + ∂z̄(σ11 + σ22 + i(σ12 − σ21)) = 0,
∂z(µ13 + iµ23) + ∂z̄(µ13 − iµ23) + σ12 − σ21 = 0,

(8)

where by formulas (5)

σ11 − σ22 + i(σ12 + σ21) = 4µ∂z̄u+,
σ11 + σ22 + i(σ12 − σ21) = 2(λ+ µ− α)θ + 4α∂zu+ − 4αiω3

−2(β1p1 + β2p2 + β3p3),
µ13 + iµ23 = 2(ν + β)∂z̄ω3, µ31 + iµ32 = 2(ν − β)∂z̄ω3,

(9)

u+ = u1 + iu2, θ = ∂zu+ + ∂z̄ū+.

We write equations (6)

∆2p−Ap = 0, A =

 b1/a1 −a12/a1 −a13/a1
−a21/a2 b2/a2 −a23/a2
−a31/a3 −a32/a3 b3/a3

 (10)

p = (p1, p2, p3)
T ,

b1 = a12 + a13, b2 = a21 + a23, b3 = a31 + a32.

6
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If relations (9) are substituted into system (8), then system (7) is written
in the complex form

2(µ+ α)∂z̄∂zu+ + (λ+ µ− α)∂z̄θ − 2αi∂z̄ω3

−∂z̄(β1p1 + β2p2 + β3p3) = 0,
2(ν + β)∂z̄∂zω3 + αi(θ − 2∂zu+)− 2αω3 = 0,

in V. (11)

4 The general solution of system (10-11)

In this section, we construct the analogues of the Kolosov-Muskhelishvili
formulas [17] for system (10-11).

Equations (10) imply that

p1 = f ′(z) + f ′(z) + l11χ1(z, z̄) + l12χ2(z, z̄),

p2 = f ′(z) + f ′(z) + l21χ1(z, z̄) + l22χ2(z, z̄),

p3 = f ′(z) + f ′(z) + l31χ1(z, z̄) + l32χ2(z, z̄),

(12)

where f(z) is an arbitrary analytic functions of a complex variable z in the
domain V and χα(z, z̄) is an arbitrary solution of the Helmholtz equation

∆2χα(z, z̄)− καχα(z, z̄) = 0,

κα are eigenvalues and (l11, l21, l31), (l12, l22, l32) are eigenvectors of the
matrix A.

Theorem. The general solution of the system of equations (12) is
represented as follows:

2µu+ = κφ(z)− zφ′(z)− ψ(z) +
µ(β1 + β2 + β3)

λ+ 2µ
(f(z) + zf ′(z))

+2i∂z̄τ(z, z̄) +
4µ

λ+ 2µ
∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

2µω3 =
2µ

ν + β
τ(z, z̄)− κ + 1

2
i(φ′(z)− φ′(z)),

(13)

where κ =
λ+ 3µ

λ+ µ
, δα :=

l1α
κα
β1+

l2α
κα
β2+

l3α
κα
β3, φ(z) and ψ(z) are arbitrary

analytic functions of a complex variable z in the domain V , χ(z, z̄) is an
arbitrary solution of the Helmholtz equation

∆2τ(z, z̄)− ξ2τ(z, z̄) = 0,

where

ξ2 :=
4µα

(ν + β)(µ+ α)
> 0.

7
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Proof. We take the operator ∂z̄ out of the brackets in the left-hand
part of the first equation of system (11)

∂z̄(2(µ+ α)∂zu+ + (λ+ µ− α)θ − 2αiω3

−(β1p1 + β2p2 + β3p3)) = 0.
(14)

Since (14) is a system of Cauchy-Riemann equations, we have

2(µ+ α)∂zu+ + (λ+ µ− α)θ − 2αiω3

= (κ + 1)φ′(z) + β1p1 + β2p2 + β3p3,
(15)

where φ(z) is an arbitrary analytic function of z.
A conjugate equation to (15) has the form

2(µ+ α)∂z̄ū+ + (λ+ µ− α)θ + 2αiω3

= (κ + 1)φ′(z) + β1p1 + β2p2 + β3p3,
(16)

Summing up equations (15) and (16) and taking into account that

θ = ∂zu+ + ∂z̄ū+,

we obtain

θ =
1

λ+ µ
(φ′(z) + φ′(z)) +

1

λ+ 2µ
(β1p1 + β2p2 + β3p3). (17)

If from equation (15) we subtract equation (16) and write the expression
i(∂zu+ − ∂z̄ū+), then we have

i(∂zu+ − ∂z̄ū+) =
κ + 1

2(µ+ α)
i(φ′(z)− φ′(z))− 2α

µ+ α
ω3. (18)

The second equation of system (11) is written as

4∂z∂z̄ω3 −
2α

ν + β
i(∂zu+ − ∂z̄ū+)ω3 −

4α

ν + β
ω3 = 0. (19)

Substituting formula (18) into formula (19) we obtain the equation

∆2ω3 − ξ2ω3 =
α(κ + 1)

(ν + β)(µ+ α)
i(φ′(z)− φ′(z)). (20)

The general solution of equation (20) is written in the form

2µω3 =
2µ

ν + β
τ(z, z̄)− κ + 1

2
i(φ′(z)− φ′(z)), (21)

8
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where τ(z, z̄) is a general solution of the Helmholtz equation

∆τ − ξ2τ = 0. (22)

The multiplier
2µ

ν + β
has been introduced for convenience in writing our

subsequent formulas.
Substituting formulas (17) and (21) into equation (16) and taking into

account that τ(z, z̄) is a solution of equation (22), we obtain

2µ∂zu+ = κφ′(z)− φ′(z) + 2i∂z∂z̄τ(z, z̄)

+
µ

λ+ 2µ
(β1p1 + β2p2 + β3p3).

(23)

From formulas (12) we find the following expression for the combination
β1p1 + β2p2 + β3p3

β1p1+β2p2+β3p3 = (β1+β2+β3)(f
′(z)+f ′(z))+4∂z∂z̄[δ1χ1(z, z̄)+δ2χ2(z, z̄)].

Substituting the latter formula into (23), integrating over z we obtain
formula (13) which we are proving.

Substituting expressions (13) and (14) into formulas (9), for combina-
tions of stress tensor components we obtain the following formulas

σ11 + σ22 + i(σ12 − σ21)

= 2

[
φ′(z) + φ′(z)− 2i∂z∂z̄τ −

µ(β1 + β2 + β3)

λ+ 2µ
(f ′(z) + f ′(z))

]
− 8µ

λ+ 2µ
∂z∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

σ11 − σ22 + i(σ12 + σ21) = 2
[
−zφ′′(z)− ψ′(z) + 2i∂z̄∂z̄τ

]
+
2µ(β1 + β2 + β3)

λ+ 2µ
zf ′′(z) +

8µ

λ+ 2µ
∂z̄∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)],

σ33 =
λ

λ+ µ

[
φ′(z) + φ′(z)

]
− 8µ

λ+ 2µ
∂z∂z̄[δ1χ1(z, z̄) + δ2χ2(z, z̄)]

− 2µ

λ+ 2µ
(β1 + β2 + β3)(f

′(z) + f ′(z)),

µ13 + iµ23 = 2∂z̄τ +
(κ + 1)(ν + β)

2µ
iφ′′(z),

µ31 + iµ32 =
2(ν − β)

ν + β
∂z̄τ +

(κ + 1)(ν − β)

2µ
iφ′′(z).

Thus, the general solution of a two-dimensional system of differential
equations that describes the static equilibrium of a porous elastic medium

9
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with triple-porosity is represented by means of three analytic functions
of a complex variable and three solutions of the Helmholtz equation. By
an appropriate choice of these functions we can satisfy five independent
classical boundary conditions.

Let mutually perpendicular unit vectors l and s be such that

l× s = e3,

where e3 is the unit vector directed along the x3-axis. The vector l forms the
angle ϑ with the positive direction of the x1-axis. Then the displacement
components ul = u · l, us = u · s as well as the stress and moment stress
components acting on an area of arbitrary orientation are expressed by the
formulas

ul + ius = e−iϑu+,

σll + iσls =
1

2

[
σ11 + σ22 + i(σ12 − σ21)

+(σ11 − σ22 + i(σ12 + σ21))e
−2iϑ

]
,

µl3 =
1

2

[
(µ13 + iµ23)e

−iϑ + (µ13 − iµ23)e
iϑ
]
.

5 Solution of the second fundamental problem for
the infinite plane with a circular hole

Let the origin of coordinates be at the centre of the hole of radius R.
On the boundary of the considered domain the values of pressures

p1, p2, p3, the displacement and rotation vectors are given.
We consider the following problem

pj |r=R = Pj =
+∞∑
−∞

Anje
inϑ, Anj = A−nj , j = 1, 3, (24)

2µu+|r=R = 2µ(G1 + iG2) =
+∞∑
−∞

Bne
inϑ,

2µω3|r=R = 2µG3 =
+∞∑
−∞

Cne
inϑ, Cn = C−n.

(25)

The analytic function f ′(z) and the metaharmonic functions χα(z, z̄) is
represented as a series

f ′(z) =

∞∑
n=0

anz
−n, χα(z, z̄) =

+∞∑
−∞

αnαKn(καr)e
inϑ,

10
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where Kn(·) is modified Bessel function of n-th order, and are substituted
in the boundary conditions (24) we have

∞∑
n=0

( an
Rn

e−inϑ +
ān
Rn

einϑ
)

+
+∞∑
−∞

[lj1αn1Kn(κ1R) + lj2αn2Kn(κ2R)]e
inϑ =

+∞∑
−∞

Anje
inϑ,

Compare the coefficients at identical degrees. We obtain the following
systems of equations

a0 + ā0 + lj1K0(κ1R)α01 + lj2K0(κ2R)α02 = A0j , j = 1, 2, 3,
1

Rn
ān + lj1Kn(κ1R)αn 1 + lj2Kn(κ2R)αn 2 = Anj , j = 1, 2, 3.

(26)

It is also assumed that a0 is a real value; that is, a0 = ā0. The coefficients
an αn1, αn2, are found by solving (26).

The analytic functions φ(z), ψ(z) and the metaharmonic functions
τ(z, z̄) are represented as series

φ′(z) =
∞∑
n=0

bnz
−n, ψ′(z) =

∞∑
n=0

cnz
−n, τ(z, z̄) =

+∞∑
−∞

αnKn(ξr)e
inϑ

and are substituted in the boundary conditions (25) we have

κ

(
R b0e

iϑ + lnR b1 + b1iϑ−
∞∑
n=2

bne
i(1−n)ϑ

(n− 1)Rn−1

)
−

∞∑
n=0

b̄n
Rn−1

ei(n+1)ϑ −R c̄0e
−iϑ − lnR c̄1 + c̄1iϑ

+
∞∑
n=2

c̄ne
i(n−1)ϑ

(n− 1)Rn−1
− iξ

∞∑
−∞

αnKn+1(ξR)e
i(n+1)ϑ

+
µ(β1 + β2 + β3)

λ+ 2µ

[
lnR a1 + iϑa1 −

∞∑
n=2

an
(n− 1)Rn−1

ei(1−n)ϑ

+(a0 + ā0)Re
iϑ +

∞∑
n=1

ān
Rn−1

ei(n+1)ϑ

]
− 4µ

λ+ 2µ

×
+∞∑
−∞

(
δ1κ1
2

Kn+1(κ1R)αn1 +
δ2κ2
2

Kn+1(κ2R)αn2

)
ei(n+1)ϑ

=
+∞∑
−∞

Bne
inϑ,

(27)

11
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2µ

ν + β

+∞∑
−∞

αnKn(ξR)e
inϑ +

κ + 1

2
i

∞∑
n=0

( an
Rn

e−inϑ − ān
Rn

einϑ
)

=
+∞∑
−∞

Cne
inϑ.

(28)

Compare the coefficients at identical degrees. Then one obtains from
the constant term and from those involving eiϑ, e−iϑ and e2iϑ respectively κ lnR b̄1 − lnR c1 + iξK0(ξR)α1 = B̄′

0,
(κ + 1)i

2R
b̄1 +

2µ

ν + β
K1(ξR)α1 = C1,

(29)


κR b0 −R b̄0 +

1

R
c̄2 − iξK1(ξR)α0 = B̄′

1,

(κ + 1)i

2
(b̄0 − b0) +

2µ

ν + β
K0(ξR)α0 = C0,

(30)


−κ
R
b2 −R c̄0 − iξK−1(ξR)α−2 = B′

−1,

(κ + 1)i

2R2
b̄2 +

2µ

ν + β
K2(ξR)α2 = C2,

(31)

where

B′
0 = B0 −

µ(β1 + β2 + β3) lnR

λ+ 2µ
a1

+
4µ

λ+ 2µ

(
δ1κ1
2

K0(κ1R)α−11 +
δ2κ2
2

K0(κ2R)α−12

)
,

B′
1 = B1 −

µ(β1 + β2 + β3)R

λ+ 2µ
(a0 + ā0)

+
4µ

λ+ 2µ

(
δ1κ1
2

K1(κ1R)α01 +
δ2κ2
2

K1(κ2R)α02

)
,

B′
−1 = B−1 +

µ(β1 + β2 + β3)

(λ+ 2µ)R
a2

+
4µ

λ+ 2µ

(
δ1κ1
2

K−1(κ1R)α−21 +
δ2κ2
2

K−1(κ2R)α−22

)
.

For einϑ (n = ±2, ±3, ...) gives

− κ
(n− 1)Rn−1

b̄n + iξKn−1(ξR)αn = B̄′−n+1, n ≥ 3

(κ + 1)i

2Rn
b̄n +

2µ

ν + β
Kn(ξR)αn = Cn, n ≥ 3

(32)

1

(n− 1)Rn−1
c̄n − 1

Rn−3
b̄n−2 − iξKn−1(ξR)αn−2 = B′

n−1, n ≥ 3 (33)

12
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where

B′
−n = B−n − µ(β1 + β2 + β3)

λ+ 2µ

an+1

nRn

+
4µ

λ+ 2µ

(
δ1κ1
2

K−n−1(κ1R)α−n−11 +
δ2κ2
2

K−n−1(κ2R)α−n−12

)
,

B′
n = Bn +

µ(β1 + β2 + β3)

λ+ 2µ

(n− 2)ān−1

Rn−2

+
4µ

λ+ 2µ

(
δ1κ1
2

Kn(κ1R)αn−11 +
δ2κ2
2

Kn(κ2R)αn−12

)
.

It is known that

b0 = Γ− µ(β1 + β2 + β3)

λ+ 2µ
(a0 + ā0), c0 = Γ′,

where Γ, Γ′ are known quantities, specifying the stress distribution at in-
finity (It is also assumed that b0 is a real value (see [17])). Hence, by the
formulae (30-31)

α0 =
ν + β

2µK0(ξR)
C0, c2 = −R2(κ − 1)b0 − iξRK1(ξR)α0 +RĀ1,

b̄2 = 2R2 (ν + β)iξK1(ξR)C2 − 2µK2(ξR)(Ā−1 +Rb0)

4µRκK2(ξR)− (ν + β)(κ + 1)ξK1(ξR)
,

α2 =
(κ + 1)i(Ā−1 +Rb0) + 2RκC2

4µRκK2(ξR)− (ν + β)(κ + 1)ξK1(ξR)
(ν + β).

In order to find expressions for b1 and c1, it is necessary to refer to the
condition for single-valuedness of the displacements

κb1 + c̄1 = −λ(β1 + β2 + β3)

λ+ 2µ
a1,

which in combination with the second relation of (29) gives

b1 =
B′

0 −
λ(β1+β2+β3) lnR

λ+2µ a1 + iξK0(ξR)C̄1

2κ lnR+ (κ+1)ξK0(ξR)
2R

,

c1 = −κb̄1 −
λ(β1 + β2 + β3) lnR

λ+ 2µ
ā1,

α1 = C1 −
(κ + 1)i

2R
b̄1,

and, finally, (32-33) determines all coefficients bn, cn, αn:

bn =
∆1n

∆n
, αn =

∆2n

∆n
, n > 2,

13
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cn = (n− 1)Rn−1

(
bn−2

Rn−3
− iξKn−1(ξR)ᾱn−2 + B̄′

n−1

)
, n > 2,

where

∆1n = − 2µ

ν + β
Kn(ξR)B

′
1−n − iξKn−1(ξR)C−n,

∆2n =
(κ + 1)i

2Rn
B̄′

1−n +
κ

(n− 1)Rn−1
Cn,

∆n =
2µκKn(ξR)

(ν + β)(n− 1)Rn−1
− (κ + 1)ξKn−1(ξR)

2Rn
.

It is easy to prove the absolute and uniform convergence of the series
obtained in the circular ring (including the contours) when the functions
set on the boundaries have sufficient smoothness.
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