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We consider the three-dimensional system of the equations of elastic static equilibrium
of bodies with double porosity. From this system of the equations, using a method of a
reduction of |. Vekua, we receive the equilibrium equations for the plates having double
porosity. The systems of the equations corresponding to approximations of N = 1 it is
written down in a complex form and we express the general solution of these systems
through analytic functions of complex variable and solutions of the Helmholtz equation.
The Dirichlet boundary value problem are solved explicitly for the concentric circular ring.
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1 Introduction

The first theory of consolidation for elastic materials with double porosity
was presented by Wilson and Aifantis [1]. This theory unifies the earlier
proposed models of porous media with single [2] and double [3, 4] porosities.
More general models of double porosity materials based on the Darcys law are
introduced in [5-9] and studied by several authors [10-17]. Recently, on the
basis of balance of equilibrated force the theory for elastic materials with a
double porosity structure are presented by Iesan and Quintanilla [18] and the
basic threedimensional BVPs of the equilibrium and steady vibrations of this
theory are investigated in [19, 20].

The problem of elastic bodies with double porosity was the subject of study
for some papers more than fifty years ago. Many authors have investigated



the BVPs of the theory of elasticity for materials with double porosity, that
are published in a large number of papers (some of these results can be seen
in [21-28] and references therein).

2 Basic three-dimensional relations

Let an elastic body with double porosity occupy the domain © C R3. Denote
by (z!,22%,23) a point of the domain € in the arbitrary curvilinear system of
coordinates. Let the domain £ be filled with an elastic isotropic homogenous
medium having double porosity. The considered solid body is characterized

by the displacement vector u = (u!,u?,u?), and also by the fluid pressures

p1(xt, 22, 23) and pa(z!, 22, 23) occurring respectively in the pores and fissures
of the porous medium.

Then a homogeneous system of static equilibrium equations is written in
the form [6]

0;045 = 0, (1)

where 9; = %, 0 are components of stress tensor, the summation over the
recurring index ¢ is assumed to be made from 1 to 3.

Formulas that interrelate the stress components, the displacement vector
components and the pressures p;, ps have the form [6]

Oij = (AOpuy — Bip1 — 52]?2)% + 2pe;5. (2)

where A and p are the Lamé parameters; 81 and (o are the effective stress
parameters; 0;; is the Kronecker delta, e;; are components of the deformation
tensor

€ij = 0.5(61"&]' + Bjuz)

In the stationary case, the values p; and ps satisfy the following system of
equations [6]

{ (k1As —v)p1 + (k123 4+ v)p2 = 0, w0
n 0 3)
(k2143 +¥)p1 + (k2A3 —v)p2 =0

where k1 = %,k‘g = %,k‘lg = %,km = %; w1 is fluid viscosity; k1 and ko
are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity; k12 and ko1 are the cross-coupling permeabilities for fluid flow at the
interface between the matrix and fissure phases; v > 0 is the internal transport
coefficient and corresponds to fluid transfer rate with respect to the intensity
of flow between the pore and fissures; Ajz is the three-dimensional Laplace
operator.
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It is easy to show that if v > 0, kiko — k12ko1 > 0, then the system
of equations (3) is equivalent to two independent equations: to the Laplace
equation [32]

Aspr =0 in (4)
and to the Helmholtz equation
Aspy — (PP =0 in Q, (5)

where

p1 = (k1 + ka1)p1 + (k2 + k12)p2, P2 :=p1 — p2,
k1 + ko + k k
Cg — Y(k1 + k2 + k12 + ko1) < 0.
kika — k12ka
Adding the first equation of system (3) to the second equation of this system,
we immediately obtain equation (4).

3 Approximation N =1

I. Vekua [29, 30] constructed hierarchical models for elastic prismatic shells,
in particular, plates of variable thickness, when on the face surfaces either
stresses are known. In [31] we apply I. Vekua’s method for a reduction of the
equations (1-5).

Consider approximation of the order N = 1.

We introduce the complex variable 2 = z1+izs (i2 = —1) and the operators
0, = 0.5(01 — 10s),0z = 0.5(01 + id2) (2 = x1 — iz2). The two-dimensional
Laplace operator is expressed as A = 40,0s.

The homogenous system of equation of the elastic plate may be written in
the following complex form [31]:

0 © 2x. (1) Lo O
JT7AN 1&42 +2(A + )0z 9 —?52 guts —20; (51 p1+53 p2) =0,
(6)
W 3XO 3A+2u)@® 3, ,© 0
,UAU3—? Y —(hQ)U?) +E(51 p1 +ﬁ2p2> =0,
(1) M 6u, 0 3u@ . .0 @D
P s 2N+ 1)0s 9 =0 g = wx —20% (B} 1+ P2 ) = 0, .
7
0 (1)
uA&;i—l—%z?:O.
© 30
Apl—ﬁplz(),
© /3 \© ®)
Apz—(}lg-i-C)m—(l
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where

h
(k) 1\ 1 | 2\ 3
uz—<k+2>h/uz(x T a:)Pk(h>dac,
h

k k k) (k) k k
[ R P BN RS Y

B+ B 5= B1(k2 + k12) — Ba(k1 + ka1)
- k ’ 2 — k? )
0 0

ko = k1 + k2 + k12 + ka1,

A1

P (th) is the Legendre polynomials of order k.

We take the operator 205 out of the brackets in the left-hand part of the
first equation of system (6)

(0) 0 X . (0) (0)
282(2;@ Ugp +(A+p) 9 +E uz —f1 p1 —53 p2> =0. (10)
Since (10) is a system of Cauchy-Riemann equations, we have
(0) 0) ) (1) . (0) (0)
200, g +(X + ) 9 +5 uz —B1 p1 — B3 p2 = ay'(2), (11)

h

where ¢/(z) are an arbitrary analytic function of z,a, are arbitrary nonzero
constant. Summing equation (11) with the conjugate equation, we will obtain

© x@ O O g4

()\+2M)19+EU3—ﬁfp1 —B3p2 = 5

5(@'(2) +¢'(2)). (12)
. . (0)
From the second equation of system (6) we will define

©  uh . 1) A+2 (0)
O _ ph 0 A+ 20 () ( ) (13)

3\ T B1 pl +5 P2
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(13) we will substitute in (12), we obtain the following equation

A (20) - A (20) = e (W) + )

A+ 2u)h? (A +2u
124 OB (14)
—m (51 D1 +55 p2 )

(0) (0)
The general solution of the equation (14) taking into account that p; and po

satisfy to the equations (8), will have a form

, ©  ©
(¥'(2) + ¢'(2)) + a1 p1 +az2 p2, (15)

(1) _ Aha
2puuz = x(z,2) — 0+

where x(z, Z) the general solution of the following Helmholtz equation

12N+ p)
Ax — Ty = 0;
X Orepr2X T
12uh .
9N+ 6 — G02C2(\ + 2u)h2 "

Substituting equation (13) into (11) we obtain

aq = a=1,2;

0 NG nw © O
210z g +(A+ p) Gy Atz —(3A + 2p) 7 uz + (/3 p1 +52p2) = ay'(2).

1
In this last formula are substituting the expression (15) for %ng

0  SA+6p 3>\+2M Ah

20, U = —————ay' (2 ——ay'(z) + ———0,05
(0) (0)
+0.0; (ao D1 +bo p2> (16)
where
4ph? . 4ph? 3 — h2¢? .
ap = 5=~ B1 bo= 575 3 555
(3N +2u) 3+ h2C2 9N+ 6p— CC(N+ p)h

Let a = 3(§‘j2” ), then integrating on z the above formula (16), we obtain

(0) — Ah _
2pug = sp(z) — 29’z — p(z) + mazx(zw)
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(0) (0)
+0, <a0 D1 +bo P2 ) , (17)
where
. SA+ 64
20+ 2u”

1 (z) are an arbitrary analytic function of z. Thus, the general solution of (6)
and (8) are represented by formulas

© (o) © (o)

p1=X1(%,2), p2=X2(2,2), (18)
©_ — o~ Ah ]
D) = 3 (2) — 2777 — B(2) — — (2, 2)
6(N+ )
2 2 (19)
4R O 4k ©,
+7a0az X1 (27 Z) + mbo@ X2(za Z),
(1) 2\ O, O,
2putts = X(2.2) = 535 (#1(2) P T (= 2)  wXa(z, 7). (20)

where x(z, 2), ()%)1(2,2), ()%)2(2,2) are the general solutions of the following

Helmholtz equations
(0) (0) ) (0)
Ax—n’x=0, Ax1—-nix1=0, Axz—n5x2=0,

12(A 4 p) 3 3
2 2 _ 2 2 _ [ =2 2 .
n _()\+2,U)h27 Ui hga Up) <h2+C>

From the second equation of system (7)

o 1@ )
285 us +E Uy = E@gw (21)

where w as yet unknown real function.

From (21) we have
(1) ) .
Uty = —2h0z u3z +i0zw. (22)
0
Substituting (22) and ¥ = —hA &32 in the first equation of system (9) and
integrating on z we obtain the equation

) . 3 * (~1) * (~1) /
—(A+2p)hA uz +ip | Aw — 2% )~ 2(51 p1+53 b2 ) = af'(2), (23)

where f’(z) are an arbitrary analytic function of z; a are arbitrary nonzero
constant. Summing equation (23) with the conjugate equation, we will obtain

- m
A+ 2mhA S = a(f'(2) + F2) + (51 B +55 72 ).
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From the last equation follows

s = —mgﬂz& +2f() +8() +8(2)
)\ 20 // BT p p1 +85 p: p2 )dzdz (24)

where g(z) is an arbitrary analytic function of z.
Considering the imaginary part of the equation (23), we obtain the equa-
tion 3
20(Bw = Sw) = =i(f/(z) = F'(2).
which general solution is represented as follows

2

=, ;
@(f (2) = f'(2)), (25)

w="1(2,2)+1

where 7(z, z) the general solution of the following Helmholtz equation

Ar(z,7) — oy7(2,2) =0,
Substituting formulas (24) and (25) in the (22), we obtain (a = 8(\ + 2pu))
Ah%(\ + 2 —
8 = i0.7(z.2) + TUE2VTE) 4 TG + 1) - 2
L 5 a5 26
+2(M—2u)h/(61p1+62p2> z. (26)

Taking into account the taken value of a constant a we will rewrite a
formula (21)

(0) L —
= —%w(z) +2F(E)) + (=) + 82)
)\ o // EH pl +03 p: p2 )dzdz (27)
Thus, the general solution of (7) and (9) are represented by formulas
W W
n :XQ(Zaz)u Y41 :Xl(zag)u (28)
4h%(\ + 2 - —
z(LlJ)r =10:7(2,2) + (3:'@]0”(2) +z2f'(2) + f(2) — 2hg/(2)
L1 4h25 O (22 + 4h? 8:0: (2 ) (29)
20\ + 20)h FXUEZ)T 15 1 czpa 29z X5 2
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iy = — o7 (2 (2) + 2T(2) + () + B0)

1 4h? L) B 4h2 L) ) (30)
7m (1551 Xl(Z, Z) =+ mﬁQ XQ(Z, Z)>

where 7(z, 2), ()1<)1(z,2), (>1<)2(z,2) are the general solutions of the following
Helmholtz equations

)

Ar—~2r =0, AY 2} W =2y

X1 =0, Ax2-n5x2=0,

3 15 15
72:ﬁ7 77?2,:?7 ﬁz: <h2+62>

The constructed general solution enables one to solve analytically a suf-
ficiently wide class of boundary value problems of the elastic equilibrium of
porous plates with double porosity.

4 A problem for a circular ring

In this section, we solve a concrete boundary value problem for a concentric
circular ring with radius Ry and Ry (see fig. 1). On the boundary of the
considered domain the values of pressures p; and ps and the displacement
vector are given.

Fig. 1.

We consider the following problem

+00 nd +oo o
(0) Z Allneln ’ ‘Z‘ = Iy, (0) Z Binezn ’ ‘Z| = Ry,
P1=19 Too p2=19 i%

+oo ) (31)
Z Alllnelnﬁa ‘Z| = R27

+oo .
> Bl |z| = R,
—0o0
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+o0o i 400 i
> Clpe™, |2 = Ry, > Die™s |z = Ry,
(0) = (1) =
Uy = +oo 4 uz = 400 ) (32)
> Cle™, |2] = Ry, > D™, |z| = Ry,
oo —00
w Al ind =R w B! ind =R
(1) Z € ‘Z| = (1) Z m€ s |Z| = 11,
n={ % p={ X (33)
Z A/21n61m97 ‘Z| = Ra, Z Bélnemﬂ’ |Z| = Ry,
oo —00
w C! ind =R w D! nd =R
> Cone™, 2] = Ry, 2 Do, 2] = Ry,
(1) = (0) =
Uy = = 34
+ =93 4o , us = +oo ) (34)
Z Célnemﬂ ’Z‘ = Ry, Z Dé/nemﬂ’ |Z’ = Ry,
oo —00

0 0
The metaharmonic function (X)l (z,2) and (X)Q(Z, Z) are represented as a series

where I,,(-) and K,(-) are modified Bessel function of n-th order, z = re

“+o00
0
(X)l (Zv 2)
oo

Z(ﬁln (7727“) + ﬁ2n

—00

(0)
X2(z,2) =

= > (Ol In(mr) + b K (7)™

(35)

Kp(nor))e™,

103
)

and are substituted in the boundary conditions (31) we have

+oo

Z(aln ( lRl) + a?n

—0o0

“+o00

> (@i, In(mRa) + b, Ky (m Ra))e™ =

—00
“+o00

Z(ﬂln (77231) +62n

—00
+oo

Z(ﬁln (772R2) + 62n

—0o0

Kn(mRy))e™ =

n(meRy))e™ =

n(12R2))e™” =

—+00

/I _ind
g Ale
—00

—+00
nd

}: "o
1n€ ’

—00

+oo
/i
> Bie
—00
+oo
ind

2: "o g
1n€ )

—0o0

Compare the coefficients at identical degrees. We obtain the following systems

of equations

In(mR1)ay, + Ky (mRy)as, = 1m

In(anQ) 1 (anQ)O/Qn - 1n7 (36)
In(U2R1)51n + Kn(n2R1)By, = B1m

I(m2R2) By, + Kn(n2Ra) B, = By,
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From (36) for coefficients o},,, ab,,, (1, and 35, we have:

o = Kyn(mR2) — A7, Kn(mRy)
I (771R1) n(MmR2) — Ln(mRo) Kn(mRy)’
o = nIn(mR2) — AT, In(mR)
S (771R1) n(mRa) — ("7132) n(mR1)’
5= Kn(n2Rg) — By, Kn(112R1)
i (77231) n(mRg) — (77232) n(m2R1)’
5 = BipIn(n2Ra) — By, In(m2R1)
2 Iy(mR1) Kn(naRa) — (77232) n(mR1)

Let us introduce the functions ¢(z), ¥(z), x(z,Z), by the series:

—alnz—i—Zan Blnz—I—anz

X = Z al In(nr) + ol K, (nr)) m9

—0o0

and are substituted in the boundary conditions (32) we have

Z(% an Tnezm? o ndnrne—i(n—Q)ﬁ Enrne—m'&)
Anh R itn
B0 ) 2l () — o rC)e 19
- +oo .
_ _ 0id _Z: E;Lemﬂ? ‘Z‘ = Ry,
(' —B)Inr + (»"a + B)id — ae™ = ¢ 72 '
> Ene™, |z = Ry,

2L 4 v > . .
- e 7 (:‘éezﬁ + %6“9 + ; nr™ 1 (anez(nfl)ﬁ + anez(nl)ﬁ)>

+o0 .
+00 > Fpe™, |z = Ry,
+ D (I (rO) + af K (rQ))e™= § T2
—00 Z Fgemﬁ, ‘Z| — Rz,
—0o0

where

(B + B2 + B3)
A+ 2u

B, = D,, — (n+1D)r"cpp1 — (n—1)r7"e1—p)
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v [51%1 (an—1ln(k17) = Bn1Kn (k1))

CA+2u | 2
0ok
+% (Yn—1In(kor) — 5n—1Kn(/€27"))] :

(n==+1, -2, +£3,..),

p(B1 + B2 + B3) o dp
Bi =Dy — ey + &) -
1= 2t 20 (”Cﬁr) N+ 2

51/-61
>< —_—
2

and C, = E,.

From the condition of displacement uniqueness it follows that

(o1 (k1) — BoK1(k1r)) + % (YoI1(kar) — 50K1(f€27”))] ;

wra+B=0.
Comparison of terms independent of 9 gives

Anh

95¢* In Ry — 2R2ay — — 00
' 200+ )

(O/_lfo(an) — Oé/ilKo(an))
+3c*ag — by = Ey,

Aih
2" In Ryar — 2R3 — 7 i

o0 (o 1Io(nR2) — & | Ko(nR2))

+xfag — i)o = E[/)/.

Comparison of terms involving e for n = +1, £2, ... gives

5 Riag —a — Ry%b_g — 12:\)\774_@ (a4 I (nRy) — o Ka(nRy)) = E,
»*Riag — & — Ry%b_o — 12()\;7% (a4 Iz (nR2) — o Ko(nRs)) = EY
# Riay + (n = 2)R} @y — Ry "Dy
_12()\)\77% (o1 In(nRy) — oy _1 Kn(nRy)) = By,
" Ryan + (n — 2)R3 "dz—n — Ry "b_yy
_12(/\)\77_}:/0 (o1 In(nR2) — oy _1 Kn(nR2)) = B},

(n=+1, =2, +£3,...),

2 \h Q
arli(nRy) + o Ki(nR) — Do 2R1a2+RT = Fy,
2\h Q
o4 I1(nRy) + o K1(nR2) — o 2Raas + B) = 7,
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I,(nR1) + aan(an)

2\h

—m [(n =+ 1)R?an+1 — (n — 1>R1_na1_n] = Fé,

apIn(nRs) + o Kn(nR2) (41)
2\h . s

—m [(TL + 1)R2 ap+1 — (n — 1)R2 al_n] = FT/L/7

(n=0, -1, £2, £3,...).
From (38) and (40) we have
2x*In Ry/R1Lo + (R3 — R3) Ly
25¢*In Ry/Ry1 L3 + (R2 — R?) Ly

ag =

where
[y =2(R2— R2) — N*nh?(Io(nRg) — Io(nR1))(Re K1 (nR1) — RiK1(nRy))
PO 3+ ) (BA + 20) (I (nR2) K (nRa) — Ti(nR1) K1 (nR2))
A2nh*(Ko(nR2) — Ko(nR1))(Roli(nR1) — Rili(nRy))
3(A+ 1) (BA 4+ 2u) (I (nR2) K1 (nRy) — Ii(nR1) K1(nR2))’
Anh?(R3K2(nRy) — RiKa(nRy))(Reli(nR1) — Rili(nRy))
3N+ 1) (BA +2u) (I1(nR2) K1(nR1) — I1(nR1) K1(nR2))

Ly =

(R - RY) — Nnh? (R312(nR2) — Rila(nR1))(RaKi(nRi) — RiKi(nRa))

3N+ 1) (BA + 2u) (L1 (nR2) K1 (nRy) — Li(nRa) Ki(nRz))

Ly = B — g+ 1o(nfe) = Lo(nR))(FY Ki(nR1) — FIK (nRy))
12(A + p) (L (nR2) K1 (nRy) — Li(nR1) K1(nR2))

_ Anh(Ko(nRs) — Ko(nia))(F{ Ii(nRy) — FiL(nRe))

12(A + p)(Ii(nR2) K1 (nRy1) — Ii(nR1) K1 (nR2))

Anh(R3K>(nR2) — RiKo(nR1))(FI'Ii(nR1) — FiT1(nR2))

12(\ + p) 1127732 V1 ( 77312 11(77R1)ff;1(7732)) /
R R 4 MMBLOR) ~ R R R (11h) ~ FE (o)
12(A + p) (L (nR2) K1 (nRy) — Ii(nRy) K1 (nRy))

The coefficients «, 8, b_a, o, of, »ay — by are found by solving (37),
(38), (40).

From (41), dividing the first equation of (39) by R}, and second by RY,
and subtracting, one obtains the first of the following formulas:

Lyi=—

Than + Spl—nyo = Gy,
_ (42)
S_pi2an +T 126 _ni2 =G o,
where
G, = RYE! — RV'E!
Anh(Ry In(nR2) — R{In(nR))(F))_ Kn- 1(7731) _1Kn—1(nR2))
1200+ ) (1, 1(77R2) 1(nBy) — In- 1(7731) n- 1(7732))
_ Anh(Ry Kn(nRp) — RY K, (7731))( n-1In-1(nB1) — B), 1 1n-1(nR2))
12(A + ) (In-1(nR2) Kp—1(nR1) — In—1(nR1) Kn—1(nRz2))
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T, = »*(R3" — R")
_ APhPn(REI,(nRg) — RPLu(nR1))(RE ™ Ko 1(77R1) RY 'K 1(nRy))
6(A + 1) (BA + 2u) (Ln—1(nR2) K — 1(77R1) In—1(nR1)K n- 1(7732))
A nh?n(Ry K, (nRy) — RV K, (nR1))(Ry ™ 1, 1(7731) RY™'I,_1(nRy))
6(A + 1) (BA + 2u) (In—1(nR2) Kn—1(nR1) — In—1(nR1) Kn—1(nR2))

Su = (n—2)|(B} - B})

Nnh® (R In(nR2) — R Ln(nR1))(Ry " Kn- 1(77R1)7R1’"Kn,1(77R2))
6(A + p) (B + 24) (In—1(nR2) Ky — 17731) I 1(77R1) n—1(nR2))
~ Nnh?(RyKn(nRg) — RYK,(nR1))(Ry "I 1(77R1) Ry "I,_1(nRy))
6(A + 1) BA + 20) (In—1(nR2) Kn—1(nR1) — In—1(nR1) K1 (nR2))

The second equation (42) is obtained from the first by replacing n by —n + 2
and going the conjugate complex expression.
From (42) we have

TanGn - SnCan
ap = , (n=4=£1, =2, 43,...).
" TnTan - SnSan ( )

The coefficients o, o/, b, are found by solving (39), (41).

1 1
The metaharmonic function (X)l (z,2) and (X)Q(Z, zZ) are represented as a series

(1) +oo

Xl(zv 2) = Z(alllnln(n?)r) + agnKn(n3r)>einﬁ7
L= | (43
X2(2,2) = Y (BlpIn(mar) + By Ko (mar))e™,

and are substituted in the boundary conditions (33) we have

+oo

Z(allln‘[n (773R1) + a2n 773R1 ’ng Z A m
00 ' +o00 ‘

> (@, In(nsRs) + a3, K (nsRo))e™ = >~ A5 e,
+00 too .

> (BluIn(maRa) + B Kn(naRa))e™ = By,e™,
“+o0 “+o0 )

> (Blaln(maRs) + By, Kn(naRo))e™ = > " Bye™,
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Compare the coefficients at identical degrees. We obtain the following systems

of equations

In(USRl)Oém + K (773R1)042n - A2na
In(nsR2)ay, + Ky (?7332)0% = Ay,
In(n4R1)51n + K (774R1) = Ban
In(maR2)BY, + Kn(naR2) By, = By,.
From (36) for coefficients of,,, of,, A1, and 35, we have:
ol = A Kn (3 Ra) — A/2/n n(n3f21)
" L3Ry Kn(m3R2) — In(n3sR2)Kp(n3Ry)’
no_ A/2n (773R2) A (773R1)
7 In(nsR1) Kn(nsRa) — (77332) n(m3Ry)’
" B, Kn(mRa) — By, Ky (naR)
Y In(mBy) Kn(naRa) — (77432) n(naRy)’
"no_ BZn (774R2) B < 4R1)
2 L(mR) Ky (maRo) — (774R2) n(maR1)

Let us introduce the functions f(z), g(z),

>

7(z,

—5lnz—|—Zdnz

7= Z (BuIn(yr) + BrEn(yr)) €™,

—00

and are substituted in the boundary conditions (34) we have

i |
g Z.O (B:m[n%*l(’wﬂ) - BZKnJrl('Y’I“)) ez(n—f—l)ﬁ

oo

—2h Z nd,r"tetl—m?

- : A\ + 2u)h2 .
+ Z né,rtel2=mY 4 (—;’MM) Z n(n — l)énr”_ze’@—n)ﬁ

— 00

2(5h
+ Z Cn’f'n md _ o |
> Gre™, |z
—o0
00
Z (dneinﬂ + dne—znﬁ)r
—oo

+(0+6)Inr + (6 — 6)id =

29

+o0 .
> Gre™, 2]
—00

400 .
> Fe™?, ||
—00

:Rla

= R27

n_ % Z (Cnei(n—l)ﬁ n Ene—i(n—l)ﬁ) bl

400 .
> Fpein?, 2| =
—0o0

R17

= R27

Z), by the series:

(44)



where

+ + -
B, =D, — M(ﬂl)\ —I—ﬂ;,u Bs) ((n +1rcpe1 — (n—1)r cl,n)
4 0k
—A4gu[;1«thmwyw%4Kamm>
)
P2 (i Tlrar) = B 1R ()
(n=+1, 2, +3,..),
o (Bt B2+ Bs) ay  Ap
B, =D, e (2rcz+r) o
1) 0ok
ITM (aply(k17) — BoK1(k1T)) + % (yol1(kar) — 50K1('<627“))] ,
and Cp, = E,.

From the condition of displacement uniqueness it follows that

55—

Comparison of terms involving e gives

2hé

=G,

1
1>

= Qn,

"

5 (BLOR) = BE (YR)) + Raler +21) =
2 (o Fa) — K1) + Raler 1) — 20 =
%Y (Bh_1In(YR1) — Bi_1Kp(YR1)) + Ricp, — (n — 2)Ry "oy
_{_W(n 1)(n —2)R{"¢a—n, + 2(n — 1)hRy "dy_n =G,
%wzJW&%ﬂAKM&D+%%% VR
+()\—25M)h(n —1)(n = 2)R; e + 2(n — DRy dy_, = G,
do + do —]22 c1+¢1)+20In Ry = Qp,
do + do — ﬁ(c1 +¢1)+20lnRy =
Ridy, + R{"d—p — — (R”+2cn+1 + Ry 1)
Ryd, + Ry™d_p, — 57 (Ry™ens1 + Ry" e p1) =

30

n:

(45)

(46)



From (45) and (47) we have
RQR@G/{ — RlReG’l
R3 — R?
g = 29(K: (vR)ImGY — K (vRp)ImGY)
O 3(Ki(yR)L(YR2) — Ka(YRa) (v Ry))

The coefficients dy + dy, 8fj are found by solving (45), (47).
From (48)

)

c1+c =

(R~ BE™)es o+ (B — B)es
(R — )
RYQY, 2R )

2R - R
Substituting from (49) in (46) we have

dy—p =

i iy . (n—1)R}R3 - R?
lln(fle)/Bqlfol - 7Kn(7R1)B;:71 + Rl - ( 72n121( 272n+21) Cn
2 2 Ry - R

4\ + 2u)h?
+(+u)

(R{"™(n—1) = R{"™*)(n — 2)C_n42

3
(n — 1)hRP(Ry 2+ — Ry2n+4) (50)
+ R-2n+2 _ p—2n+2 C—n+2
2 nl —n+17" —n+17/
o 2(n — 1)hRY (R22 2Q—n+12_ 1;1 Q_nt1)
R; n+2 RI n+
i i . (n—1)R}R2—R?
llﬂ(7R2)B7,z—1 - 1Kn(7R2)BZ—1 + R2 - ( _2n1_22( 2_2n+21) Cn
2 2 R, - R;
4N+ 2u)h% n _
SAREII (n 1) — R0 - D
(n — 1)hRE(Ry >+ — B2 (51)
+ C_pi9
R-2n+2 _ p2n+2 n+
2 nl —n+17" —n+17/
-G — 2(” — l)hRQ (RQ Q—n+l — Rl Q—n-i—l)
n R, 22 _ R
1 1
~ g T2 (VRS + 5 K2 (BB
Y (n _ 1)R_n+2(R2 _ RQ) ~
+ |:R1 2y RQn—12 — R23—2 | e
sO2n? o, (n— DAEF"(RY" — RY")
Ry™(n—1) + R} .
+ [ 31 (Ry™“(n—1)+ R{)n + R gn? ¢
—n/pn—1A" n—1-/
o é, 5 — 2(” B 1)hR% (R2 1Qn71 B Rl 1Qn71)
- Y—n+ —2n —9n )
Ry — R¥?
(52)
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7 7
—gfn—2(732)5271 + gKn—2(’YR2)5le

Y n—1 R—n—|—2 R2 _ R2 B
+ [RZ 2+ ( Rgn—22 _ ;%23—2 1) C—n+2
(A + 2u)h? ’ X (n — 1)hR>™(R%" — R?™)
4 12 n— n n— " — "
+ [BM(Rz *(n—1)+ R3)n + R%n—22 _ R%Qn—2 = e
- _ 2(n — 1)hR§_n(Rg_1@Zﬁl — R?_lé;fl)
—n+42 R%—Qn — R%—Zn
(53)

The coefficients 3, 8/, ¢y, d, may be found from (49)-(53).

n?
It is easy to prove the absolute and uniform convergence of the series

obtained in the circular ring (including the contours) when the functions set
on the boundaries have sufficient smoothness.
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