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Abstract

The purpose of this paper is to consider the linear theory of elasticity for solids
with double porosity. From this system of the equations, using a method of a reduction
of I. Vekua, we receive the equilibrium equations. Using the analytic functions of a
complex variable and solutions of the Helmholtz equation. The Dirichlet boundary

value problem are solved explicitly for approximation N = 1.
Key words and phrases: Double porosity, the Dirichlet boundary value prob-
lem.
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1 Introduction

In the last decade there has been interest in investigation of problems of
the theories of elasticity and thermoelasticity for solids with double poros-
ity based on the Darcys law. The first theory of consolidation for elastic
materials with double porosity was presented in [1-3]. The Aifantis theory
unifies the earlier proposed models of Barenblatt et al. [4] for porous me-
dia with double porosity and Biot [5] for porous media with single porosity.
The fundamental solutions in the theories of elasticity and thermoelasticity
for materials with double porosity are constructed by Scarpetta et al. [6],
Svanadze [7], Svanadze and De Cicco [8].
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2 Basic Equations

Let an elastic body with double porosity occupy the domain Q C R3.
Denote by (2!, 22, 23) a point of the domain  in the arbitrary curvilinear
system of coordinates. Let the domain Q be filled with an elastic isotropic
homogenous medium having double porosity. The considered solid body is
characterized by the displacement vector u = (u',u?,u?), and also by the
fluid pressures p; (2!, 22, 2%) and po(z!, 22, 23) occurring respectively in the
pores and fissures of the porous medium.
Then a homogeneous system of static equilibrium equations is written
in the form [7]
0;045 =0, (1)

where 0; = 8%1-7 o0;; are components of stress tensor, the summation over
the recurring index ¢ is assumed to be made from 1 to 3.

Formulas that interrelate the stress components, the displacement vec-
tor components and the pressures pi, p2 have the form [7]

oij = (AOguy, — Pip1 — B2p2)dij + u(Oiuj + dju;). (2)

where A and p are the Lamé parameters; 51 and (2 are the effective stress
parameters; d;; is the Kronecker delta.

In the stationary case, the values p; and po satisfy the following system
of equations

{ (k1A3 —y)p1 + (k12A3 + v)p2 = 0, w0
in , (3)
(k2123 +7)p1 + (k2A3 — y)p2 =0

where k1 = %,k‘g = %,km = %,km = %; p is fluid viscosity; x1 and
Ko are the macroscopic intrinsic permeabilities associated with matrix and
fissure porosity; k12 and ko1 are the cross-coupling permeabilities for fluid
flow at the interface between the matrix and fissure phases; v > 0 is the
internal transport coefficient and corresponds to fluid transfer rate with
respect to the intensity of flow between the pore and fissures; Aj is the
three-dimensional Laplace operator.

It is easy to show that if v > 0, k1ko — k12ko1 > 0, then the system of
equations (3) is equivalent to two independent equations: to the Laplace
equation

Ap1 =0 in Q (4)

and to the Helmholtz equation
Aﬁg - C2ﬁ2 =0 in Q, (5)

where
p1 = (k1 + ko1)p1 + (k2 + k12)p2, P2 := p1 — p2,

o1
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Y(k1 + k2 + k12 + ko1)
k1ko — k12k21

2= > 0.

3 Approximation N =1

In [9] we apply I. Vekua’s method for a reduction of the equations (1-5)
[10].

Consider approximation of the order N = 1.

We introduce the complex variable z = x1 + izy (i = —1) and the
operators 0, = 0.5(01 — i02),0; = 0.5(01 + i02) (2 = x1 — ix2). The two-
dimensional Laplace operator is expressed as A = 49,05.

The homogenous system of equation of the elastic plate may be written
in the following complex form [10]:

(0) ©) 2\ o _ L0
pAY 200+ )0 9 — 0z i (,61 Bl 453 p2) =0,
(1) 3X 0 (/\+2)() ) ©)
7
HAU?)_? v T W (5 P1 +52p2) =0,
( 1 1 6 0 3u @
MA&JZ +2(N+ p)0z 9 —#85 &; —h—’;&l
1) @)
202 (81 pL+B5 12 ) =0, ()
(1)
MA’(lL?z—i- ¥ =0.
h
© 3 © © 73 ©)
Apl—ﬁm:O, APQ—(hQ-i-C?)pz:O, (8)
@O 15 Q) O 15 W
Apl—ﬁplzov AP2—<ﬁ+C)p2=0, (9)

where

h
R 1\ 1 ! N s
uz</€+2>h/uz(x z? x)Pk<h)dm,
“h

(k) k

52
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B1 + B2
ko

«  Bilka 4 k12) — Ba(ky + ka1)
62 - kO )

ko = k1 + ko + k12 + ko1,

B =

n

%) is the Legendre polynomials of order k.
The general solution of the equations (6-9) have the following form

b1 = Xl(z Z) P2 = XZ(Z Z)v pl Xl( ) p1= Xl(zag)) (10)
(0) « — Ah _
2uuy = 1 p(z) — 29z — P(2) — ———02x(%, 2)
6(\+ 1) (11)
4n% ) 4h? ©
+?005’z X1(2,2) + mboaz X2(z, Z),
(1) _ 2Ah o Ol
2puz = x(2,2) — m(‘ﬂl(«z) +¢'(2)) + a1 x1(z, 2) + a2 X2(2, 2), (12)
1 4h2 (A +2 —
) = iosr o+ SUEBVFC 1 + £(2) - 20
+71 i 10z Q) (2,2) + 4h* ——05 (2,2) )
200+ 2p)h \ 15 1N 15+ C2h2 2 e
(0) L, - —
us = — 5 (2f(2) + 2f(2)) + 8(2) +8(2) 19
1 o, anr 14
ST < Bi x1(2, )+m52 X2(272)>
where »* = giig/‘j . 9(2), ¥(z), f(2), g(z) are an arbitrary analytic func-
: 12ph * 4ph?
tion of 2, an = grg= 5a2<2 OF2p)h? Pas (@ =1,2), a = 3(3/\+2u)ﬂ1’ bo =

2 202 (0) (0) ) L,
3ihg<2 9)\+65 ?2(/\4_“ hQBZa ( ) T(Z7Z)7X1(Z¢Z) XQ(Z Z) X1(272)7X2(Z>Z)

are the general solutions of the following Helmholtz equations

0) (0) (1) 5(1)
Ax —n*x =0, AT—~*1=0, Ax1—n?x1=0, AX1—n5x1 =0,

(1) o) (1 o1 2 12(A + p)
Ax1— = Axo — = Sk VAL
X1 —n3x1 =0, X2 Mg X2 = O+ 20)h?’

3 3 3 15 15
%:m’ﬁZM’%:@fwﬁ’%ZM’ﬁ:Qf“ﬁ'

The constructed general solution enables one to solve analytically a
sufficiently wide class of boundary value problems of the elastic equilibrium
of porous plates with double porosity.

Let’s consider the following boundary value problems for system (6)-(9).
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Find the solutions of the homogeneous system of equations (6)-(9) com-
pitible with the kinematic boundary conditions:
(0) e9)

Ut ||zj=p = F, us|js=r = F3
o o (15)

P1lizi=r = H1, P2 ljz1=r = Ha2,

1) (
Uy |jz)=r = G+, U3|jz=r = G3 )
(1) 1) (16)

P1ljzj=r = H3,  DP2|j2j=r = Ha,

where Fy, F3, G4, G3, H; are the known functions.
Let us introduce the functions ¢(z), ¥(z), x(z,2), F} and F3 by the
series:

Z anz Z an F+ = iA;zemea F3 — iB;einﬂ
oo =

Zann e, Z%n (mr)e™, Hj= ZAme

where I,,(-r) are Bessel’s modificed functions, j =1, 2.
By substituting (10-12) into (15) we obtain the system of algebraic
equations:

gi 1 SZ Rai — Ray — 12&’75:/01 (R)ag = A1,
Io(nR)oo — 3/\2J);h2u (a1 +a1) = Bo,
:5),? 1 SZ Ra, — ma’ﬁu)fn(nman_l — A, (n>2),
—(n+ Q)R"”a;;; — R"b, — %In(nﬁ,)a_n_l =A_, (n>0),
I,(nR)a, — m(n +1)R"ap41 = B, (n>1).
where
Ap = A, - 2 maz o ln(mR) — mmn[n(ﬁm%

B, = By, — a1ainl(mR) — asaon Iy (n2R).
For coefficients a,,, b, and o, we have:

Aln o — A2n
L(mR) " L(pR)’

(n=0,+1,£2,..),

A1n =

o4
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Anhl,(nR
o (3A+2p) <A" TR0 u)f(n—l)(nR) ) (n>2)
"= 20h2(n + 1)1, o
[ A2nh2(n + 1)I1,(nR)
6(A + p)In-1(nR)
Anhil,1(nR)
ox (A B L
I U (Ao + R Bt ) D
" LR [T Ahon I (nR
(nR) (5M+ 61)R o —;7“)+1((77R)) (n+1)
Anhin2(nR)
t Rt <(5>\ bR — el R) 2>>
6(\ + 1) Int1(nR)
B Anhln(nR) (Byix
12(A + )R T (nR) "F
Anhfn+2(77R) )
2\ ( Apso + Boer J(nt2) ) 7
+ ( 2T B0 W) ) ) S A s
(A + 6 — 20 A
6(A + 1) Iny1(nR)
Anhly(nR)
ReA; +
" 1 12(A + p)Ip(nR) ’ + A+ 2 iImA;
20t20) ,  AhPh(nR) B+
3N+ 24 3(A+ ) (3X +2u) Io(nR)
Aphly (nR) >
X ( ReA B
" < T B W l(R)
= TGR Nh2nI(nR) "
o(nF) 200+ 2p)lo(nR)R — M
Let
ch s Zdz G+:ZM’7/lein97 G?):Z]\[;eine7
T = Zﬁnln(fyr)einea Xj Zﬁjn n 773T ’ J+2 ZAJ+2 ne

We now find the coeﬂﬁments ¢n, dn, and 3, from followmg system of
algebraic equations:

1 _ R?
ShOR)G + Rler +@) = My, dy+do = 5-(e1 +3) = N,

95
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%In(’yR)ﬁnfl + R"c, = M, (TL > 2)7

ﬂfn(’yR)B_n_l —2(n+ DRy + (n 4 2)Enpot
+4h2(>\ +2u)

3,[1, n+2
Rndn — ch_g_l = Nn (n Z 1),

(17)
(n+1)(n+2)R"¢py2=M_,, (n>0),

where

h 13051 Bin 435 Ban
M, = M/ — I, (3R —=——I,(mR) |,

N, = N;l + In(ng,R) + In(T]4R)> .

A+2u \ 15 15 + 2h?

The solutions of the system (17) have the following forms:

h? (Bi‘ﬁln B3 Ban

A3n 52 _ A4n
In(773R)7 " In(774R)’

I,—2(vR) 2(n—1)
LoR) TR

I, 4h? 2
<2(7R) + 1> o 4 AT 20) (2: (1)

In_1(vR) 2n >

(n=0,+1,42,..),

ﬁln =

an+2 + anl

(n > 2)7

Cp =

M1+ =N,
Ini(PR) "R

= = - .
2 (I" 1(0F) + 1) R+l 4 8h7(A +24) (;+ 2’u)n(n +1)R" !
U

(n=>1),

. I,_1(YR) 2n )
M,n e Mn 7Nn R
< AL AR T TR

=———— | M1 —
il 1 (VR) IaOB) gy PO
In+1(’}/R) 3M
(n=1),
ReM - ReM 2ImM
S, do+do = o “R+No, fo= m

It is easy to prove the absolute and uniform convergence of the series
obtained in the circular ring (including the contours) when the functions

Bn

c+ac =

56
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set on the boundaries have sufficient smoothness.
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