
SEMI-AUTOMATED CONSTRUCTION OF PROOF SCHEMATA

Gela Chankvetadze1, Lia Kurtanidze2, Mikheil Rukhaia1

1I. Vekua Institute of Applied Mathematics,
I. Javakhishvili Tbilisi State University,
University Str. 2, 0186 Tbilisi, Georgia.

2Faculty of Informatics, Mathematics and Natural Sciences,
Georgian University,

I. Chavchavadze Ave. 53A, 0179 Tbilisi, Georgia.

(Received: 12.08.16; accepted: 11,12.16)

Abstract

In this paper we present a goal-directed proof-search algorithm for formula schemata,
which is based on a sequent calculus. Usually, sequent calculus inference rules can
be applied freely, producing a redundant search space. The standard approaches are
extended to formula schemata to get rid of redundancy in a proof-search. A formula
schema is a finite representation of an infinite sequence of first-order formulas, thus
complete automation of the process is not feasible. Still, there are some (not so trivial)
subclasses, where the process can be fully automated.

Key words and phrases: formula schemata, sequent calculus, proof-search.
AMS subject classification: 68T15, 03F03.

1 Introduction

Proof theory takes its roots from G. Gentzen, when he introduced a sequent calcu-
lus, Logische Kalkül, for first-order logic [18]. Since then, proofs are heavily used
in computer science, in particular, program and hardware verification. This gave
rise to theorem proving, a new branch of mathematical logic. There are various
theorem proving techniques, like resolution, tableaux, etc. It is well known that
first-order logic is undecidable, therefore all complete proof-search procedures are
non-terminating.

The concept of term schematization was introduced in [6] to avoid non-termination
in symbolic computation procedures and to give finite descriptions of infinite
derivations. Later, formula schemata for propositional logic was developed [1] to
deal with schematic problems (graph coloring, digital circuits, etc.) in a more uni-
form way. The language is strong enough that the satisfiability problem is already
not decidable for propositional schemata [3]. Although, there exist some decidable
classes of propositional formula schemata and a tableaux prover (RegSTAB) is
implemented [2] for a subclass, called regular schemata.

In [9, 17] the language of formula schemata was extended to language of first-
order schemata, which allows us to specify an (infinite) set of first-order formulas

AMIM Vol.21 No.2, 2016 G.Chankvetadze, L.Kurtanidze, M.Rukhaia +

by a finite term. A sequent calculus, called LKS, was defined for such a language,
which can be considered as an alternative to a sequent calculus with the induction
rule.

The aim of this paper is to define an efficient proof-search procedure, that will,
for a given first-order formula schema, obtain its proof schema. It is well known
that naive proof-search in sequent calculus leads to a redundant search space.
The reason is that inference rules can be applied nondeterministically. To avoid
such nondeterminism, J.Y.Girard introduced a concept of polarity and based on it,
defined a focused sequent calculus LC [11]. In [14], LC was adapted to proof-search
and a sequent calculus LKF was obtained. Later, in [5], the technique of focusing
was used in inductive theorem proving as well.

The idea of focusing lies on the classification of logical connectives into asyn-
chronous and synchronous polarities. These polarities do not affect the provability
of formulas, but the shape of proofs and proof-construction steps. Asynchronous
rules are usually invertible and can be applied in any order. In contrast, if a syn-
chronous formula is chosen for decomposition, a synchronous phase begins and all
synchronous subformulas should be decomposed until the axioms or only asyn-
chronous subformulas are reached. Unlike Gentzen’s sequent calculus, the proof-
construction steps become deterministic using this technique.

In this paper we do not define a focused sequent calculus, but consider an
invertible version of LKS. Nevertheless, our proof-search procedure is based on
ideas of focusing to narrow the search space and uses other standard and well-
known approaches to avoid backtracking [4].

The rest of the paper is organized in the following way: Section 2 is devoted to
basic definitions such as a language of first-order formula schemata and its sequent
calculus. Section 3 and Section 4 describe main contribution of the paper – the
proof-search algorithm and its implementation, respectively. Finally, we conclude
the paper in Section 5.

2 Proof Schemata

We define a schematic first-order language, following [9], that is an extension of the
language described in [1, 3] to first-order logic. It allows us to specify an (infinite)
set of first-order formulas by a finite term.

We consider two sorts ω, to represent the natural numbers, and ι, to represent
an arbitrary first-order domain. Our language consists of countable sets of vari-
ables of both sorts, and sorted n-ary function and predicate symbols partitioned
into constant function/predicate symbols and defined function/predicate symbols.
While the first is used to define usual first-order terms and predicates, the latter
allows recursion on terms and formulas.

Terms are built from variables and constant function symbols as usual. We
assume the predefined constant functions zero 0: ω and successor s : ω → ω to be
present. By V (t) we denote a variable set of a term t, and by · we denote the
sequence of terms of appropriate sort.

For every defined function symbol f , we assume that its sort is ω × τ1 × · · · ×
τn → τ (with n ≥ 0 and τ ::= ω | ι | τ → τ). Then we define a term schema

74

+ Semi-automated Construction of Proof Schemata AMIM Vol.21 No.2, 2016

Figure 2.1: The sequent calculus LKS.

f(y, x) by the two rewrite rules

f(0, x)→ t0 f(s(y), x)→ t[f(y, x)]

where V (t0) ⊆ {x1, . . . , xn} and V (t[f(y, x)]) ⊆ {y, x1, . . . , xn}, and t0, t are terms
not containing f . If a defined function symbol g occurs in t0 or t then g ≺ f . We
assume that these rewrite rules are primitive recursive, i.e. that ≺ is irreflexive.

We write t � t′ to denote that an expression t rewrites to an expression t′ in
arbitrarily many steps.

Example 2.1 Assume g : ω × ι → ι is a defined function symbol, f : ι → ι is a
constant function symbol, and k : ω, x : ι are variables. The following rewrite rules
for g

g(0, x)→ x g(s(k), x)→ f(g(k, x))

define a term schema g(k, x). For every natural number n, g(n, x) rewrites to
fn(x), e.g.

g(s(s(s(0))), x) � f(f(f(x))).

Formulas are built inductively from atomic formulas using the logical connec-
tives ¬, ∧, ∨, ⇒, ∀ and ∃ as usual. The notions of interpretation, satisfiability
and validity of formulas are defined in the usual classical sense.

Analogously to defined function symbols, we assume that rewrite rules are
given for defined predicate symbols as well and that they have an irreflexive order
≺ for the latter, to build formula schemata.

A variable occurrence in a formula is called bound if it is in the scope of ∀ or
∃ connectives, otherwise it is called free. In our setting, it is important to clarify
how to interpret multiple occurrences of the same bound variable. An occurrence
of a bound variable x is associated to the deepest quantifier that binds x.

75

AMIM Vol.21 No.2, 2016 G.Chankvetadze, L.Kurtanidze, M.Rukhaia +

Example 2.2 Assume P : ω is a defined predicate symbol, Q : ω× ι is a constant
predicate symbol, and k : ω, x : ι are variables. The following rewrite rules for P

P (0)→ ∀xQ(0, x) P (s(k))→ ∃x(Q(k, x) ∧ P (k)). (2.1)

define a formula schema P (k). Then, e.g.

P (s(s(0))) � ∃x(Q(s(s(0)), x) ∧ ∃x(Q(s(0), x) ∧ ∀xQ(0, x)))

which is equivalent to (by renaming of bound variables)

∃x2(Q(s(s(0)), x2) ∧ ∃x1(Q(s(0), x1) ∧ ∀x0Q(0, x0))).

Proposition 2.3 Let A be a formula. Then every rewrite sequence starting at A
terminates, and A has a unique normal form.

Proof. Trivial, since all definitions are primitive recursive. 2

Sequents are expressions of the form Γ ` ∆, where Γ and ∆ are multisets of
formula schemata. Sequents are denoted by S(x), were x indicates free variables
occurring in S.

The sequent calculus LKS is given in Figure 2.1, where proof axioms (pax),
which are called proof links in [9, 17], may appear only at the leaves of a proof. A
proof axiom has a similar meaning as induction hypothesis: it is assumed that a
proof ϕ at step k proves a sequent S(k).

The latter leads to a notion of proof schema: a tuple Ψ of LKS proof pairs for
ϕ1, . . . , ϕn proof symbols, where each pair corresponds to the base and recursive
cases of inductive definition. The proof symbols in a proof schema must be properly
ordered in a sense that if i > j, ϕi must not contain a proof axiom referring to
ϕj . We also say that the end-sequent of ϕ1 is the end-sequent of Ψ. For a formal
definition of proof schemata we refer an interested reader to [9, 17].

Example 2.4 Let g(k, x) be a term schema defined in Example 2.1. Then a
proof schema of the sequent P (a),∀x(¬P (x) ∨ P (f(x))) ` P (g(k, x)) is given in
Figure 2.3 (the base case) and Figure 2.4 (the recursive case) 1.

According to the above definitions, it is easy to see that proof schemata nat-
urally represent infinite sequences of first-order proofs.

Proposition 2.5 The sequent calculus LKS is sound.

Proof. Although the calculus is not exactly the same, the proof is similar to the
ones given in [9, 17]. 2

1The proof schema is obtained by the schematic prover, thus contains redundant
structural rules. Details are explained in Section 4.

76

+ Semi-automated Construction of Proof Schemata AMIM Vol.21 No.2, 2016

Figure 2.2: A sample input for the algorithm.

3 The Algorithm

Construction of a proof schema of a sequent is divided into two tasks: first the
LKS-proof for base case and then the LKS-proof for recursive case must be con-
structed. The main difference between these two lies on the usage of proof axioms,
i.e. induction hypothesis, which are obsolete in the base case.

To handle quantifiers, we use similar method described in [4]. This means that
the choice for the weak quantifier instance term is postponed until it is obtained
via unification. It works in the following way: on a decomposition step of a weakly
quantified formula 2, we keep its original version as well (to avoid backtracking)
and replace the quantified variable with an eigenvariable, until the proper term is
obtained via unification. The substitution is applied to the whole proof skeleton,
to replace every occurrence of the eigenvariable with the proper term.

Note that all propositional rules in LKS are invertible, thus they can be ap-
plied freely. The priority is given to unary inference rules, since the binary rules
duplicate the context. Therefore, unary rules are applied when applicable and the
application of binary rules is postponed as far as possible.

In the proof-search of recursive case, rewriting of defined function and predicate
symbols must be done in a way that each symbol is rewritten only one step down
(e.g. going from k + 1 to k). After such rewriting, if no other rules are applicable
on a sequent, the proof axiom should be introduced or algorithm must terminate
with “no proof found”. If the sequent contains a match instance of the end-sequent
modulo k parameter, then a proof axiom to itself must be made; otherwise a proof
axiom referring to a new proof symbol must be created and new proof-search for
this sequent must be scheduled.

It is easy to see that this algorithm is not complete. In fact, there is no

2A formula, having a weak quantifier as an outermost connective.

77

AMIM Vol.21 No.2, 2016 G.Chankvetadze, L.Kurtanidze, M.Rukhaia +

Figure 2.3: A proof for the base case is found.

complete algorithm exists, because the unsatisfiability of formula schemata is not
semi-decidable even for propositional schemata [3].

4 Implementation

The algorithm is implemented under the GAPT 3 framework, which is written in
the programming language Scala [16]. GAPT [10] provides data-structures, al-
gorithms and user interfaces for analyzing and transforming formal proofs. The
framework is very general and implements the basic data structures for simply-
typed lambda calculus, for sequent and resolution proofs as well as expansion
proofs [13]. Various theorem provers have already been integrated into this frame-
work [7, 12]. In parallel, we have developed a Graphical User Interface called
ProofTool which can be used both as a pure visualization tool (with the fea-
tures like zooming, scrolling, searching, etc.) and as a proof manipulator (allow-
ing to call GAPT’s proof transformations such as cut-elimination, regularization,
skolemization, etc. 4). Details about ProofTool and how it displays formulas,
sequents and proofs can be found in [8, 15].

GAPT provides several input/output formats, including one for first-order for-
mula schemata. The format is intuitive and easy to use. An example of a sequent
in this format is given in Figure 2.2. We have the following assumptions: constant
function symbols are denoted by f, f1,..., and constant predicate symbols by
P, P1,.... Defined function and predicate symbols are represented by g, g1,...,
and Q, Q1,..., respectively. The logical connectives are represented using ∼, \/,
/\, =>, Forall, Exists, and |- represents the sequent sign. For more detailed

3General Architecture for Proof Theory, http://www.logic.at/gapt
4In official release of version 2.0 this is not the case any more.

78

+ Semi-automated Construction of Proof Schemata AMIM Vol.21 No.2, 2016

Figure 2.4: A proof for the recursive case is found.

description of the format we refer an interested reader to [8].
GAPT system implements a non-invertible version of LK, but there are so

called macro rules, which simulate invertible rules using additional weakening and
contraction rules. Thus the actual output of the schematic prover contains some
redundant structural rules. There exists a function in GAPT removing such re-
dundancies from proofs, but at the time of this writing it significantly affects
performance of the prover.

The algorithm is under implementation. Currently the prover succeeds to
find only ”simple” proof schemata. Under the term ”simple” we mean a proof
schema, which consists only of one proof pair. This means that the LKS-proof of
recursive case contains proof axioms referring to itself only. The following example
illustrates the problem.

Example 4.1 Consider a simple modification of the sequent from Example 2.4:

P (a),∀x(¬P (x) ∨ P (f(x))) ` P (g(k, x)) ∧ P (a).

Our prover produces a trivial proof for the base case, but fails on the recursive case.
According to the algorithm, it first decomposes right-hand side formula, producing
the following (structural rules are omitted):

At this point, the prover tries to further decompose the left-hand side of the
derivation, thus failing to prove the statement. Instead, a proper behaviour would
be to place a new proof axiom and schedule a proof-search for P (a),∀x(¬P (x) ∨
P (f(x))) ` P (g(k, x)). Our future work is concentrated on this problem.

Finally, we would like to mention that the prover is integrated in ProofTool.
The Prover>Start menu item opens a window, where user can type a sequent
schema to be proved (see Figure 2.2). After clicking on the Parse button, the text

79

AMIM Vol.21 No.2, 2016 G.Chankvetadze, L.Kurtanidze, M.Rukhaia +

input is parsed and the sequent schema is passed to the algorithm, which tries
to prove the base case first. If the proof is found, it appears on the screen (see
Figure 2.3), and the prover continues to prove the recursive case. If the proof of
the recursive case is found, it is also displayed (see Figure 2.4). Otherwise an error
message appears, describing the problem.

5 Conclusions

We presented a proof-search algorithm for first-order formula schemata. Its im-
plementation is an ongoing work, so far succeeding to obtain only “simple” proof
schemata. The main problem in implementation is to decide when to close a
branch with a proof axiom referring to a new proof symbol.

For the future, we plan to continue development in two directions, that com-
plement each other:

1. Add interactivity to the prover via ProofTool. A user will have a pos-
sibility to decide when to close a branch with a proof axiom, decide for a
proper substitution term, etc., on a point-and-click basis.

2. Make the prover more clever, by designing a reasonable algorithm, making
a proper decision without user interaction. Note that naive algorithm can
lead to placing a new proof axiom after every decomposition step. Although
it is a legal approach, it is completely inefficient.

Acknowledgment. The work was supported by Shota Rustaveli National
Science Foundation project no. FR/51/4-120/13.

References

1. Aravantinos V, Caferra R, Peltier N. A Schemata Calculus for Propositional
Logic. In Tableaux’09, volume 5607 of LNCS, pages 32–46, 2009.

2. Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. RegSTAB: A SAT-
Solver for Propositional Iterated Schemata. In International Joint Conference
on Automated Reasoning, pages 309–315, 2010.

3. Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Decidability and
Undecidability Results for Propositional Schemata. Journal of Artificial In-
telligence Research, 40:599–656, 2011.

4. Serge Autexier, Heiko Mantel, and Werner Stephan. Simultaneous quantifier
elimination. In KI-98: Advances in Artificial Intelligence, pages 141–152.
Springer, 1998.

5. David Baelde, Dale Miller, and Zachary Snow. Focused Inductive Theorem
Proving. In Automated Reasoning, pages 278–292. Springer, 2010.

6. Hong Chen, Jieh Hsiang, and Hwa-Chung Kong. On finite representations
of infinite sequences of terms. In S. Kaplan and M. Okada, editors, Condi-
tional and Typed Rewriting Systems, volume 516 of Lecture Notes in Computer
Science, pages 99–114. Springer Berlin Heidelberg, 1991.

80

+ Semi-automated Construction of Proof Schemata AMIM Vol.21 No.2, 2016

7. Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil
Rukhaia, Daniel Weller, and Bruno Woltzenlogel-Paleo. System Feature
Description: Importing Refutations into the GAPT Framework. In David
Pichardie and Tjark Weber, editors, Second International Workshop on Proof
Exchange for Theorem Proving (PxTP 2012), volume 878 of CEUR Workshop
Proceedings, pages 51–57, 2012.

8. Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil
Rukhaia, Daniel Weller, and Bruno Woltzenlogel-Paleo. ProofTool: a GUI for
the GAPT Framework. In Cezary Kaliszyk and Christoph Lüth, editors, Pro-
ceedings 10th International Workshop On User Interfaces for Theorem Provers
(UITP 2012), volume 118 of Electronic Proceedings in Theoretical Computer
Science, pages 1–14, 2013.

9. Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and Daniel Weller.
Cut-elimination and proof schemata. In Martin Aher, Daniel Hole, Emil
Jeřábek, and Clemens Kupke, editors, Logic, Language, and Computation,
volume 8984 of Lecture Notes in Computer Science, pages 117–136. Springer
Berlin Heidelberg, 2015.

10. Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner,
and Sebastian Zivota. System Description: GAPT 2.0. In Nicola Olivetti and
Ashish Tiwari, editors, Automated Reasoning: 8th International Joint Con-
ference, IJCAR 2016, Proceedings, volume 9706 of Lecture Notes in Computer
Science, pages 293–301. Springer International Publishing, 2016.

11. Jean-Yves Girard. A new constructive logic: classical logic. In Mathematical
Structures in Computer Science, volume 1, pages 255–296. Cambridge Univ
Press, 1991.

12. Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel
Weller. Introducing quantified cuts in logic with equality. In Stéphane Demri,
Deepak Kapur, and Christoph Weidenbach, editors, Automated Reasoning,
volume 8562 of Lecture Notes in Computer Science, pages 240–254. Springer,
2014.

13. Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia. Understand-
ing Resolution Proofs through Herbrand’s Theorem. In Didier Galmiche and
Dominique Larchey-Wendling, editors, Automated Reasoning with Analytic
Tableaux and Related Methods (Tableaux 2013), volume 8123 of Lecture Notes
in Computer Science, pages 157–171, 2013.

14. Chuck Liang and Dale Miller. Focusing and polarization in linear, intuition-
istic, and classical logics. Theoretical Computer Science, 410(46):4747–4768,
2009.

15. Tomer Libal, Martin Riener, and Mikheil Rukhaia. Advanced Proof Viewing
in ProofTool. In Christoph Benzmüller and Bruno Woltzenlogel Paleo, edi-
tors, Proceedings Eleventh Workshop on User Interfaces for Theorem Provers,
(UITP 2014), volume 167 of Electronic Proceedings in Theoretical Computer
Science, pages 35–47, 2014.

81

AMIM Vol.21 No.2, 2016 G.Chankvetadze, L.Kurtanidze, M.Rukhaia +

16. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima, Inc., 2nd edition, 2010.

17. Mikheil Rukhaia. About Cut-Elimination in Schematic Proofs. A monograph.
Lambert Academic Publishing, Saarbrücken, 2013.

18. Gaisi Takeuti. Proof Theory. North Holland, second edition, 1987.

82

