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Abstract

In the paper various boundary value problems are considered for the heat-conduction

equation with variable coefficients. Approximate solutions of these problems are con-

structed.
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Let us consider a heat-conduction boundary value problem [1] in inho-
mogeneous medium Ω under variable thermophysical parameters dependent
on coordinates. Having imposed (0 ≤ x ≤ l), cρ = const, λ = λ0e

−kx and
q = 0 we reduce the energy equation to the form [1]

cρ
∂T

∂t
=

∂

∂x

(
λ0e

−kt∂T

∂x

)
.

Approximate solution of this equation under uniqueness conditions

T (0, t) = 0, T (ℓ, t) = φ (t) , T (x, 0) = 0

in Laplace transforms T ∗ (M,S) =
∞∫
0

T (M, t) exp (−St) dt (where T ∗ (M,S)

is Laplace integral transform of temperature T (M, t); S is a parameter of
Laplace transform; M (x, y, z) is a moving point at the domain Ω) is found
in the family of functions

T ∗
n (x, S) =

ekx − 1

ekl − 1
φ∗ (S) +

n∑
i=1

a∗i (S)
(
1− x

l

)(x
l

)i
.

Under constant boundary conditions φ (t) = Tc = const, in the first
approximation this solution is reduced to the form

T (x, F0)

Tc
=
ekx − 1

ekl − 1
+

(
1− x

l

) x
l
exp [−B (α)F0] , (1)
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where

B (α) =
30

[
α2 − 4α+ 8

]
− e−α

(
α2 − 4α+ 8

)
α3

α = kl, F0 =
a0t

l2
, a0 =

λ0
ρc
.

Having calculated the limit by L’Hospital’s rule we can write

lim
α→0

B (α) = 10, lim
k→0

ekx − 1

ekl − 1
=
x

l
.

Then the solution (1) in the limit as k → 0 will be

T (x, F0)

Tc
=
x

l
+

(
1− x

l

) x
l
exp (−10F0) .

Hence it follows that as α → 0 (kl ≤ 0, 1) the approximate solution (1)
in actual fact coincides with the known solution for a plate under constant
transfer coefficients [5]. Furthermore, solution (1) as F0 → ∞ tends to
exact solution of appropriate stationary problem [4].

For an unbounded plate Ω (−R ≤ x ≤ R) under symmetric boundary
conditions we write the problem in the form

∂T

∂F0
=

∂

∂ξ

(
e−ω|ξ|∂T

∂ξ

)
, ξ =

x

R
, ω = kR,

T (ξ, 0) = T0, [T (ξ, F0)]ξ=±1 = φ (F0) . (2)

Without loss of generality, we assume φ (F0) = T0 (1 + PdF0), where

Pd = bR2

T0a0
, then in the transforms

d

dξ

(
e−ωξ dT

∗

dξ

)
− ST ∗ (ξ, S) + T0 = 0

[T ∗ (ξ, S)]ξ=1 = φ∗ (S) = T0

(
1

S
+
Pd

S2

)
,

(
dT ∗

dξ

)
ξ=0

= 0.

We look for the approximate solution of the boundary value problem in
the family of linear combination

T ∗
0 (ξ, S) = φ∗ (S) + a∗1 (S)

[
eω

(
1− 1

ω

)
− eωξ (ωξ − 1)

ω

]

+

n∑
i=2

a∗i (S)
(
1− ξ2

)
ξ2(i−1). (3)
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The first coordinate function in the solution (3) was chosen so that to
within constant factor it equals the solution of the equation

∂

∂ξ

(
e−ωξ ∂T

∂ξ

)
= T0Pd.

Relative excess temperature in the first approximation is written in the
form

θ (ξ, F0, Pd, ω) =
T (ξ, F0)− T0

T0

= Pd

{
F0 − [1− exp (−A (ω)F0)]

[
eω

ω

(
1− 1

ω

)
− eωξ

ω

(
ξ − 1

ω

)]}
(4)

where

A (ω) =
4
[
eω

(
ω4 − 2ω3 + 2ω2

)
− 2ω2

]
e2ω (4ω3 − 14ω2 + 22ω − 11)− 16eω (ω − 1)− 5

.

For quasi-stationary condition (exp (−A (ω)F0) ≈ 0), from the solution
of (4) we get [1]

θ (ξ, F0, ω)

Pd
= F0 −

[
eω

ω

(
1− 1

ω

)
− eωξ

ω

(
ξ − 1

ω

)]
, F0 ≥ F01 ,

that coincides with the exact solution.
After opening L’Hospital indeterminacy, we get of indeterminate terms

lim
ω→0

A (ω) = 2, 5,

lim
ω→0

[
eω

ω

(
1− 1

ω

)
− eωξ

ω

(
ξ − 1

ω

)]
=

1

2

(
1− ξ2

)
.

Expression (4) as ω → 0 is written in the form

θ (ξ, F0, Pd, 0) = Pd

{
F0 −

1

2

(
1− ξ2

)
[1− exp (−2, 5F0)]

}
. (5)

In thin plates (ω = kR ≤ 0, 2) temperature may be calculated by for-
mula (5) that is the known solution under constant heat conduction coef-
ficient [2].

For an unbounded cylinder Ω
(
x2 + y2 ≤ R2

)
we put λ = λ0e

kr, ρc =
const,
ρ2 = (r/R)2 = ξ2 + η2 ≤ 1, then the problem is written as

∂T

∂t
= a0

[
∂

∂x

(
ek
√

x2+y2 ∂T

∂x

)
+

∂

∂y

(
ek
√

x2+y2 ∂T

∂y

)]
. (6)
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In cylindrical coordinates under symmetric boundary conditions

T (ρ, 0) = T0, [T (ρ, F0)]ρ=1 = φ (F0) (7)

equation (6) is reduced to the form

∂T

∂F0
= eωρ

[
∂2T

∂ρ2
+

1

ρ

∂T

∂ρ
+
ω∂T

∂ρ

]
. (8)

Assume
lim

F0→∞
φ (F0) = Tc = const, (9)

then stationary condition onsets in the cylinder, and ∂T
∂F0

= 0. Integrating
the equation

eωρ
(
∂2T

∂ρ2
+

1

ρ

∂T

∂ρ
+
ω∂T

∂ρ

)
= 0,

we get

ρ
∂T

∂ρ
= Ce−ωρ.

As
(
ρ∂T
∂ρ

)
ρ=0

= 0, then C = 0. Therefore, for (T )ρ=1 = Tc = const the

solution of the equation will be T (ρ) = T0, i.e. under stationary condition,
as in the case of homogeneous cylinder, uniform temperature is set up in
the entire inhomogeneous cylinder. Subject to condition (9), we look for
the solution of problem (8), (7) in the area of transform [1]

T ∗
n (ρ, S) = φ∗ (S) +

n∑
i=1

a∗i (S)
(
1− ρ2

)
ρ2(i−1).

Let us compose discrepancy at T ∗ (ρ, S) = T ∗
1 (ρ, S) for the equation

eωρ
[
d

dρ

(
ρ
dT ∗

dρ

)
+ ωρ

dT ∗

dρ

]
− SρT ∗ (ρ, S) + T0ρ = 0

and require orthogonality of the obtained expression to the function ψ1 (ρ) =(
1− ρ2

)
, then we have

1∫
0

{
2eωρ

(
2ρ+ ωρ2

) (
1− ρ2

)
+ S

(
1− ρ2

)2
ρ
}
dρ

− [T0 − Sφ∗ (S)]

1∫
0

(
1− ρ2

)
ρdρ = 0,
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whence

a∗1 (S) =
3

2
[T0 − Sφ∗ (S)] [S +A (ω)]−1 ,

where

A (ω) =
12

[
eω

(
2ω3 − 6ω2 + 12ω − 12

)
+ 12

]
ω4

.

For φ (F0) = Tc = const the relative excess temperature in the first
approximation

θ (ρ, F0, ω) =
T (ρ, F0)− Tc

T0 − Tc
=

3

2

(
1− ρ2

)
exp [−A (ω)F0] .

Relative excess temperature interior to the cylinder under exponential
temperature fall of the wall

φ (F0) = Tc + (T0 − Tc) exp (−PdF0)

in the first approximation is written by the dependence

θ (ρ, F0, Pd, ω) =
T (ρ, F0)− Tc

T0 − Tc

= exp (−PdF0)−
3

2
{exp [−A (ω)F0]

− 1

[Pd−A (ω)]
[Pd exp (−PdF0)−A (ω) exp (−A (ω)F0)]

}(
1− ρ2

)
.

When condition (9) is violated, for improving the convergence of the so-
lution the system of coordinate functions should be chosen as follows.
As a first coordinate function to within constant factor, the solution of
equation (8) for the period of quasi-stationary condition is taken. For
example, at linear temperature rise at the boundary (8) into equation
[φ (F0) = T0 (1 + PdF0)] we put (8)

∂T
∂F0

= PdT0. Then for quasi-stationary
condition, the solution of boundary value problem (8), (7) is written in the
form

T (ρ, F0, Pd, ω) = T0 (1− PdF0)

−PdT0
2

[
e−ω

(
1

ω2
+

1

ω

)
−
(
ρ

ω
+

1

ω2

)
e−ωρ

]
. (10)

Thus, we look for temperature field interior to the cylinder under linear
temperature rise of the surface, in the family of functions of the form

T ∗
n (ρ, S, ω) = φ∗ (S) + a∗1 (S)

[
e−ω

(
1

ω2
+

1

ω

)
−

(
ρ

ω
+

1

ω2

)
e−ωρ

]
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+
n∑

i=2

a∗i (S)
(
1− ρ2i

)
. (11)

For simplicity, we are restricted with definition of the solution in the
first approximation. Then we have:

a∗1 (S)

[
e−ω

(
ω3 + 2ω2 + 6ω + 6

)
− 6

ω4

+S
e−2ω

(
4ω4 + 20ω3 + 54ω2 + 78ω + 39

)
− 48 (ω + 1) e−ω + 9

8ω6

]

=
T0Pd

S

[
6− e−ω

(
ω3 + 2ω2 + 6ω + 6

)
ω4

]
.

Whence

a∗1 (S) =
PdT0
2

[
1

S
+

1

S +D (ω)

]
where

D (ω)

=
8ω2

[
e−ω

(
ω3 + 3ω2 + 6ω

)
− 6

]
e−2ω (4ω4 + 20ω3 + 54ω2 + 78ω + 39)− 48 (ω + 1) e−ω + 9

.

The relative excess temperature is written by the dependence

θ (ρ, F0, Pd, ω) =
T0 (ρ, F0)− T0

T0

= Pd

{
F0 −

1

2
[1− exp (−D (ω))F0]

[
e−ω

(
1

ω2
+

1

ω

)
−

(
ρ

ω
+

1

ω2

)
e−ωρ

]}
.

(12)

For rather great F0, this solution coincides with formula (10). Calculate
the limits by L’Hospital’s rule, then

lim
ω→0

D (ω) = 6, lim
ω→0

[
e−ω

(
1 + ω

ω2

)
− e−ωρ

(
ρω + 1

ω2

)]
=

1

2

(
1− ρ2

)
.

From (12) in the limit as ω → 0 we get appropriate solution for a

cylinder with constant heat conduction coefficient
(
lim
ω→0

λ0e
mρ = λ0

)
:

θ (ρ, F0, Pd) =

{
F0 −

1

4

(
1− ρ2

)
[1− exp (−6F0)]

}
Pd.

51



AMIM Vol.21 No.2, 2016 G. F. Hajiyeva, P. F. Gahramanov +

In relation (11), for any n ≥ 2 the following limit properties

lim
S→0

Sa∗1 (S) = lim
F0→∞

a1 (F0) = −T0Pd
2

,

lim
S→0

Sa∗i (S) = lim
F0→∞

ai (F0) = 0 (i ≥ 2)

are fulfilled, i.e. in the second, third and in the next approximations, as
F0 → ∞ the solution has an asymptotic coinciding with exact solution of
quasi-stationary condition.

To compare the approximate solution obtained by the above mentioned
methods with exact solution, we give the results of temperature calculation
interior to the homogeneous ball under first kind boundary conditions.

Relative excess temperature in the n-th approximation is given by the
formula [1]

θn (ρ, F0) =
T (ρ, F0)− TC

T0 − TC
=

n∑
i=1

(−1)i+1 f
(n)
i exp

(
−S(n)

i F0

)
, (13)

where f
(n)
i (ρ) are fourth degree polynomials of order 2n. The results of

calculations of eigenvalues to the fifth approximation and the functions

f
(n)
i (ρ) for n = 4 are given in table 1. Good convergence of eigenvalues

to exact ones is seen from table 1. The polynomial f
(4)
1 (ρ) in actual fact

coincides with the first eigenfunction (2 sinπρ) /πρ in the exact solution [3].
Table 1.
Approximate eigenvalues of functions

n

S
(n)
i exact values

i n = 1 n = 2 n = 3 n = 4 n = 5

1 2 3 4 5 6 7

i = 1 10, 5 9, 8751 9, 8696 9, 8696 9, 8696 9, 8696

i = 2 50, 1246 39, 9978 39, 4893 39, 4784 39, 4784

i = 3 142, 6322 94, 1187 88, 8825 88, 8264

i = 4 324, 6256 194, 4327 157, 9137

i = 5 515, 2573 246, 7401

f
(4)
1 = 1, 9999− 3, 2888ρ2 + 1, 6178ρ4 − 0, 3691ρ6 + 0, 0402ρ8

f
(4)
2 = 1, 9661− 12, 5072ρ2 + 22, 4466ρ4 − 16, 2848ρ6 + 1, 3799ρ8

f
(4)
4 = 1, 6381− 19, 6264ρ2 + 60, 7957ρ4 − 68, 5992ρ6 + 25, 791ρ8

f
(4)
1 = 1, 1642− 18, 9394ρ2 + 78, 3586ρ4 − 114, 8404ρ6 + 54, 2570ρ8

Multiply (13) by 3ρ2 and integrate from 0 to 1, then

θ4 (F0) = 0, 6079 exp (−9, 8696F0) + 0, 1523 exp (−39, 4893F0)
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+0, 0855 exp (−94, 1187F0) + 0, 0999 exp (−157, 9137F0) . (14)

Integration of four summands in the exact solution gives

θ4 (F0) = 0, 6079 exp (−9, 8696F0) + 0, 1520 exp (−39, 4784F0)

+0, 0675 exp (−88, 8264F0) + 0, 0038 exp (−157, 9137F0) . (15)

Obviously, the exact solution θ (0) = 1. From (14), (15) we have θ4 (0) =
0, 9454, θ4 = 0, 8388. Maximum errors in solutions (14), (15) are attained
for F0 = 0 and they equal 5, 56; 15, 88%. On the whole, solution (14) gives
best convergence than (15).

Comparison of θ4 (F0) with the graph of exact solution is given in fig 1.
The results for other bodies were obtained in the paper [5].

Figure 0.1:
Fig. 1. Dependence between average relative temperature θ and the number F0 for

bodies, the points-calculation

Under symmetric power law of change of heat capacity and heat con-
ductivity coefficients cρ = c0ρ0 (1 + ω |ξ|)m, λ = λ0 (1 + ω |ξ|)n, −1 ≤ ξ =
x
R ≤ 1 and symmetric boundary conditions (2) the temperature field inte-
rior to Ω {−1 ≤ ξ ≤ 1} will be an even function of variable ξ. Therefore, for
an unbounded plate, the heat-conduction equation is reduced to the form

(1 + ξω)m
∂T

∂F0
=

∂

∂ξ

[
(1 + ξω)n

∂T

∂ξ

]
, 0 ≤ ξ ≤ 1. (16)
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As the derivative of the function λ = λ0 (1 + ω |ξ|)2 bears discontinuity
at the point ξ = 0, then even under symmetric distribution of tempera-
ture along the plate’s thickness the derivative ∂T/∂ξ in the middle of the
plate (ξ = 0) is a discontinuous function and the case (∂T/∂ξ)ξ=0 ̸= 0 is
possible.Therefore, consideration of the problem in the interval 0 ≤ ξ ≤ 1
takes the discontinuity point ξ = 0 to the end of the interval at the inside
of which temperature and its derivative are already continuous functions.
Herewith the condition (∂T/∂ξ)ξ=0 = 0 that is necessary in the case of
constant heat conduction coefficient need not hold.

Assume that for rather great F0 the temperature of the wall is equivalent
to the linear function, i.e.

lim
F0→∞

φ (F0)

F0
= const, (17)

then temperature interior to the plate for the period of quasi-stationary
condition has asymptotic solution.

In equation (16) put ∂T/∂F0 = T0Pd, then the solution under zero
boundary conditions at the point ξ = 1 will be

T (ξ, ω,m, n, Pd) =
PdT0

ω2 (m+ 1)

{[
(1 + ωξ)m−n+2

(m− n+ 2)
− (1 + ωξ)1−n

(1− n)

]

−

[
(1 + ω)m−n+2

(m− n+ 2)
− (1 + ω)1−n

(1− n)

]}
.

Subject to condition (17) we look for the solution of problem (16), (2)
in the area of Laplace transform, in the form

T ∗
n (ξ, S, Pd) = φ∗ (S) + a∗1 (S)

{[
(1 + ωξ)m−n+2

(m− n+ 2)
− (1 + ωξ)1−n

(1− n)

]

−

[
(1 + ω)m−n+2

(m− n+ 2)
− (1 + ω)1−n

(1− n)

]}
+

n∑
i=2

a∗i (S)
(
1− ξ2

)
ξ2(i−1). (18)

Having determined the coefficients a∗i (S) and passing to the domain of
pre-images, we find the solution of the input problem. Under the shown
selection of coordinates of functions, the following limit equalities are valid:

lim
S→0

Sa∗1 (S) = lim
F0→∞

a1 (F0) =
PdT0

ω2 (m+ 1)
,

lim
S→0

Sa∗i (S) = lim
F0→∞

ai (F0) = 0 (i ≤ 2) .
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If the wall’s temperature satisfies the condition lim
F0→∞

ai (F0) = T0,

then from (18) in the area of pre-images for the quasi-stationary condi-
tion (F0 > F01) we get the exact solution [1]

T (ξ, F0, Pd, ω) = T0 (1 + PdF0)
PdT0

ω2 (m+ 1)

×

{[
(1 + ωξ)m−n+2

(m− n+ 2)
− (1 + ωξ)1−n

(1− n)

]
−

[
(1 + ω)m−n+2

(m− n+ 2)
− (1 + ω)1−n

(1− n)

]}
.

note that

lim
ω→0

1

ω2

{[
(1 + ωξ)m−n+2

(m− n+ 2)
− (1 + ωξ)1−n

(1− n)

]

−

[
(1 + ω)m−n+2

(m− n+ 2)
− (1 + ω)1−n

(1− n)

]}
= −(m+ 1)

2

(
1− ξ2

)
and in the first approximation the temperature field (18) in the are of pre-
images coincides as ω → 0 with solution (5).

Thus, the stated result allows to study temperature field in one-dimensional
and many-dimensional bodies under variable transfer coefficients

If in the heat-conduction equation instead of variable F0 we put X =
1
Pe

z
R , then by the given method we can get effective solutions for internal

problems of convective heat exchange under turbulent flow of medium in
pipes and canals.
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