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Abstract

Problem for the first order differential equation with an unbounded operator co-

efficient in Banach space and nonlinear nonlocal condition is considered. A numerical

method is proposed and justified for the solution of this problem under assumption

that the mentioned operator coefficient A is strongly positive and some existence

and uniqueness conditions are fulfilled. The method is based on the reduction of the

given problem to an abstract Hammerstein equation. The later one is discretized by

collocation and then solved via the fixed–point iteration method. Each iteration of

the method involves Sinc-based numerical evaluation of the operator exponential rep-

resented by a Dunford-Cauchy integral along hyperbola enveloping the spectrum of

A. The integral part of nonlocal condition is approximated using the Clenshaw-Curtis

quadrature formula.
Key words and phrases: Differential equation with an unbounded operator

coefficient in Banach space, Nonlocal problem, Operator exponential.
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1 Introduction

The paper presents a numerical method for the nonlocal initial value prob-
lem

du(t)

dt
+Au(t) = 0, t ∈ (−1, 1),

u(−1)− g (u(·)) = u0,
(1)

where A is a linear sectorial operator with the dense domain D(A) in the
Banach space X and g : C ([−1, 1];X) → X is a given operator function.
Recall that the sectorialness of A means that its spectrum lies inside a
sectorial domain Σ ∈ C,

Σ (ρ, φ) =
{
z = ρ+ reiθ : r ∈ [0,∞), ρ ∈ R+, |θ| < φ

}
, (2)
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and the resolvent RA(z) = (zI −A)−1 of A satisfies the inequality

∥RA(z)∥ ≤ M

1 + |z|
, (3)

on the boundary of Σ and outside it. A unique pair of parameters (ρ0, φ0)
such that Σ (ρ0, φ0) ⊆ Σ(ρ, φ), for any other admissible pairs (ρ, φ), is
called spectral parameters of A.

The aforementioned nonlocal problem (1) is well studied from the the-
oretical point of view. Initial investigations into the existence of solution
to (1) is given in the works of Byszewski [5, 7] for the case when g is a
function of the finite number of u(ti), i = 1, n. Further developments and
generalizations can be found in [6, 23, 1, 29, 20] (see also the review in
[22]). In this work we will use the existence conditions obtained in [10].

Available works on numerical methods for the nonlocal problems of type
(1) usually deals with the particular realizations of operator A and nonlocal
condition specific to some application area. Pioneering work of Bitsadze
and Samarskii [4], inspired by the plasma research, deals with two-point
nonlocal problem for elliptic partial differential operators. Similar two and
three point nonlocal conditions appear in the works of Gordeziani [14, 15,
16] in applications of two dynamics of the thin-walled structures. In [26]
Vabishchevich investigated the application of two-point nonlocal problems
to the inverse problems of heat conduction (see also [3, 2]). Galerkin meth-
ods for multipoint nonlocal problems related to the diffusion processes were
developed in the works of Canon with co-authors [8, 18].

Majority of the existing numerical methods are based on the finite dif-
ference or finite element approximations to the given differential equation.
More novel numerical approaches presented in [12, 27, 28] are based on
the direct approximation of the solution operator employing the Dunford-
Cauchy formula and quadrature specifically adjusted to the spectral pa-
rameters of A. The later technique permits one to obtain natively par-
allelizable numerical methods with the accuracy automatically adjustable
to the smoothness of initial data (methods without accuracy saturation).
These two numerical properties are essential for the modern problem driven
scientific simulations using the state-of-the-art multi-core computational ar-
chitectures. Hence, we set the development of such a method for (1) as the
main goal of the present work.

Section 2 serves a preparatory purpose. In this section the original
problem is transformed to a more general nonlinear representation. In
section 3 we show how to discretize the obtained nonlinear Hammerstein
equation. The discretized problem is then studied in section 4, where we
establish conditions on the existence of its solution with the help of the
Banach fixed point theorem. The accuracy estimate for the error of fixed
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point iteration method is obtained therein. Final error estimate of the
method is derived in section 5. The remaining part of this section is devoted
to a numerical example, which demonstrates the method’s effectiveness.
Concluding remarks and possible extension are given in section 6.

2 Alternative representation of the given problem

The Hille-Yosida theorem ensures the existence of strongly continuous semi-
group e−At, if A is a sectorial operator with the dense domain D(A) ⊆ X.
Furthermore, it is well known from the classical semigroup theory [24] that
for such A the general solution to the abstract differential equation from
(1) can be formally written as

u(t) = T (A, t)u(−1) ≡ e−A(t+1)u(−1), ∀t ∈ [−1, 1], u(−1) ∈ X.

When u(−1) /∈ D(A), the action T (A, t)u(−1) should be understood in the
sense of the limit. Next we incorporate the nonlocal condition given in (1)
by substituting the expression for u(−1) therefrom. It results in the general
nonlinear problem

u(t) = T (A, t) [u0 + g (u(·))] . (4)

Equation (4) is commonly known as the abstract Hammerstein equation
[17, 30]. Unlike (1) this equation is valid for any u0 ∈ X, and becomes
equivalent to (1), when u(t) is differentiable and u0 ∈ D(A). The function
satisfying (4) is called a mild solution of (1), while the original solution of
(1) is called strong. Note that, by derivation of (4), both equations from
(1) are incorporated into one formula, ready-made for the use of fixed point
iteration. For that reason, either Banach [5] or Schauder [23] fixed point
theorem can be directly applied to (4) resulting in the existence conditions
for the mild solution (see [22, 23] for the detailed reviews of applicable
techniques).

At first, it seems that equation (4) is not so valuable from the com-
putational point of view, since it contains operator function T (A, t). Its
numerical evaluation is a non-trivial computationally involving task even
in the case when A is a matrix [21].

In reality stable and efficient approximation of T (A, t) is possible for
t ∈ [−1, 1], as long as A is a linear sectorial operator with φ < π

2 [11]. Next
we will summarize how to build the exponentially convergent approximation
of T (A, t)v for v ∈ D(Aα), α > 0. The action of operator exponential
T (A, t) on v admits the following integral representation [9, 24]

e−A(t+1)v =
1

2πi

∫
Γ
e−z(t+1)RA(z)vdz, (5)
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here RA(z) = (zI − A)−1 is the resolvent of A, and Γ ∈ C \ Σ stands for
the integration contour, positively oriented with respect to the spectrum
Σ of A. According to [11] the integration contour for the Dunford-Cauchy
integral in (5) needs to be chosen as

Γ = {z(s) = aI cosh(s)− ibI sinh(s) : s ∈ (−∞,∞)} .

The unknown values of contour parameters aI , bI are to be determined in
such a way that the integrand can be analytically extended into the strip
Dd ∈ C

Dd =

{
ξ = x+ iy

∣∣∣∣x ∈ R, |y| < d

2

}
,

and remains bounded there. For a fixed A the strip width parameter
0 < d < π

2 is responsible for the accuracy of the sinc-quadrature used
below to approximate (5). The mentioned Sinc-quadrature provides ex-
ponentially convergent approximation of T (A, t), t > −1 and attains its
fastest convergence rate, when

d =
π

2
− φ.

For such d and (ρ0, φ0) the values of aI , bI are specified by the formulas

aI = ρ0
cos

(
d
2 + φ0

)
cosφ0

, bI = ρ0
cos

(
d
2 + φ0

)
cosφ0

. (6)

In addition to the performed parametrization of Γ we make the specific
resolvent correction to (5) by putting

RA,1(z) = RA(z)−
1

z
I

in place of RA(z). Such correction compensates the poor decay of T (A,−1)
at infinity, and allows to guaranty the exponential convergence rate of the
mentioned Sinc-quadrature [11]. After we conduct the described manipu-
lations on (4) it will take the form

u(t) =

∞∫
−∞

e−z(ξ)(t+1)z′(ξ)RA,1 (z (ξ)) [u0 + g (u(·))] ξ,

z′(ζ) =aI sinh ζ − ibI cosh ζ.

(7)

Remark 2.1. The reader might have noted that the performed correc-
tion can only be justified if the spectral shift ρ0 is positive. Indeed for the
negative ρ0 both the correction and the definition of aI , bI have to be modi-
fied. On the other hand, one might always make spectral shift to be greter
than zero by a simple transformation

v(t) = eρ1tu(t), ρ1 > 0.
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3 Discretization

The next step toward the fully discretized analogue of (4), relies upon
the approximation of the integral in (7). In this section we utilize the
quadrature based approximation developed in authors’ earlier works (see
[11] and the references therein). The operator exponential e−A(t+1)v is
approximated by TN (A, t)v,

TN (A, t)v =
h

2πi

N∑
p=−N

e−z(ph)(t+1)z′(ph)RA,1(z(ph))v. (8)

Expression on the right of (8) is obtained from the parametrized version of
Dunford-Cauchy integral (7), with help of the Sinc-quadrature(trapezoid)
formula. Before we state the result concerning the accuracy of the above
approximation, let us highlight that all the summands in (8) are mutually
independent. The evaluation of every summand involves the calculation of
the time-dependent scalar part and the evaluation of resolvent part, free of
t. Computationally it means that the resolvent evaluations RA,1(z(ph))v,
p = −N,N can be performed in parallel and the results are stored. Once
that is done all the evaluation of TN (A, t)v – for as many t ∈ [−1, 1] as
needed – can be achieved at the fraction of cost, spent for the resolvent
evaluations. This is especially true if the evaluation of RA,1(z(ph))v pre-
dominates the calculation of the scalar part in terms of computational com-
plexity. Some additional savings of computational resources are possible if
the operator A is real-valued [12]. The accuracy of the proposed approxi-
mation is characterized by the following theorem [11, p. 34].

Theorem 1. Assume that A is a linear sectorial operator with the
densely defined domain and v ∈ D(Aα). Let

h =

√
πd

α(N + 1)
,

then the error ηN (t)v ≡ ∥T (A, t)v − TN (A, t)v∥ satisfies the estimate

∥ηN (t)v∥ =
∥∥∥e−A(t+1)v − TN (A, t)v

∥∥∥ ≤ c e−
√

πdα(N+1)

α
∥Aαv∥, (9)

with some positive constant c independent of A, v, α and t.
Estimate (9) demonstrates that the approximant TN (A, t)v meets all

the requirements formulated in section 2. Bearing that in mind we pro-
ceed to the collocation of (4).More precisely we will apply the polynomial
collocation method to the modified version thereof

u(t) = TN (A, t) [u0 + g (u(·))] . (10)
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Let us introduce the Chebyshev-Gauss-Lobatto (CGL) nodes tj = − cos
(
πj
n

)
,

j = 0, n. For a given vector y⃗ = (y0, . . . , yn) we define the modified Hermite-
Fejér polynomial [25]

K2n−1(t, y⃗) =

n∑
i=0

Bi,2n−1(t)yi,

of the degree 2n−1. For each i = 0, 1, . . . n, Bi,2n−1 is the unique polynomial
such that Bi,2n−1(tj) = δi,j , for j = 0, n, and B′

i,2n−1(tj) = 0, for j =

1, n− 1

B0,2n−1(t) =
1 + t

2
P 2
n−1(t), B0,2n−1(t) =

1− t

2
P 2
n−1(t)

Bi,2n−1(t) =

(
1− t2

) (
1 + tti − 2t2i

)
(n− 1)2 (t− ti)

2 (1− t2i
)P 2

n−1(t), i = 1, n− 1,

where Pn(t) is Chebyshev polynomial of the first kind. Now, we put the
polynomial K2n−1(t, y⃗) in place of u(t) in (10) and collocate the received
equation at the sequence of interpolation points. It leads us to the system
of nonlinear equations

yi = TN (A, ti)u0 + TN (A, ti)g (K2n−1 (·, y⃗)) , i = 0, n, (11)

with respect to the unknowns yi. Similarly to (4) this system, can be
directly used to find the approximation to u(t) on the chosen grid, since
yi = u(ti) is clearly the solution. In the following section we are going to
theoretically justify the iterative solution method based upon (11).

4 Solution of discretized problem

In order to prove the existence of solution to (11) we recast this system in
a vector-matrix form

y⃗ = g⃗ (y⃗) + p⃗, (12)

where

g⃗(y⃗) = (TN (A, t0)g(K2n−1(·, y⃗)), . . . , TN (A, tn) g (K2n−1 (·, y⃗)))T ,
p⃗ = (TN (A, t0)u0, . . . , TN (A, tn)u0)

T .

For the existence of the solution it is sufficient to show that a recurrence
sequence

y⃗(k) = g⃗
(
y⃗(k−1)

)
+ p⃗, y⃗(0) = p⃗, (13)
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is convergent in the vector space Xn = X ×X × . . . X. For any x⃗ ∈ Xn let
us introduce a norm

|||x⃗||| = max
0≤j≤n

∥xj∥ .

Regarding the function g we require to satisfy the following Lipschitz-like
condition for any u, v ∈ C ([−1, 1];X)

∥Aα (g (u)− g (v))∥ ≤ L max
t∈[−1,1]

∥u(t)− v(t)∥ , (14)

with some positive constants α and L < ∞. Apart from (14) we will use
the estimate ∥∥TN (A, ti)A

−α
∥∥ ≤ c

α
, (15)

which is a mere consequence of (3.278) from [11].
Theorem 2. Assume that A : X → X is a linear operator satisfying the

condition of theorem 1 and g : C ([−1, 1];X) → X is an operator function
satisfying (14). If there exist such L, c, α > 0 from (14),(15), that

q ≡ 3Lc

α
< 1, (16)

then equation (4) has a unique solution y⃗(∞) = lim
k→∞

y⃗(k). Moreover

∣∣∣∣∣∣∣∣∣y⃗(∞)
∣∣∣∣∣∣∣∣∣ ≤ |||p⃗|||+ |||⃗g (p⃗)||| 1

1− q
, (17)

and an error of the k-th iterative approximation admits the estimate∣∣∣∣∣∣∣∣∣y⃗(∞) − y⃗(k)
∣∣∣∣∣∣∣∣∣ ≤ |||⃗g (p⃗)||| q

k+1

1− q
. (18)

Proof. To show that y(∞) is a unique solution of (12) we apply the Banach
fixed point theorem. The space Xn equipped with the metric d(x, y) =
|||x⃗− y⃗||| forms a complete Banach space. The mapping F defined by (13)
transforms the space Xn into itself. To demonstrate existence of the fixed
point it remains to show that this mapping is contractive.∣∣∣∣∣∣∣∣∣F§⃗ − F†⃗

∣∣∣∣∣∣∣∣∣ = |||⃗g (x⃗)− g⃗ (y⃗)|||

≤ max
0≤j≤n

∥∥TN (A, tj)A
−α

∥∥ ∥Aα (g (K2n−1 (·, x⃗))− g (K2n−1 (·, y⃗)))∥

≤ c

α
∥Aα (g (K2n−1 (·, x⃗))− g (K2n−1 (·, y⃗)))∥
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We used (15), to get the last estimate. For any x⃗ ∈ Xn the polynomial
K2n−1 (t, x⃗) is, obviously, a continuous function of t. Moreover, it was
proved in [25], that

max
t∈[−1,1]

n∑
i=0

|Bi,2n−1(t)| < 3, n = 0, 1, 2, . . .

These two observations together permit us to write∣∣∣∣∣∣∣∣∣F§⃗ − F†⃗
∣∣∣∣∣∣∣∣∣ ≤ Lc

α
max

t∈[−1,1]

n∑
i=0

|Bi,2n−1(t)| ∥xi − yi∥ ≤ 3Lc

α
|||x⃗− y⃗|||. (19)

The contraction of F is proved.
Since y⃗(k) =

∑k
l=1(y⃗

(l) − y⃗(l−1)) + p⃗, we are actually interested in the
difference of two consecutive elements of the sequence generated by (13).
The estimate for

∣∣∣∣∣∣y⃗(k) − y⃗(k−1)
∣∣∣∣∣∣ is provided by (19), specifically∣∣∣∣∣∣∣∣∣y⃗(k) − y⃗(k−1)

∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣g⃗ (y⃗(k−1)
)
− g⃗

(
y⃗(k−2)

)∣∣∣∣∣∣∣∣∣ ≤ q
∣∣∣∣∣∣∣∣∣y⃗(k−1) − y⃗(k−2)

∣∣∣∣∣∣∣∣∣.
(20)

So, in the end, it all goes down to∣∣∣∣∣∣∣∣∣y⃗(1) − y⃗(0)
∣∣∣∣∣∣∣∣∣ = |||⃗g (p⃗)|||

To justify (18) we apply (20) to every term in the series for y⃗(k).∣∣∣∣∣∣∣∣∣y(k)∣∣∣∣∣∣∣∣∣ ≤ |||p⃗|||+
k∑

p=0

(
3Lc

α

)p

|||⃗g (p⃗)||| = |||p⃗|||+ |||⃗g (p⃗)|||1− qk+1

1− q
. (21)

Inequality (17) can be derived analogously to (21).

5 Error analysis

The developed method emerges as a combination of three different nu-
merical procedures: spectral approximation of the operator exponential
TN (A, t), collocation–based discretization and iterative solution of the dis-
cretized problem. In this section we derive the compound error estimate by
analysing the error contribution from the every listed numerical procedure.

Let zi = u(ti) − yi, i = 0, n is the pointwise difference of solutions to
(4) and (12). Denote u⃗ = (u(t0), . . . , u(tn))

T , z⃗ = (z0, . . . , zn)
T . Then,

evaluate the quantity zi using (4) and (11)

zi =T (A, ti)u0 − TN (A, ti)u0 + T (A, ti)g (u(·))− TN (A, ti)g (K2n−1 (·, y⃗))
=T (A, ti)u0 − TN (A, ti)u0 + T (A, ti)g (u(·))− T (A, ti)g (K2n−1 (·, y⃗))
+ T (A, ti)g (K2n−1 (·, y⃗))− TN (A, ti)g (K2n−1 (·, y⃗))

=ηN (ti)u0 + ηN (ti)g (K2n−1 (·, y⃗)) + T (A, ti) [g (u(·))− g (K2n−1 (·, y⃗))]
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The terms ηN (ti)u0, ηN (ti)g (K2n−1 (·, y⃗)) can be estimated by (9), provided
that the conditions of theorem 1 are fulfilled. For convenience we denote

µn = T (A, ti) [g (u(·))− g (K2n−1 (·, y⃗))] ,

and then estimate the third term

|||µn||| = max
0≤i≤n

∥TN (A, ti) [g (u(·))− g (K2n−1 (·, y⃗))]∥

≤ max
0≤i≤n

∥∥TN (A, ti)A
−α

∥∥ ∥Aα [g (u(·))− g (K2n−1 (·, y⃗))]∥

≤Lc

α
max

t∈[−1,1]
∥u(·)−K2n−1 (·, y⃗)∥ ≤ Lc

α
(Λ2n−1(u) + 3|||z⃗|||)

where Λ2n−1(u) is an error of the approximation of u by the modified
Hermit-Fejér polynomial of degree 2n − 1. It is well know that, unlike
Lagrange interpolation, the Hermite-Fejér interpolation is convergent for
any u ∈ C ([−1, 1];X) [25]. The resulting estimate of |||z||| is given by the
lemma below.

Lemma 3. Assume that the conditions of theorem 2 is met and, in
addition, that there exist α > 0 such that u0, g (K2n−1 (·, y⃗)) ∈ D(Aα),
∀y⃗ ∈ Xn. Then the solution to discretized system (11) gives a pointwise
approximation of the solution to Hammerstein equation (4). The approxi-
mation error satisfies the following estimate

|||z||| ≤ 1
1−q

×
(
c e−

√
πdα(N+1)

α (∥Aαu0∥+ ∥Aαg (K2n−1 (·, y⃗))∥) + Lc
α Λ2n−1(u)

)
.

(22)

Proof. Most of the proof was presented before the lemma. To prove
the final error estimate we combine the estimate for |||µn||| with the results
of theorem 1 for ηN (ti)u0, ηN (ti)g (K2n−1 (·, y⃗)), i = 0, n.

The compound error estimate of the method is given by the following
theorem.

Theorem 4. Assume that the operator A and function g satisfy the
conditions of theorem 2 and, in addition, that u0, g (K2n−1 (·, y⃗)) ∈ D(Aα),
∀y⃗ ∈ Xn. Then the k-th iterative approximation given by (13) constitutes a
pointwise approximation of the solution to Hammerstein equation (4). The
error of this approximation satisfies the inequality∣∣∣∣∣∣∣∣∣u⃗− y⃗(k)

∣∣∣∣∣∣∣∣∣ ≤ |||z⃗|||+ c1MC
qk+1

1− q
|||p⃗|||, (23)

where MC = sup
v∈C([−1,1];X)

∥g(v)∥
∥v∥ , and c1 > 0 is independent of g.
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Remark 5.1. Inequality (23) along with the known estimates of Λ2n−1(u)
[13] demonstrate that the order of the error of Hermite-Fejér interpolation
is lower, than other contributions to the compound error estimate. To im-
prove the overall convergence one might use other interpolation technique to
collocate (10), like spline interpolation of odd degree [19], for instance. The
compound numerical method could adapt any other interpolation operator
with the bounded norm, as long as its image is in C ([−1, 1];X).

In spite of the fact that Λ2n−1(u) ∼ lnn/n as n → ∞ it does not present
a real challenge from the computational point of view, since the computa-
tional complexity of the right-hand side evaluation from (13) grows very
slowly when n increases. It happens because of the mentioned in section 3
computational properties of the operator exponential approximation.

Example 5. Here we experimentally consider the specification of prob-
lem (1), with A being a second order elliptical operator:

Au = −∂2u

∂x2
, u(0) = u(1) = 0,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-0.2

0

0.2

0.4

0.6

0.8

1

y

µ =0
µ =1
µ =10
µ =20

Figure 1. Graph of u0(x) for the different values of µ

and such, that the nonlocal condition is defined by

u(−1)− µ

∫ 1

−1
u2(s)ds = u0,

u0(x) = sin (π x) + µ
e−4π2 − 1

2π2
sin2 (π x) .

(24)

To benchmark the developed numerical method for the different values
of q (16) we have set g (u(·)) = µ

∫ 1
−1 u

2(s)ds. This expression contains one
additional parameter µ, which enables us to change the size of q through
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L. Exact solution uex to the considered problem can be written as

uex (t, x) = e−(t+1)π2
sin (π x) . (25)

Note, that uex (t, x) does not depend on µ and is equal to u0(x), when
t = 0, µ = 0. One can observe from the graph of u0, depicted in Fig. 1,
that the solution of nonlocal problem is close to the solution of the corre-
sponding classical Cauchy problem (with the initial condition u(−1) = u0)
the difference between these two solutions grows if µ gets bigger (compare
the graphs of u0(x) for µ = 0 and µ = 20 from Fig. 1).

To measure an experimental accuracy of the method we define

Err = Err
(
uex, ỹ

(k)
)
≡ max

0≤l≤m
max
0≤j≤n

∥∥∥uex(ti, xl)− y
(k)
j (xl)

∥∥∥ ,
where xl =

1
2

(
1− cos

(
πl
m

))
, l = 0,m is the scaled version of CGL nodes.

After this is done, one needs to define the stopping criteria for iterative the
method (13). For that matter we shall use

Err
(
ỹ(k), ỹ(k−1)

)
< 10−18,

to factor out the influence of the iterative error.
Initially, we set µ = 1/4. Such a choice of µ guarantees the validity of

(16), for ∀ρ0 ∈ R+, α = 1. Moreover, function g(·) admits, as a function
of scalar variable, analytic extension into the region Eρ ∈ C. It means
that all the suppositions of theorems 2 and 4 are met. Consequently, the
iterative solution of (12) exists and can be approximated by y⃗(k). This
solution converges to the initial problem’s solution u(t, x) (n,N → ∞).
The experimental results, calculated by (13), (8), a presented in Table 1
for the different values of N , n. For each N ∈ {4, 8, 16, 32, 64, 128, 256}, we
experimentally selected n sufficiently large for the error Err(n) to saturate
(see Fig. 2a).
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Figure 2a, µ = 0.25
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Figure 2b, µ = 1

Graph of experimental error Err as a function of the number of collocation points n,

drawn in the logarithmic scale for N = 4, 8, 16, 32, 64, 128, 256, 512.

Those two are shown in Table 1 alongside the value of Err and the number of
iterations (denoted byK) needed to achieve the iteration’s relative accuracy
10−5, estimated a posteriori. As observed from Table 1, the experimental
converge of the developed method is exponential with respect to n.

N lnn Err K

4 8 0.0859119243400000010 3
8 8 0.0244950525900000000 3
16 8 0.00345794666699999987 3
32 16 0.000328787487900000005 3
64 16 0.00000833843948899999922 3
128 32 0.0000000515513076299999962 4
256 32 3.68083566999999982× 10−11 4
512 64 1.32334447899999999× 10−15 4

Table 1: Result of experimental application of the developed method to the numerical

solution of (1)

The preposition of theorem 2 is no longer true for µ = 1. In spite of
that the method is still convergent. Several graphs of Err as a function
of n are depicted in Fig. 2b. They demonstrate a qualitatively similar
exponentially decreasing behaviour of the experimental error.
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6 Conclusions and future work

In this work we developed and justified the method for the numerical so-
lution of abstract nonlocal Cauchy problem (1). If the operator function
g (u(·)) is continuous and A is sectorial with the angle ϕ0 < π

2 is globally
convergent. Already being general, problem (1) can be generalized even
more by adding the nonlinear right-hand side. Existing theoretical results
for such problems [1, 10] suggest that the extension of developed method-
ology to that class of problems is possible. This consists the topic for the
future work.
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