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Abstract

In the present paper we consider a plane problem of elasticity for a polygonal
domain with a curvilinear hole, which is composed of the rectilinear segment (parallel
to the abscissa axis) and arc of the circumference. The problem is solved by the
methods of conformal mappings and boundary value problems of analytic functions.
The sought complex potentials are constructed effectively (in the analytical form).
Estimates of the obtained solutions are derived in the neighborhood of angular points.
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1 Introduction

The application of the methods of conformal mappings and boundary value
problems of analytic functions has proved to be the most effective way of
solving boundary value problems of elasticity and plate bending. However,
if for a simply-connected domain these methods yield effective results (es-
pecially for domains mapped onto the circle by rational functions), they
still remain poorly adapted to the use for multiply-connected domains.
The difficulty consists in the effective construction of a conformally map-
ping function in general form. Nevertheless, for some practically important
classes of doubly-connected domains bounded by polygons (including the
polygonal domain with a curvilinear 2-gonal hole considered here) we may
succeed in constructing effectively (in the analytical form) functions con-
formally mapping this domain onto the circular ring. In addition to this,
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the Kolosov-Muskhelishvili methods make it possible to decompose these
problems into two Riemann-Hilbert problems for the circular ring and by
solving the latter problems to construct the sought complex potentials in
the analytical form. Estimates of the obtained solutions are derived in the
neighborhood of angular points.

2 Statement of the Problem

Let the homogeneous and isotropic elastic plate on the plane z of a complex
variable occupy a finite doubly-connected domain .S, bounded by the con-
vex polygon (A) = A1Ay... A, and curvilinear hole (B). We will assume
that (A) is the external boundary of the domain S, and we will denote

by A; (i =1,...,p) the vertices and by L(()k) the sides of the polygon (A)
(i.e. Lék) = ApApi1, k= 1,p, Aps1 = Ay). (B) is the internal bound-
ary composed of the segment Lgl) = B;Bs and arc of the circumference

LSQ) = BB, (i.e. (B) represents the curvilinear 2-gonal hole). The values
of the internal angles of the domain S at the vertices Ay and B,,, will be de-
noted by ma? and w32, (m = 1,2) (we mean the angles between the segment

B1Bs and the tangent arc Lg2) in the points By,), while the angles between

D
the z axis and outward normals to the contours Lg (Lo =U L(()k)> and
k=1

5.t € Lgl),ﬁ(t) =7+ argt, t € LgQ)). The positive direction on
Lo|J Ly well be assumed to be that which keeps domain S to the left
(see Figure. 1).

Ly (Ll = Lgl) UL?)) will denoted by «(t) and [B(t) (here we mean that
pt) =
I —
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Assume that the sides Ly (kK = 1,...,p) are under the action of con-
stant normal displacements v, (t) <Vn(t) = vk = const,t € L(()k), k= ﬁ),
the tangent stress equals zero, while the remaining part of the boundary
L = Lo|J Ly is free from external forces.

The problem consists in defining the elastic equilibrium of the plate and
establishing the situation in which the concentration of stresses occurs near
the angular points and which in turn depends on the behavior of Kolosov-
Muskhelishvili potentials at these points.

3 Some Additional Propositions
Dirichlet’s problem for a circular ring. Suppose Dgo(l < |z| < r) is a
circular ring bounded by circles yoo(|z| = r) and 711(]z|] = 1). We will

consider the following problem: it is required to obtain a function ®(z) =
u~+1v, holomorphic in the ring Dy, with respect to the boundary condition

Re[(b(t)] = fj(t)7 1€ YUy J=0,1 (1)

The necessary and sufficient condition for problem (1) to be solvable

has the form
/ fo(t) 5, _ / A@) 4
t t
Yoo 711

while the solution itself is given by the formula

1 fo(t) f1(t) 4
Bz) == Y t_erzdt-i-/t_rzjzdt ey, + Cys
Yoo Y11

27
where ¢,, = = [ fi(t)dd, c,, is an arbitrary real constant.
0

The conformal mapping of a doubly-connected domain, bounded by poly-
gons, onto a circular ring. Suppose S° is a doubly-connected domain
bounded by the convex polygons (A’) and (B') with vertices A}, (k =1,p)
and B!, (m = T,q) and internal (with respect to the domain S(¥)) vertex
angles maj, and ;. We will consider the following problem: it is required
to find of the function z = wy(s) which conformally maps the circular ring
Do(1 < [s] < Rp) onto the domain S(©),
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The derivative of the function wg(s) is the solution of the Riemann-
Hilbert problems for the circular ring

Re[ite 0Oyl (1)] = 0, t € v,0(|s] = Ro)
Refite 00w ()] =0, t €7, (ls] =1) (2)
(ao(t) = afwo(t)], Bo(t) = Blwo(?)]),

and with the conditions
P 1ol —1 4 /
I1 Roe ™ I Rovim—" =1
k=1 m=1

(af and b}, are the inverse images of the points A4} and B, ) the solution
is given by the formula

o] p q
wh() =k TT TI(RYs = aps= T (RYs - 4,7 Ry

j=—o0 k=1 m=1

0, =0,

ith kO bit 1 tant, 0; = .
wi as an arbitrary real constant, 0; { 1, j<—1.

4 Solution of the Problem

Let us now assume that the regular open polygon with sides €, are inscribed
in the arc ng) and denote the obtained doubly-connected domain S,
Applying the results obtained above for the domain S and treating the
domain S as a limit case of the domain S™as n — oo (i.e. &, — 0), the

boundary conditions for w’(¢) are written in the form

Refice @)/ (0)] =0, o € ly(|o| = R)
(3)

Refice 00y (5)] =0, o € l1(|o| = 1)

where

d (1)

—, o€ly’,
AO(O’):{ 2 1 (2)

argo, o cly’,

lgl) and l§2) are the arcs of the circumference /; which correspond to the
segments Lgl) and ng).
By solving problem (3) we obtain the formula

W'(¢) = K% A(0), (4)
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where
1 ln[ -2 QzAO(U)] 111 —2,2iAo(0 ]
=— | ———d — —d
1) 2m'/ 7+3 Z / T
1
o0
K is an arbitrary real constant, Y indicates that j = 0 is omitted,
j=—o00

o0 14 . 0
Ale)= TI TI(R¥s—ap)®
j=—00 k=1
Based on the results given in [4, §78], we conclude that the function

¢7($) near the points by(k = 1,2) can be written in the form
) = (¢ — bl)ﬁofl(g _ bz)ﬁ(’leO(g)7

where 8° = ) = 39, Q0 is the function holomorphic near the point by and
tending to definite nonzero limits as ¢ — by.

Thus, for a conformally mapping function bounded at the points b; and
by (i.e. of the class h(b1,ba) (see [4])), from (4) we obtain the formula

W'(§) = KO — b)) L (¢ — ba) 100 A(c). (5)

When solving mixed problems of the plane theory of elasticity by the
method of Kolosov-Muskhelishvili [5], in the case of doubly-connected do-
mains bounded by broken lines it becomes possible to reduce these prob-
lems to two Riemann-Hilbert problems for a circular ring with respect to
the complex potentials ¢(z) and ¢ (z). By virtue of the well known formulas
(see [1], §41), for finding the complex potentials ¢(z) and (z) we obtain
the boundary conditions

Rele™ "W (t)] = fiu(t), t € L; (j = 0,1), (6)
Rele™ ™" (p(t) + 1/ (t) + 1 (t)] = fj2(t), t € L; (j = 0,1), (7)
where 0 .
| alt), te Lo,
v(t) = { B(t), te Li;
for = + : [e(t) + 2w (t) + Ree 7O (¢} +icd)], t € Lo;
f11— 1Ree Bk +ic?), t e Ly;
Joz = for(t) — 2/;:,—1(1)7 t € Lo;

fi2(t) = fui(t), t € Ly(t);

k k)
c(t) = zz; (f) N(7)sin(og — ap)ds = ¢, te LV, (E=1,p)
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A3
Ap

1,p) and c}”(j = 0,1, m = 1,2) are arbitrary real constants. During the
solution of the problem these constants must be defined in such away that
functions p(z) and z¢'(z)+1(z) were continuously extendable to the closed
domain S+ L .

Let us consider problem (6). After the conformal mapping of the domain
S onto the circular ring D , this problem for the function

Kk = A and p are Lamé’s constants, N(7) is a normal stress, ci(k =

©*(s) = s olw(s)] = ¢ Lo (s) (8)

reduces to the Riemann-Hilbert problem for a circular ring

Re[oe (@) p*(g)] = Fy(o), o € lp;

| (9)
Re[aeﬂAO(U)tp*(U)] =Fi(0), o€l

where Fy(o) = foilw(o)], o €lo; Fi(o) = fiilw(o)], o €.
We easily observe that from the boundary conditions (3) we obtain the
factorization of the coefficient of problem (6) in the following form

!/
e2ico(0) g2,=2 _ ¥ (U), o € lo,
w'(0)
e2iBo(0) 5=2 — W/(U), o € ly,
w'(0)

where w'(¢) is defined by formula (5) and from the boundary conditions (8)
for the function

Q<) = po(6)[ow'(¢)] (10)

we obtain the Dirichlet problem for a circular ring

Re[Q(0)] = Fy(0)e'*@[ow!(0)]7t, o € ly,
. (11)
Re[Q(0)] = Fi(0)e20[ou/ (o), o €ly.
A solvability condition of problem (11) has the form
/ Fy(0)e D [ow! (o)) Tdo = / Fi(0)e™[ou! (o)) Tdo (12)
lo

I

and its solution is given by the formula
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where

1 & Fo(0)e' @) [gw/ (o)1
M(g) = E Z / o'—Rng do
j==0o0 |},

Fi(o)e @0/ (a)] 7! .
+/ o RY< do| +iE; (14)

5

where FE; is an arbitrary real constant.
Thus, using (10) and (13), for the function ¢o(s) we obtain the formula

wo(s) = sw'(¢)M(s). (15)

Taking into account the form of the function w’(¢) in the neighborhood
of the point ax(k = 1, p), we conclude that for the continuous extension of
the function (<) in the domain D + [ it is necessary that the conditions

M(ag) =0, k=1,p. (16)
Since ¢'(2) = @j(<)[w'(s)] L, from (15) we have

w//( g)
W'(s)
Based on the results obtained in [4, §26] as to the behavior of a Cauchy

type integral near the density discontinuity points, we conclude that near
the points by (k = 1,2) the function M (s) has the form

¢'(2) = M(s) +¢ M(s) +cM'(s). (17)

K1Y 0
M(C) = W +Mk(§)’ k=1,2

where M? (<) is the function that near the point by admits the following
estimate

C

_ 0 __
m, C = ConSt, (5 < /8 ].7

M ()] <

where K fk) is the well-defined constant.
Taking into account the behavior of the conformally mapping function
near the angular points (see [6], §37), we obtain

w(s) = Bi + (s — b) " Qu(s)

() _ b8 = 1)

+Q5(), k=1,2
w'(<) < — by (©)
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where €, (br) # 0, Q5 () is the regular part of the Loran decomposition of
w”(g)

w'(s) *

By the above reasoning, from (17) we obtain the estimate

the function ¢

K& *)
o(z) = ( 0 + M(]f(c), k=1,2, Ky’ = const,

¢ — b))t
and thus near a point B which is one of the points By, we have the estimates

1 _ 1
0/ (2)] < My|z— B|P ", |0"(2)| < Ma|z — B|?° >, My, Ms = const.

By a similar reasoning to the above, it is proved that ¢'(z) is almost
bounded near the points Ax(k = 1,p) (see [4], §77).

After finding the function ¢(z), the definition of the function (z) by
(7) reduces to the following problem which is analogous to problem (6)

Re[e” M R(t)] = No(t),t € Lo
18
Re[eWR(t)] = Ny(t),t € Ly 18)

where
R(2) = (2) + P(2)¢'(2),
No(t) = for(t) — Re[e™ P (p(t) + (- P(t))¢/(t)], t € Lo
Ni(t) = fia(t) — Re[e™ D (o(t) + (£ — P(t))¢'(t)], t € Ly

and P(z) is an interpolation polynomial satisfying the condition P(By) =
By (k =1,2), By is a number conjugate to By, and having the form
z— By — z— By =

P(Z) = B —BgBl + B, —B132

Since the functions N;(t)(j = 0,1) are bounded, the problem of finding
the function v (z) reduces to the problem investigated above. The solution
of problem (18) can be constructed in the same way as before, while the
conditions for this problem to be solvable (the requirement that the function
Y (2)+P(2)¢'(z) should be continuously extendable) will have a form similar
to conditions (12) and (16). All these conditions are represented as an
inhomogeneous system with real coefficient with respect to (p+4) constants
c (k=1,p) ' (j =0,1,m = 1,2) (two of these constants such as cl and
2, can be considered to be zero) and Ej, Eo (E3 is a real constant which
occurs when solving problem (18)). For the definition of these constant we
have (p + 4) equations. It is proved that the obtained system is uniquely
solvable and therefore the problem posed has a unique solution.
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