ON THE NUMERICAL SOLUTION OF CONTACT PROBLEM FOR POISSON'S AND KIRCHHOFF EQUATION SYSTEM

A. Papukashvili, Z. Vashakidze

I. Vekua Institute of Applied Mathematics and Faculty of Exact and Natural Sciences of Iv. Javakhishvili Tbilisi State University 2 University Str., Tbilisi 0186, Georgia

(Received: 06.01.2015; accepted: 20.03.2015)

Abstract

In this paper stress-deformed state for some "bridge-form" multystructures studied having difficult geometry. Particularly the boundary-contacted problem is considered. Two rectangle (particularly a square) form membranes are connected by a string; We consider classic linear boundary problems for membranes (Poisson's equation), but for string nonlinear Kirchhoff type integro-differential equation. The account program in MATLAB is created and numerical experiments are made.

Key words and phrases: Poisson's equation, Kirchhoff type nonlinear integrodifferential equation, finite-difference method.

AMS subject classification: 34B05, 34B15, 65M06, 65N06.

1 Introduction

The stress - deformed condition for some "bridge - form" multystructures with difficult geometry (two rectangular membranes is connected by the string, (see fig.1)) is studied using numerical methods (finite-difference methods). Membrane bending is represented by the Poisson's equation (see, for example [1]). The equation of the string by Kirchhoff type nonlinear integro-differential equation (see, for example [2]). The function of a membranes bending in central points is found by direct numerical methods, and the iterative method for definition of numerical values of function of a bend of a string for the approached decision of nonlinear equation Kirchhoff type.

+

2 Statement of the Problem

It is possible to dismantle the above boundary - contact problem in three separate tasks:

a). Boundary value problem for the right membranes

$$\Delta w_1(x,y) = f_1(x,y), \ (x,y) \in \Omega_1 = \{(x,y) : a \le x \le c, \ -b \le y \le b\}, \ (2.1)$$

$$w_1(x,\pm b) = 0, \quad w_1(c,y) = 0, \quad a \le x \le c, \quad -b \le y \le b,$$
 (2.2)

$$\frac{\partial w_1(x,y)}{\partial x}\Big|_{x=a} = 0, \quad -b \le y \le b.$$
(2.3)

b). Boundary value problem for the left membranes

$$\Delta w_2(x,y) = f_2(x,y), \ (x,y) \in \Omega_2 = \{(x,y) : -c \le x \le -a, -b \le y \le b\},$$
(2.4)

$$w_2(x,\pm b) = 0, \quad w_2(-c,y) = 0, \quad -c \le x \le -a, \quad -b \le y \le b,$$
 (2.5)

$$\frac{\partial w_2(x,y)}{\partial x}\Big|_{x=-a} = 0, \quad -b \le y \le b.$$
(2.6)

c). Boundary value problem for a string

$$\left[m_0 + m_1 \int_{-a}^{+a} \left(w'_3(t)\right)^2 dt\right] w''_3(x) = f_3(x), \quad -a \le y \le a, \tag{2.7}$$

$$w_3(-a) = a_2, \quad w_3(a) = a_1,$$
 (2.8)

where $a_1 \approx w_1(a, 0)$, $a_2 \approx w_2(-a, 0)$, $m_0, m_1 > 0$.

3 The Algorithm

In order to solve of this boundary value problem we use the finite - difference method. Let's consider the case of the square is c - a = 2b; Ω_1 and Ω_2 squares to make a regular square grid step $h_1 = h_2 = h$, $(n_1 = n_2 = n)$,

$$h_1 = \frac{c-a}{n_1} = h_2 = \frac{2b}{n_2} = h, \ x_i = a + ih_1, \ i = 0, 1, 2, \cdots, n_1$$

or

+

$$x_i = -c + ih_1, i = 0, 1, 2, \cdots, n_1, \quad y_j = -b + jh_2, j = 0, 1, 2, \cdots, n_2.$$

The part of a string [-a, a] section is divided $2n_3$ by step h_3 ,

$$h_3 = a/n_3, \ x_i = -a + ih_3, \ i = 0, 1, 2, \cdots, 2n_3.$$

Let's replace differential operators the finite - difference analog. It is changed (2.1), (2.4) equations of the second order differential operators by the template difference five point margin of error $O(h^2)$;

Let's replace the first order differential operators (2.3), (2.6) by method A: two-point template to change the error O(h) and by method B: three - point template to change the error $O(h^2)$.

Let's change (2.7) a string equation lookup function by the $O(h_3^2)$ - order derivatives of the second order derivative by the three - point template.

In order to solve of this given nonlinear difference problem we use the iterative method.

Let's accept following marking for grid functions

$$\begin{split} w_{1,i,j} &\equiv w \mathbf{1}_{i,j} \approx w_1(x_i, y_j), \, w_{2,i,j} \equiv w \mathbf{2}_{i,j} \approx w_2(x_i, y_j), \, w_{3,i} \equiv w \mathbf{3}_i \approx w_3(x_i), \\ f_{1,i,j} &\equiv f \mathbf{1}_{i,j} \approx f_1(x_i, y_j), \, f_{2,i,j} \equiv f \mathbf{2}_{i,j} = f_2(x_i, y_j), \, f_{3,i} \equiv f \mathbf{3}_i = f_3(x_i). \end{split}$$

Method A. In case of (2.1)-(2.3) problem we have will the task of following a tree - block diagonal system of equation

1	A	E	Θ	Θ	·	·	·	Θ	Θ	 (W1,1)		(F1,1)
	E	B	E	Θ	•	•	•	Θ	Θ	W1,2		F1,2
	Θ	E	B	E	Θ	•	•	Θ	Θ	W1,3		F1, 3
	Θ	Θ	E	B	E	Θ	•	Θ	Θ	W1, 4		F1, 4
	•	•	•	•	•	•	•	•	•	•	=	
	•	•	•	•	•	•	•	•	•			
	Θ	Θ	•	•	Θ	E	B	E	Θ	W1, n - 3		F1, n-3
	Θ	Θ	•	•	•	Θ	E	B	E	W1, n - 2		F1, n-2
	Θ	Θ	Θ	•			Θ	E	B /	$V_{1,n-1}$		$\setminus F1, n-1$

and in case of (2.4) - (2.6) problem we will have follow task

1	B	E	Θ	Θ	•	•	•	Θ	Θ	(W2,1)		(F2,1)	
l	E	B	E	Θ	•	•	•	Θ	Θ	W2,2		F2,2	
l	Θ	E	B	E	Θ	•	•	Θ	Θ	W2, 3		F2,3	
	Θ	Θ	E	B	E	Θ	•	Θ	Θ	W2, 4		F2, 4	
	•	•	•	•	•	•	•	•	•		=		,
	•	•	•	•	•	•	•	•	•				
	Θ	Θ	•	•	Θ	E	B	E	Θ	W2, n - 3		F2, n - 3	
l	Θ	Θ	•	•	•	Θ	E	B	E	W2, n-2		F2, n-2	
	Θ	Θ	Θ	•	•	•	Θ	E	A	$V_{2,n-1}$		$\setminus F2, n-1$ /	/

where

$$A = \begin{pmatrix} -3 & 1 & 0 & 0 & \cdots & \cdots & 0 & 0 \\ 1 & -3 & 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 1 & -3 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & -3 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \vdots & \vdots & 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & \vdots & \vdots & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 0 & 1 \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 1 & -4 & 1 & 0 & \vdots & 0 & 0 \\ 0 & 1 & -4 & 1 & 0 & \vdots & \vdots & 0 & 0 \\ 0 & 0 & 1 & -4 & 1 & 0 & \vdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 0 & 1 & -4 \end{pmatrix}$$
$$E = \begin{pmatrix} 1 & 0 & 0 & 0 & \vdots & \vdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \vdots & \vdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \vdots & \vdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \vdots & \vdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 & 0 & 1 \end{pmatrix}$$

$$W2,1=\begin{pmatrix} w2_{1,1} \\ w2_{1,2} \\ w2_{1,3} \\ w2_{1,4} \\ \vdots \\ w2_{1,n-3} \\ w2_{1,n-2} \\ w2_{1,n-1} \end{pmatrix}, W2,2=\begin{pmatrix} w2_{2,1} \\ w2_{2,2} \\ w2_{2,3} \\ w2_{2,4} \\ \vdots \\ w2_{2,n-3} \\ w2_{2,n-2} \\ w2_{2,n-1} \end{pmatrix}, \cdots, W2,n-1=\begin{pmatrix} w2_{n-1,1} \\ w2_{n-1,2} \\ w2_{n-1,3} \\ w2_{n-1,4} \\ \vdots \\ w2_{n-1,n-3} \\ w2_{n-1,n-2} \\ w2_{n-1,n-2} \\ w2_{n-1,n-1} \end{pmatrix},$$

51

$$F2,1 = \begin{pmatrix} f2_{1,1} \\ f2_{1,2} \\ f2_{1,3} \\ f2_{1,4} \\ \vdots \\ f2_{1,n-3} \\ f2_{1,n-2} \\ f2_{1,n-1} \end{pmatrix}, F2,2 = \begin{pmatrix} f2_{2,1} \\ f2_{2,2} \\ f2_{2,3} \\ f2_{2,4} \\ \vdots \\ f2_{2,n-3} \\ f2_{2,n-2} \\ f2_{2,n-1} \end{pmatrix}, \dots, F2,n-1 = \begin{pmatrix} f2_{n-1,1} \\ f2_{n-1,2} \\ f2_{n-1,3} \\ f2_{n-1,4} \\ \vdots \\ f2_{n-1,n-3} \\ f2_{n-1,n-2} \\ f2_{n-1,n-1} \end{pmatrix},$$

Method B. Let's replace the first order differential equations (2.3), (2.6) by three-point template to change the error $O(h^2)$:

$$\frac{\partial w_1(x,y)}{\partial x}\Big|_{x=a} = \frac{-1.5W1_{0,j} + 2W1_{1,j} - 0.5W1_{2,j}}{h} + O(h^2),$$
$$\frac{\partial w_2(x,y)}{\partial x}\Big|_{x=-a} = \frac{+1.5W2_{n,j} - 2W2_{n-1,j} + 0.5W2_{n-2,j}}{h} + O(h^2),$$
$$j = 1, 2, \cdots, n-1.$$

In case of (2.1) - (2.3) problem matrix form of algebraic equation system will have such view

1	C	D	Θ	Θ	•	•	•	Θ	Θ	(W1,1)		(F1,1)
l	E	B	E	Θ	•	•	•	Θ	Θ	W1,2		F1,2
l	Θ	E	B	E	Θ	•		Θ	Θ	W1,3		F1,3
I	Θ	Θ	E	B	E	Θ	•	Θ	Θ	W1,4		F1, 4
l	•	•	•	•	•	•	•	•			=	
I	•		•	•	•	•	•	•				
	Θ	Θ	•	•	Θ	E	B	E	Θ	W1, n - 3		F1, n-3
	Θ	Θ	•	•	•	Θ	E	B	E	W1, n-2		F1, n-2
	Θ	Θ	Θ	•	•	•	Θ	E	$_B$ /	$V_{1,n-1}$		$\left\langle F1, n-1 \right\rangle$

and in case of (2.4)-(2.6) problem we will have follow task

(B)	E	Θ	Θ	•	•	•	Θ	Θ	(W2,1)		(F2,1)	١
E	B	E	Θ	•	•	•	Θ	Θ	W2,2		F2,2	
Θ	E	B	E	Θ	•	•	Θ	Θ	W2,3		F2, 3	
Θ	Θ	E	B	E	Θ	•	Θ	Θ	W2, 4		F2,4	
•	•	•	•	•	•	•	•	•		=		,
•	•	•	•	•	•	•	•	•	•			
Θ	Θ	•	•	Θ	E	B	E	Θ	W2, n - 3		F2, n-3	
Θ	Θ	•	•	•	Θ	E	B	E	W2, n - 2		F2, n-2	
Θ	Θ	Θ	•	•	•	Θ	E	C /	$V_{2,n-1}$		$\setminus F2, n-1$,	/

where

	/ -8	3/3	1		0	0		•	•		0	0	
		1	-8/	3	1	0	•	•	•		0	0	
	(0	1	_	-8/3	1	0	•	•		0	0	
	(0	0		1	-8/3	1	0	•		0	0	
C =		•	•		•		•	•	•		•	•	
		•	•		•	•	•	•	•		•	•	
	(0	0		•	•	0	1	-8/3	3	1	0	
		0	0		•	•	•	0	1	_	8/3	1	
		0	0		0	•	•	•	0		1	-8/3	3/
		1	2/3	0	0	0				0	0)	
			0	2/3	0	0	•		•	0	0		
			0	0	2/3	0	0		•	0	0		
			0	0	0	2/3	0	0	•	0	0		
	D =	:	•	•	•	•	•	•	•	•	•		
			•	•	•	•	•	•	•	•	•		
			0	0	•	•	0	0	2/3	0	0		
			0	0	•	•	•	0	0	2/3	0		
			0	0	0		•		0	0	2/3	/	

In order to solve of the (2.7)-(2.8) nonlinear system of equations let's use the iterative method combined with factorization methods:

$$w3_{i+1}^{(k+1)} - 2w3_i^{(k+1)} + w3_{i-1}^{(k+1)} = h_3^2 f3_i / \left(m_0 + m_1 t k f(w3^{(k)})\right) \equiv F3_i^{(k)},$$

$$i = 1, 2, \cdots, 2n - 1; \quad k = 0, 1, 2, \cdots;$$

$$tkf(w3^{(k)}) = 0.5\left(\frac{w3_1^{(k)} - w3_0^{(k)}}{h}\right)^2 + \left(\frac{w3_2^{(k)} - w3_0^{(k)}}{2h}\right)^2 + \dots + \left(\frac{w3_{2n}^{(k)} - w3_{2n-2}^{(k)}}{2h}\right)^2 + 0.5\left(\frac{w3_{2n}^{(k)} - w3_{2n-1}^{(k)}}{h}\right)^2;$$

 $w3_i^{(0)}, i = 0, 1, 2, \cdots, 2n$ is the initial approach. Remark: we can take as initial approach

$$w3_0^{(0)} = a_2, \ w3_1^{(0)} = 0, \ w3_2^{(0)} = 0, \ \cdots, \ w3_{2n-1}^{(0)} = 0, \ w3_{2n}^{(0)} = a_1;$$

+

For a finding in central points of required functions of a deflection it is received the following tree - diagonal system of the algebraic equations:

 $k=0,1,2,\cdots.$

The method of factorization is stabile, as $W3_1$ coefficients through $W3_2$ (in first equation), and $W3_{2n-1}$ through $W3_{2n-2}$ (in last equation) are equal 0.5.

It is created system of programs in MATLAB on the basis of the abovestated algorithm which is intended for a wide range of consumers.

Acknowledgment. The designated protect has been fulfilled by financial support of the Rustaveli Science Foundation (Grant project # 30/28).

References

- Samarski A. A., Andreev V.B. Difference Methods for Elliptic Equations. (in Russian), - Moscow, "Nauka", 1976. -352 p.
- 2. Peradze J. A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 2005, 102, pp. 311-342.