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Abstract

In the present paper, by means of Vekua's method, the system of differential
equations for the Geometrically and Physically nonlinear theory non-shallow shells is
obtained.
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I. Vekua constructed several versions of the refined linear theory of
thin and shallow shells, containing, the regular processes by means of the
method of reduction of 3-D problems of elasticity to 2-D ones.

By thin and shallow shells I.Vekua means 3-D shell type elastic bodies
satisfying the following conditions

ag—x?’bg%ag —h§$3:$3§b, 047621’27 (*)

where ag and bg are mixed components of the metric and curvature tensors
of the midsurface of the shell, 23 is the thickness coordinate and h is the
semi-thickness.

In the sequel, under non-shallow shells we wean elastic bodies free from
the assumption of the type (*) or, more exactly, the bodies with the con-
ditions

ay — b # af = |hbfa| < q < 1.

Such kind of shells are called shells with varying in thickness geometry,
or non-shallow shells.
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1 The Coordinate System in a Shell Normally
Connected with a Surface

Let 2 denote a shall and a domain of the space occupied by the shell. Inside
the shell, we consider a smooth surface S with respect to which the shell
Q lies symmetrically. The surface S is called the midsurface of the shell
Q. To construct the theory of shells, we use more convenient coordinate
system which is normally connected with the midsurface S. This means
that the radius-vector R of any point of the domain ) can be represented
in the form

R(zt, 22, 2%) = 7ot 2?) + ®i (!, 2%) (2% = x3),

where R and i are respectively the radius-vector and the unit vector of the
normal of the surface S(x® = 0) and (z!,2?) are the Gaussian parameters
of the midsurfaces S.

The covariant and contravariant basis vectors ]%Z and R of the sur-
faces S (3 = const), and the corresponding basis vectors 7; and 7% of the
midsurface S(2® = 0) are connected by the following relations:

ﬁi = Azjfa = Aij”::jv RZ = AZJ’FU = Aijf}? (Zvj = 172’3)7

where
. ag—xgbg, i=a, j=0 A T, T, 1= q,
63,7=3 (0,8 =1,2) n, i, i=3,
(1 - 2H1‘3)aa + 2303 )
g g a, j=p

Al = 1 —2Hzs+ K22 ' (1.2)
5, j=3, (0, =1,2)

Here (aqg,a®’ ,ag) and (by 5 b ,bg) are the components (covariant, con-

travariant and mixed) of the metric and curvature tensors of the midsurface
S. By H and K we denote a middle and Gaussian curvature of the surface
S, where

2H = b2 = b} 4+ b3, K =bib3 — bib2.

It should be noted that for the refined theory of non-shallow shells (Koiter,
Haghdi, Lurie) these relations have the form

R =~ (ag + :csb%)FB7 ﬁa = (ag - $3b§)775> (x3 = z3) (1.21)
where

. 1
R* = {a}} + xsb + 5(4H2 —K)zi4 ..}
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The main quadratic forms of the midsurface S(x3 = 0) have the forms

I =ds* = agpda®da’, 1T = Kds* = bypdz®da®, (1.3)
where k; is the normal courvative of the S and
JERG = = a B . = @ d.fa
o = TaTp, baﬁ = —NT3, ks = baﬁs 57, To = 0T, s% = E (1'4)

To construct the theory of non:shallow shells, it is necessary to obtain
formulas for a family of surfaces S(x3 = const) analogous to (1.3), (1.4),
which have the forms

I =d§? = gopda®da®, II = Kgds® = bagdz®da”, (1.5)

where Lo
9o = RoRp = aap — 223bap + 25(2Hbop — Kaag), 1.6

baﬁ = (1 — 2Hl‘3)ba5 + :CgKaalg
and l%s = Baﬁso‘sﬁ is the normal courvature of the S.

The expressions for the unit tangent vector S and the tangential normal

I of the surface S have the forms

5 dR 5 4 ds

S = d§ = [(1 — 333]{5)5 + x378l:| %7

- T > ;] 98 (1.7)
[=Sxi= [(1 3ks)l ngss} -

d3 = \/1 = 2x3ks + (k2 + 72)a2ds, [ x§=1

where dé and ds are linear elements of the surfaces S and S, Ts is the
geodesic torsion of the surface S.

The formula
ds

%a
which is necessary in writing the reduced basic boundary-value problems
in stresses, is also valid.

IRy = (1 — 2Hxs + kas)(I7,) (1.8)

2 System Geometrically and Physically Nonlin-
ear Equation for Non-Shallow Shells

We write the equation of equilibrium of on elastic shell-type body in a
vector form which is convenient for reduction to the 2-D equations

1 0,95 - AT
LOVIT G s B0, (2.1)
Vg drt
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where g is the discriminant of the metric quadratic form of the 3-D domain

0, V,; are covariant derivatives with respect to the space coordinates x*,

® is an external force, 6" are the contravariant constituents of the stress
*

vector &', acting in the area with the normal [ and representable as the
()

Cauchy formulas as follows

O« =0 li li=

(@)

Using relation (1.7), for the stress vector acting on the area with normal

—

(\Al*

i

[ we obtain
. o o g, -, . ds
v =0Y(IRy) = /=7, — 2.2
7= (1) = |70 (22)
where

\/Ezl—Qng—kag (~h <z3=212°<h)
a
A material is said to be hyper-elastic if the stresses are obtained by
means of the strain energy function
8eij ’

where 0% are contravariant components of the stress tensor, 3 is the strain
energy function, and e;; are covariant components of the strain tensor.
The theory of hyper-elasticity of the second order has the form

1. 1.
4= §Ewpq€ij€pq + gE”pqSkeijepq@sk,
1 > 7 = e — —
€ij = E(Rza]U + RjBZ-U + 8zU8]U) (23)
0V = EWley + B epgeyy,, G =o' (é] + ajﬁ)

where FUP? and EYP4k are coefficients of elasticity of the first and second
order and # is the displacement vector.

Coefficients of elasticity of the first order for isotropic elastic bodies are
expressed by the two Lame coefficients.

BP9 = \gUgh + (g g + g1g7") (g7 = R'RY) (2.4)
and coefficients of elasticity of the second order are defined by the formula

EUPEF — (By 4 By)g” ¢"'g"" — Eag” g"* g% + E3g™ ¢’ g™ + Eag”g"g"",
(2.5)
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where E1, Fs, F3 and FE4 are modules of elasticity of the second order for
isotropic elastic bodies.

To reduce the 3-D problems of the theory of elasticity to 2-D problems,
it is necessary the rewrite the relation (2.1-2.5) in terms of the midsurface
S of the shell .

Relation (2.1) can be written as follows:

1 ovavs o6
va Ox® ox3

from (2.3)-(2.5) we obtain

+08 =0, (0=1-2Haxs+ kxs). (2.6)

. — —

ot = Jij(éj + 8]'[7) = (Eiqu + EiquSkesk)epq(Rj + 8jU)

= gt = %Aél[Miljlplql + %Miljlplqlslkl

. L (2.7)
X (Af 7o, U + A5 AL 0,U8,U))]
X (AD, 7y, O,U + AL 7, 0,U + Agl Agl opU0,U) (7, + A;laj U),
where
MOnPiar — \ghiigPiar 4 M(ailplajl(h + ai1q1aj1p1) (2.8)
Mijipiqisiky — (El + EZ)ailjlaplfh _ E2ai1j1ap1k?1q¢h$1
(2.9)

7 1q1 ~S1k 18 i1k
+E3a 1P1 gJ141 gS1FR1 +E4a 1814 P141 4J 1,

(aih = 7).

3 Vekua’s Method of Reduction

There are many different methods of reducing 3-D problems of the theory of
elasticity to 2-D one of the theory shells (Reissner, Mindlin, Koiter, Naghdi,
A. Lurie ...)

In the present paper, we realize the reduction by the method suggested
by I. Vekua. Since the system of Legender polynomials {P,,(%2)}*_ is
complete in the interval [-h,h]for equation (2.6) we obtain the equivalent
infinite system of 2-D equations

h

1 0yabh3* 005> - T3 3

- o Pm e = U, = )
/[\/& Oz +ax3 +9:| (h)d.rg (1'3 :L‘)
—h

or in the form
(m) o1 [(m=1) (m—3) (m)
Vo &% — n;;r (&3 + o3 + >+F_O, (3.1)
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where
(m) (m) 2m +1 / S T3
(&l, & ) - /(HEZ,HQ)thdwg,
“h
(m)  (m) —(_
= oz 2m+1 [gT (+) g (_‘
F=2a o \/;4‘03— - 03, (3.11)
gi 2
9 = g(+h) = 1F2Hh + Kh>.
a

and V,, are covariant derivatives on the surface S(z% = 0).

Thus, we have obtained the infinite system of 2-D equations of the
theory of shells for which the boundary conditions on the face surface (x3 =
+h) are satisfied, i.e. &3 = #3(x!, 2%, £h) is the preassigned vector field.

The relation (2.7) can be written as follows

—»z 2’m—|—1 /9—»@P de Miiipia Z
m1=0
(m) (my o [im) m)\  (m2)
AZ?pl(T(Ile U )7:;71 + Z Al‘z?l}n FQle U DJ U
(m1) me=0 [m1,m2)
) (m)  (m2)
Al]ljglCIl D, U D, U |7}
mi,ma)
Lo (m (m)  (m
ipq
+ 9 Z A11p1q1 Dy U Dy U
m3z=0 (m1,m2,m3)

i1p1k1
m1,ma2=0 |(mim2)

oo (m) (m2
+Mi1j1P1Q1s1k1 Z Azpk (quD U ) Tlek _' > i (3.2)

1ipk — o — = “
+ ) AT <rq1Dp U) (rlek 0§ ) D; U

m3=0 [ (m1,m2,m3)

1™ (m1) (m2)  (ma)
y-Ark 7D, U || Ds U D, U |7

i1p151k1
mi,ma,ms3)

o (1) (m2) (m3)
+o AP D, U D, U ||7Dy T |7

11p1q1k1
mi,ma,ms3)

m (m1)  (m2) (m3) (ma)

ijpq ' .,

+ Z AZIJlqu;kl DP U Dq U DJ U [rs, D U
m4 0 \(mi,...,mq
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(m) (m1)  (m2) (m3)  (ma)
+ AlPask (D U D, U) (Dk U D, U)fjl

i1p1q181k1
(ml» 7m4)
(m) ) (m1) (m2) (m3)  (ma)
+Aii§1p1kls1 (rqle U)Dj U (DS U D, U
(ml,...,m4)

1 &= m i (m1)  (m2) (ms) (ma)  (ms3)
1jpgs .
+3 oA o\ Dy U Dy U | D U (D U Dy U |y,

mg,ma,ms(mi,...,ms)

where

D; U75/38 U +63 U, U,:th+1 u U +-- (3.3)

7/1]1 117771
(m1)

(m)
C2mt1
AV m+ / 04 A Py Prds,

(m)
i 2m —|— 1 i
A / OAL A AP Py, Py Pz,
(m1,mz) (3.4)

(m) h
i 7 2m +1 .
k k
AZ?lq;UhSlk‘l = 2% /QA;IA;I o 'Ak1Pm1 T Pmspmdﬂf?)-
(ma,...,ms) “h

By virtue of (2.2) we have

h
2m+1 [ _ d§ m  m - (m _ (m
—n / o) %pmdz:g =0%g=0oul+ 00y 5+oqni (3.5)
—h
Then
h
M o1 3 m - m )
5% /Upm (W) d$3—U(l)l+U(s)S+U(n)n (3.6)
—h
(m=0,1,--+)
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The passage to the finite system can be realized by various methods
one of which consists of considering of a finite series, i.e.,

i o~ /9= N (nf.)(’ﬁ) (m) T3
<\/;o,U\/;<I>> :ﬂ;(a; 0,8 )Pu(2),

where N is a fixed nonnegative number. In other words, in the previous
equations it is assumed that

(m) (m)
U=0, o' =0, if m>N.

The approximation of such a type will be called an approximation of
order N.

The second difficulty (no less important) consists in that integrals of
the type (3.4) should be calculated explicitly.

By the F. Neumann and J. Adams formulas

1
/Pm(y)dy =2Qm(x), |z|>1, (Neumann)

r—y
-1
and
min(m,s)
Pm Z Omsr Prgs— 27“( )7 (Adams)
respectively, where
Ap—r ApAg_p 2(m +8) —4r + 1 1-3---(2m—1)

Amsr = Ay = s

Amas—r 2(m+s)—2r+1’ m!

and @Q,(x) are the Legendre functions of the second kind, it is not to
difficult obtain expression of these integrals explicitly

(m
(h )Agiéf 2m+1 / \[AMA”P  Prudas
()

2m+1 1|, a Py (9)Qm(y), ma < m>]y2
B (hy)B32(h ! ’
2VEh [ o (1) B, (1) < Qumy (y) Pr(y), magem )|
E+£0
— —1lr« a2 $m 37
+KILg L (kiO) (37)
ag agion E=H?-K=0,
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where 07" is the Kroneker symbol, E is Euler difference, Bg(x) =ag+xzL3,
LG = b3—2Hag. The essence of the square brackets consists of the following

FW% = fly2) — fr), w12 =[(HF Vkh] ™!
The explicit expression for the product P, (y)Qs(y) has the form

[%] o
Prn(y)Qs(y) = Z 7 rpym_s_Q(T+p)_1 (m <s)
r=0 p=0
where
() (1 (@m—9n) (s +p)l(s +2)
L rl (m—r)i(m—2r)! pl(2s+2p+ 1)!
Further,

(m
om + 1
(I )Agis? m+ /\/7Aalpmlp dxs
(m1)

m

. aism m m—1 m+1
_aﬁi5m1+h<2m sl 4 o

—1 ™M 2m + 3 mi

(m) om + 1
(I3) AR = m+ /\fpmlp das
(m1)

— 6™ —2Hh ( g4 mH(smH)

5m+1) Loq

2m+1 ™ 2m+3 ™

mAtl m+2 g, (m+1)2 m? om.
2m+32m+5 ™ 2m+3 2m—1/) 2m+1

m m—1 m_z}

+Kh? [

2m —12m -3 ™
Consider the integrals containing the product of three Legendre poly-
nomials:

h o @ a
Ay = 2t [ PR o) o)
i = o (1= 2Hy + ka3

“Bos (3) o (57) £ (57 ) s

Introduce the notation
3 n
Bj! (x3) Bg? (x3) B3} (v3) = ) _ Cjl5257 a”
n=0
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where
0 a102¢ o o o 1 o120 (07 (073 (073 « « « o o o
123 __ 1 2 3 123 1 2 3 1 2 3 1 2 3
Coigas = 08,8, %5  Cpipasy = ap, g, Ligy + ag Ligiag) + Lig agiag?,
2 a12Q; 6% 6% 6% « « « (6% 6% 6% 3 a1 « « «
123 1 2 3 1 2 3 1 2 3 123 __ 1 2 3
C5152B3 = ag, Lﬁ2 LBB ) +L51 ag, Lﬁs + L,31 LBQ agy s C,6’1,32,33 - Lﬁl Lﬁz Lﬁg ?

(L5 = b3 — 2Ha§)
Then we have
min(mq,ma) 3

(m) om + 1 n 0?
o120 _ o120
AGisy = Do Gmmar ) CHIEEY L

(m1,m2) r=0 n=0
o B@)Qmy), s<m\]"
X
b1 =42 Qs(y)Pm(y)a s>m "
where
yro = [(HE VIR = —— = 5 (g — 20,
7 yi—v2 2VE
Further
(m) h min(mi,ms)

2m+1 Bﬁ1 (333)3'82 (3}3)
) A = B [ s P PaPura = 3 i
3

(mima2) “n r=0

(07 o y
LeLg o omett| oo (PsW)@m(y), s<m
g K °  2JVEh By, (hy) B h(y) v
QuPal). s=mi)],
(772133 om + 1 h ,
(113) A5133 = 2% /Bai ($3)Pm1pm2Pmd$3
(mamo) h

min(mi,mz)

m—+1 m —
= > mmar [a;;;a;n +h <2m+35;ﬁ+1 + 50 1) Lg;]

r=0
(s =mq+mg — 2r)
(m) om 41 [
(I14) A333 = o / (1 — 2Hz3 + kx2) Py Dy Prdcs
(m1im2) 2
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min(mi,ma)

= mamar 4 0T — 2H gty M gme1) L pep?
2 0‘12{3 <2m 30 om—1 )7

r=0
m+1 m+3 st (m +1)? m? 5m
2m+32m+58 2m + 3 2m—1 2m + 1
m— m—2
+2m—12m+38 ]}
(s =my +mg—2r)
The integrals
h
(m) 2 1 [ B3 (x3)--- B3 (x
(III) AOél e — m+ 61( 3) 64( 3)Pm Pm Pm Pmdilffi’
B 2h (1 —2Hxg + ka2)3 =™ "™

(mhmz,ms) “n

(m)
(V) Ag =

om+1 [ Bj)(xs)-- Bg’(as3)
~Bs 2h / : Pml"'Pm4Pmdx3a

(1—-2Haz3+ kx%)‘l

(ml, m4) “h
h
(m) 2m +1 B! (1‘3) ... B% (1‘3)
AV AOQ . B1 Be Pm Pm Pmd )
(V) (my - m£6 2h / (1-2Hz3 + kx§)5 1 s 3

are calculated similarly.
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