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Abstract

An analytical solution for some boundary value problems of the thermoelastic

equilibrium of an isotropic rectangular parallelepiped with non-homogeneity of the

type µ = const, λ = λ (x, y, z) (µ is a shift modulus; λ is material amenability,

x, y, z are Cartesian coordinates) and an analytical solution of boundary value contact

problems on the thermoelastic equilibrium of a multilayer piecewise non-homogeneous

rectangular parallelepiped each layer of which has its own non-homogeneity of the form

µ = const, λ = λ (z) .are constructed. At the end of the paper examples of problem

solution are given.
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1 Introduction

There are quite a number of scientific papers dealing with elastic equilib-
rium of non-homogeneous bodies. The number of scientific publications
on thermoelastic equilibrium of non-homogeneous bodies is significantly
smaller, while those that study thermoelastic equilibrium of finite non-
homogeneous bodies when non-homogeneity is a function of not just a single
coordinate, but of two or three of them are quite few.

In the present paper we consider some boundary value problems of ther-
moelastic equilibrium of an isotropic rectangular parallelepiped with non-
homogeneity of the type µ = const, λ = λ (x, y, z) (µ, λ are elastic char-
acteristics of the body, µ is called shift modulus and λ is medium amenabil-
ity) and boundary value contact problems for a multilayer piecewise non-
homogeneous rectangular parallelepiped. Each layer of the multilayer par-
allelepiped has its own non-homogeneity of the type µ = const, λ =
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λ (z) (where z is an applicata of the Cartesian system of coordinates x, y, z).
Layers with different elastic characteristics are located along the coordinate
z with contact planes perpendicular to this axis.

Among scientific publications devoted to the elastic and thermoelastic
equilibrium of bodies we should mention monographs [1]-[5] and papers
[7]-[11]. Although all the above-mentioned publications deal with prob-
lems similar to ours/statement and discussions of the problems considered
in our paper can be found only in monographs [1] and [2]. To be more
exact, these monographs state and analyze problems of elasticity, but not
thermoelasticity.

A section of work [1] deals with elastic equilibrium of an isotropic
medium with a constant shift modulus µ and variability amenability λ.
The authors after some transformations of the Lamé equations express com-
ponents of the stress tensor through three harmonic and one biharmonic
functions. Unfortunately, it is not clear which of the indicated functions
are defined in a general form and which of them have a partial form. This
question arises due to the fact that three arbitrary harmonic functions (or
one biharmonic and one harmonic function) are sufficient for the construc-
tion of the so called general solution. It is not clear either and not defined
for what kind of bodies and what kind of boundary conditions the pro-
posed general condition is convenient. In other scientific papers dealing
with problems studied in the given paper we could not find an algorithm
leading to the solution of particular problems with particular boundary
conditions (especially as far as analytical solutions are concerned) either.

In the given work an analytical solution is constructed for some bound-
ary value problems of thermoelastic equilibrium of an isotropic rectan-
gular parallelepiped with non-homogeneity of the type µ = const, λ =
λ (x, y, z) and an analytical solution of boundary value contact problems of
thermoelastic equilibrium of a multilayer piecewise non-homogeneous rect-
angular parallelepiped each layer of which has its own non-homogeneity
of the type µ = const, λ = λ (z) . The solutions are constructed using
the method of separation of variables the displacements and components of
the stress tensor being represented as absolutely and uniformly converging
double series.

At the end of the paper examples of problem solution are given.

2 Equilibrium Equations, Physical Equations and Some
Properties of an Isotropic Medium with a Constant
Shift Modulus and Variable Amenability

In the rectangular Cartesian system of coordinates x, y, z, equilibrium equa-
tions and expressions for the components of stress tensor through displace-
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ments in the case of a non-homogeneous elastic isotropic body will have the
following form [12]

a)
∂Xx

∂x
+

∂Xy

∂y
+

∂Xz

∂z
= 0,

b)∂Yx
∂x +

∂Yy

∂y + ∂Yz
∂z = 0,

c)
∂Zx

∂x
+

∂Zy

∂y
+

∂Zz

∂z
= 0;

(1)

a) Xx = λθ + 2µ
∂u

∂x
− (3λ+ 2µ) kT, d) Yz = µ

(
∂w

∂y
+

∂v

∂z

)
,

b) Yy = λθ + 2µ
∂v

∂y
− (3λ+ 2µ) kT, e) Zx = µ

(
∂u

∂z
+

∂w

∂x

)
,

c) Zz = λθ + 2µ
∂w

∂z
− (3λ+ 2µ) kT, f) Xy = µ

(
∂v

∂x
+

∂u

∂y

)
.

(2)

In Equalities (1) and (2)
−→
U (u, v, w) is a displacement vector with compo-

nents u, v, w, respectively, along the coordinate lines x, y, z; θ = div
−→
U =

∂u

∂x
+

∂v

∂y
+

∂w

∂z
; λ =

νE

(1− 2ν) (1 + ν)
, µ =

E

2 (1 + ν)
, where E is elasticity

modulus and ν is Poisson’s ratio; k is the coefficient of linear thermal ex-
pansion, T (x, y, z) is the change in the temperature in a point of the body
[4],[6], and

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= ∆T = 0. (3)

We will also write the following formulas here:

−→
K (Kx,Ky,Kz) = rot

−→
U , and Kx = µ

(
∂w

∂y
− ∂v

∂x

)
,

Ky = µ

(
∂u

∂z
− ∂w

∂x

)
, Kz = µ

(
∂v

∂x
− ∂u

∂y

)
.

The given paper studies a multilayer rectangular parallelepiped each
layer of which has its own non-homogeneity of the following form:

µl = const, λl = λl (z) (4)

In the case when the isotropic parallelepiped is characterized by the
following form of non-homogeneity

µ = const, λ = λ (x, y, z) (5)
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we will consider thermoelastic equilibrium only of a one-layer parallelepiped,
i.e. we will consider boundary value problems, not boundary value contact
problems of thermoelasticity.

In Formulas (4) the index l shows the number of the layer and implies
that the l-th layer has a constant shift modulus µl and variable amenability
λl = λl (z).

Now we will write down one more form of the equilibrium equation
different of Equations (1). To do this we will use the following formulas:

Xx = (λ+ 2µ) (θ − 3kT )− 2µ

(
∂v

∂y
+

∂w

∂z
− 2kT

)
,

Xy = −Kz + 2µ
∂v

∂x
, Xz = Ky + 2µ

∂w

∂x
;

(6)

Yy = (λ+ 2µ) (θ − 3kT )− 2µ

(
∂w

∂z
+

∂u

∂x
− 2kT

)
,

Yx = Kz + 2µ
∂u

∂y
, Yz = −Kx + 2µ

∂w

∂y
.

(7)

Zz = (λ+ 2µ) (θ − 3kT )− 2µ

(
∂u

∂x
+

∂v

∂y
− 2kT

)
,

Zx = −Ky + 2µ
∂u

∂z
, Zy = Kx + 2µ

∂v

∂z
.

(8)

If Formulas (6) are substituted in Equation (1a), Formulas (7) - in Equa-

tion (1b) and Formulas (8) - in Equation (1c) and add identity div rot
−→
U = 0

to the obtained equations (in our case this identity will take the form
∂Kx

∂x
+

∂Ky

∂y
+

∂Kz

∂z
= 0), we will have

a)
∂D

∂x
− ∂Kz

∂y
+

∂Ky

∂z
+ 4µk

∂T

∂x
= 0,

b)
∂D

∂y
− ∂Kx

∂z
+

∂Kz

∂x
+ 4µk

∂T

∂y
= 0,

c)
∂D

∂z
− ∂Ky

∂x
+

∂Kx

∂y
+ 4µ; k

∂T

∂z
= 0,

d)
∂Kx

∂x
+

∂Ky

∂y
+

∂Kz

∂z
= 0,

e) ∆T = 0;

(9)
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a)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 3kT + g (x, y, z)D,

b)
∂w

∂y
− ∂v

∂z
=

1

µ
Kx,

c)
∂u

∂z
− ∂w

∂x
=

1

µ
Ky,

d)
∂v

∂x
− ∂u

∂y
=

1

µ
Kz.

(10)

In Equality (10a) g = 1
λ+2µ .

Remark 1. Equations (9a) , (9b) , (9c) and Identity (9d) imply

grad
[
(λ+ 2µ)

(
div

−→
U − 3kT

)]
− rot

(
µ rot

−→
U
)
+ 4µk gradT = 0, (11)

div
(
µ rot

−→
U
)
= 0 (12)

or

gradD − rot
−→
K + 4µk gradT = 0, (13)

div
−→
K = 0. (14)

Hence, in any curvilinear orthogonal system of coordinates for an isotropic
specially non-homogeneous elastic body of the form

µ = const, λ = λ (x, y, z)

Equations (11) and, naturally, Identity (12) are true.

3 Boundary Conditions for the Parallelepiped under
Consideration

Now we give boundary conditions [13] for the parallelepiped Ω = {0 < x <
x1, 0 < y < y1, 0 < z < z1} under consideration (Fig. 1):
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For x = xj (j = 0, 1; x0 = 0):

a) u = 0, Xy = 0, rm Xz = 0,
∂T

∂x
= 0 ⇒

⇒ ∂D

∂x
= 0,

∂Kx

∂x
= 0,

∂v

∂x
= 0,

∂w

∂x
= 0, Ky = 0, Kz = 0

or

b) Xx = 0, v = 0, w = 0, T = 0 ⇒

⇒ D = 0, Kx = 0,
∂u

∂x
= 0,

∂Ky

∂x
= 0,

∂Kz

∂x
= 0

(15)

For y = yj (j = 0, 1; y0 = 0):

a) v = 0, Yz = 0, Yx = 0,
∂T

∂y
= 0 ⇒

⇒ ∂D

∂y
= 0,

∂Ky

∂y
= 0,

∂w

∂y
= 0,

∂u

∂y
= 0, Kz = 0, Kx = 0

or

b) Yy = 0, w = 0, u = 0, T = 0 ⇒

⇒ D = 0, Ky = 0,
∂v

∂y
= 0,

∂Kz

∂y
= 0,

∂Kx

∂y
= 0

(16)

For z = zj (j = 0, 1; z0 = 0):

a) w = fj1, Zx = fj2, Zy = fj3, τ0T + τ1
∂T

∂z
= fj4 ;

from these three first conditions on the face z = zj
are defined functions

∂

∂x
D,

∂

∂z
Kz,

∂u

∂z
,

∂v

∂z
, Kx, Ky

or

b) Zz = fj1, u = fj2, v = fj3, τ0T + τ1
∂T

∂z
= fj4 ;

from these three first conditions on the face z = zj
are defined functions

D, Kz,
∂w

∂z
,

∂Kz

∂z
,

∂Ky

∂z
,

(17)
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where τ0 and τ1 are arbitrary real numbers and fjh (x, y) (h = 1, 2, 3, 4)
are functions that can be expanded into a uniformly converging double
trigonometric Fourier series.

Fig. 1. Thermoelastic Rectangular Parallelepiped under Consideration

We assume that the given boundary conditions satisfy compatibility
conditions on the edges of the parallelepiped

Ω = {0 < x < x1, 0 < y < y1, 0 < z < z1} .

Before we continue the discussion of boundary conditions we should
point out that the following conditions:(

∂g

∂x

)
x=xj

= 0,

(
∂g

∂y

)
y=yj

= 0, (18)

are imposed on the function g (x, y, z) where j = 0, 1, and x0 = 0, y0 = 0.
Boundary conditions (15a) and (16a) will be called boundary condi-

tions of continuous symmetrical extension of the solution through the facet
x = xj or, correspondingly, through the facet y = yj or, briefly, bound-
ary conditions of symmetry while Conditions (15b) and (16b) will be called
boundary conditions of continuous antisymmetrical extension of the solu-
tion through the facet x = xj or, correspondingly, through the facet y = yj
or, briefly, boundary conditions of antisymmetry.

Boundary conditions (17a) for τ0 = 0, τ1 = 1 will be called non-homoge-
neous boundary conditions of symmetry and boundary conditions (17b) for
τ0 = 1, τ1 = 0 will be called non-homogeneous boundary conditions of
antisymmetry.
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4 Basic Equations by Means of Which Analytical Solutions
of Boundary Value and Boundary Value Contact Prob-
lems of Thermoelasticity are Constructed

Let us go back to Equilibrium Equations (9). They easily give equations

a) ∆D = 0, b) ∆Kz = 0, c) ∆T = 0. (19)

From Equations (9c), (10c) and (10b) we have

a) ∆w = −∂T

∂z
− 1

µ

∂D

∂z
− ∂ (gD)

∂z
= 0 or

b) ∆

(
w +

z

2µ
D +

z

2
T

)
=

∂ (gD)

∂z

(20)

If we introduce the notation w + z
2µD + z

2T = Ψ, we have

∆Ψ =
∂ (gD)

∂z
. (21)

Equation (21) implies that Ψ = Ψ0 +Ψ∗, where Ψ0 is a harmonic function
and Ψ∗ is a partial solution of Equation (21).

The equations given above imply

w = − z

2µ
D − z

2
T +Ψ0 +Ψ∗. (22)

We assume that boundary conditions of antisymmetry, i.e. Conditions
(15b) and (16b), are satisfied on the lateral facets of the parallelepiped.
Then using the method of separation of variables we can represent the
harmonic functions D, T and Ψ0 in the form of corresponding infinite series
and for the displacement w we will have:

w = −
4∑

l=1

∞∑
m=1

∞∑
n=1

ηl
[
Almne

−pz +Blmne
p(z−z1)

]
× sin (m̃x) sin (ñy) + η̃lΨ∗,

(23)

where η1 = z
2µ , η2 = 0, η3 = z

2 , η4 = 1, η̃1 = 1, η̃2 = η̃3 = η̃4 =
0; m̃ = πm

x1
, ñ = πn

y1
.

It can be easily seen that

∞∑
m=1

∞∑
n=1

[
Almne

−pz +Blmne
p(z−z1)

]
sin (m̃x) sin (ñy) = D, T, Ψ0;

l = 1, 3, 4,
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i.e. for l = 1 we have the function D, for l = 3 we have the function T , and
for l = 4 we have the function Ψ0.

With boundary conditions (15), (16), (17) in mind we can write the
harmonic functions D, Kz, T and Ψ0 in the following way:

Φl0 (z) +
∞∑

m=0

∞∑
n=0

Φlmn (z)φ
(s)
lmn (x, y) = D , Kz, T, Ψ0;

l = 1, 2, 3, 4; s = 1, 2, 3, 4

(24)

Formula (24) means that its left-hand side represents the function D for
l = 1 , the function Kz -for l = 2, the function T - for l = 3 and the
function Ψ0 - for l = 4 and

a) Φl0 = alz + bl; Φlmn = Almne
−pz +Blmne

p(z−z1),

where p =
√
m̃2 + ñ2, and m̃ = m̃ (m) , ñ = ñ (n) ;

b) Φ
(1)
lmn = sin (m̃x) sin (ñy) , Φ

(2)
lmn = cos (m̃x) sin (ñy),

Φ
(3)
lmn = sin (m̃x) cos (ñy) , Φ

(4)
lmn = cos (m̃x) cos (ñy) .

(25)

al, bl, Almn and Blmn are constants here that are to be defined from
boundary conditions (17), and formulas (24) (25) themselves represent
harmonic functions D, Kz, T and Ψ0 in the form of the corresponding
infinite series. Naturally, these infinite series are obtained by applying the
method of separation of variables to Laplace’s equation.

Note that the function Φl0 in the majority of cases is equal to zero.
This will become evident after some particular boundary value problems of
thermoelasticity, which are given in the forthcoming, have been considered.
Specifically, as an example we consider some of the boundary conditions on
the lateral surface of the parallelepiped Ω, i.e. some of boundary conditions
(15) and (16).
Example 1. Boundary conditions of antisymmetry are defined on the
lateral facets of the parallelepiped. In this case we have:

D,T,Ψ0 =
∞∑

m=0

∞∑
n=0

[
Almne

−pz +Blmne
−p(z−z1)

]
sin (m̃x) sin (ñy) ;

l = 1, 3, 4; m̃ = πm
x1

, ñ = πn
y1
;

Kz = Φ20 (z) +
∞∑

m=0

∞∑
n=0

[
A2mne

−pz +B2mne
−p(z−z1)

]
cos (m̃x) cos (ñy) ,

m̃ = πm
x1

, ñ = πn
y1
.

Example 2. On the facets x = 0 and y = 0 antisymmetry conditions are
defined, while on the facets x = x1 and y = y1 symmetry conditions are
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given, then

D,T,Ψ0 =
∞∑

m=0

∞∑
n=0

[
Almne

−pz +Blmne
−p(z−z1)

]
sin (m̃x) sin (ñy) ;

l = 1, 3, 4; m̃ = π(2m−1)
2x1

, ñ = π(2n−1)
2y1

;

Kz =
∞∑

m=0

∞∑
n=0

[
A2mne

−pz +B2mne
−p(z−z1)

]
cos (m̃x) cos (ñy) ,

m̃ = π(2m−1)
2x1

, ñ = π(2n−1)
2y1

.

Example 3. On the facet x = 0 antisymmetry conditions are defined,
while on the three remaining facets symmetry conditions are given. In this
case we have:

D,T,Ψ0 =
∞∑

m=0

∞∑
n=0

[
Almne

−pz +Blmne
−p(z−z1)

]
sin (m̃x) cos (ñy) ;

l = 1, 3, 4; m̃ = π(2m−1)
2x1

, ñ = πn
y1
;

Kz =
∞∑

m=0

∞∑
n=0

[
A2mne

−pz +B2mne
−p(z−z1)

]
cos (m̃x) sin (ñy) ,

m̃ = π(2m−1)
2x1

, ñ = πn
y1
.

Example 4. On the lateral facets of the parallelepiped symmetry condi-
tions are defined, then we have:

D,T,Ψ0 = Φl0 (z) +
∞∑

m=0

∞∑
n=0

[
Almne

−pz +Blmne
−p(z−z1)

]
× cos (m̃x) cos (ñy) ; l = 1, 3, 4; m̃ = πm

x1
, ñ = πn

y1
;

Kz =
∞∑

m=0

∞∑
n=0

[
A2mne

−pz +B2mne
−p(z−z1)

]
sin (m̃x) sin (ñy) ,

m̃ = πm
x1

, ñ = πn
y1
.

It can be easily seen that the function Φl0 appears only Examples 1 (for
l = 2) and 4 (for l = 1, 3, 4) while in most of the other cases Φl0 = 0.

Now we will try to express the displacements u and v through the
functions D, Kz, T and Ψ.

It is reasonable to define displacements u v for particular values of
boundary conditions, selected from boundary conditions defined by for-
mulas (15), (16) and (17). For example, choose the conditions given in
Example 1. To be more definite, add Conditions (17a) to the conditions of
Example 1.

Determining displacements u and v, in the case when particular bound-
ary conditions are defined makes both the understanding of the present
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material significantly easier and the possibility of its extension for the case
of other boundary conditions, different from conditions (15b), (16b), (17a).

Bearing in mind boundary conditions (15b), (16b) and (17a) that we
have chosen we can write the harmonic functions D, Kz, T Ψ0 in the
following way:

D,Kz, T,Ψ0 =

∞∑
m=1

∞∑
n=1

[
Almne

−pz +Blmne
−p(z−z1)

]
φlmn (x, y) , (26)

where l = 1, 2, 3, 4, φ1mn (x, y) = φ3mn (x, y) = φ4mn (x, y) = sin (m̃x) sin (ñy),
φ2mn (x, y) = cos (m̃x) cos (ñy); m̃ = πm

x1
, ñ = πn

y1
.

Equations (9a) and (9b) lead to

a)
∂Ky

∂z = −
3∑

l=1

∞∑
m=1

∞∑
n=1

[
Almne

−pz +Blmne
−p(z−z1)

]
χ1l

× cos (m̃x) sin (ñy) ,

b) ∂Kx
∂z =

3∑
l=1

∞∑
m=1

∞∑
n=1

[
Almne

−pz +Blmne
−p(z−z1)

]
χ2l

× sin (m̃x) cos (ñy) ,

(27)

where χ11 = m̃, χ12 = ñ, χ13 = 4µm̃, χ21 = ñ, χ22 = −m̃,χ23 = 4µñ;
m̃ = πm

x1
, ñ = πn

y1
.

After the integration of Equations (27), we have

a) Ky =
3∑

l=1

∞∑
m=1

∞∑
n=1

χ1l
p

[
Almne

−pz −Blmne
−p(z−z1)

]
× cos (m̃x) sin (ñy) ,

b) Kx = −
3∑

l=1

∞∑
m=1

∞∑
n=1

χ2l
p

[
Almne

−pz −Blmne
−p(z−z1)

]
× sin (m̃x) cos (ñy) ,

(28)

where χ11 = m̃, χ12 = ñ, χ13 = 4µm̃, χ21 = ñ, χ22 = −m̃,χ23 = 4µñ;
m̃ = πm

x1
, ñ = πn

y1
.

Equations (10b) and (10c) imply

a)
∂v

∂z
=

∂w

∂y
− 1

µ
Kx, b)

∂u

∂z
=

∂w

∂x
+

1

µ
Ky. (29)

(28), taking (22) into account, results in

a)
∂v

∂z
= − z

2µ

∂D

∂y
− z

2

∂T

∂y
+

∂Ψ0

∂y
− 1

µ
Kx +

∂Ψ∗
∂y

,

b)
∂u

∂z
= − z

2µ

∂D

∂x
− z

2

∂T

∂x
+

∂Ψ0

∂x
+

1

µ
Ky +

∂Ψ∗
∂x

.

(30)
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After the integration of Equations (30) we have:

a) v =
4∑

l=1

∞∑
m=1

∞∑
n=1

[
AlmnηAle

−pz −BlmnηBle
−p(z−z1)

]
× sin (m̃x) cos (ñy) + η̃l

∫
∂Ψ∗
∂y dz,

b) u =
4∑

l=1

∞∑
m=1

∞∑
n=1

[
Almnη̄Ale

−pz −Blmnη̄Ble
−p(z−z1)

]
× cos (m̃x) sin (ñy) + η̃l

∫
∂Ψ∗
∂x dz

(31)

where ηA1 = (pz+3)ñ
2µp2

, ηB1 = (pz−1)ñ
2µp2

, ηA2 = ηB2 = − m̃
µp2

, ηA3 = (pz+9)ñ
2p2

,

ηB3 = (pz−7)ñ
2p2

, ηA4 = ηB4 = − ñ
p , η̄A1 = (pz−1)m̃

2µp2
,η̄B1 = (pz−3)m̃

2µp2
, η̄A2 =

η̄B2 = ñ
µp2

, η̄A3 = (pz−7)m̃
2p2

, η̄B3 = (pz−9)m̃
2p2

, η̄A4 = η̄B4 = − m̃
p ; η̃1 = 1, η̃2 =

η̃3 = η̃4 = 0;m̃ = πm
x1

, ñ = πn
y1
.

According to Formulas (23) and (31), omitting the related explana-
tions and comments, we can write (all together for convenience) formulas
expressing displacements u, v and w.

a) u =
4∑

l=1

∞∑
m=1

∞∑
n=1

[
Almnη̄Ale

−pz +Blmnη̄Ble
−p(z−z1)

]
× cos (m̃x) sin (ñy) + η̃l

∫
∂Ψ∗
∂x dz,

b) v =
4∑

l=1

∞∑
m=1

∞∑
n=1

[
AlmnηAle

−pz +BlmnηBle
−p(z−z1)

]
× cos sin (m̃x) (ñy) + η̃l

∫
∂Ψ∗
∂y dz,

c) w =
4∑

l=1

∞∑
m=1

∞∑
n=1

ηl
[
Almne

−pz +Blmne
−p(z−z1)

]
× sin (m̃x) sin (ñy) + η̃lΨ∗.

(32)

If we consider that the problem related to the partial solution of Equa-
tion (21) has been solved, then Formulas (32) give the solution of boundary
value problem (9), (10), (15b), (16b), (17a).

Obviously, formulas of any of boundary value problems (9), (10), (15),
(16), (17) can be written in an absolutely similar way to Formulas (32).

Furthermore, before we start looking for a partial solution of Equation
(21), we should state some interesting, in our opinion, conclusions. These
conclusions are given below in the form of the two following remarks.
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5 Some Remarks Arising in the Process of Consideration of
Boundary Value Problems of Thermoelasticity

Remark 2. Examining boundary value problems (9), (10), (15), (16), (17),
we come to the following conclusion.

The thermoelastic stress/strain condition of the rectangular parallelepiped
Ω with boundary conditions (15), (16) and (17) can be uniquely defined if
at any point of the domain Ω we know

T, div
−→
U , rotz

−→
U and w,

moreover, in this case the displacement vector
−→
U can be uniquely defined

too.

The validity of the above-stated can be proved by Formulas (32) in
which the components of the displacement vector u, v and w are expressed
through harmonic functions D, Kz, T , Ψ0 and the function Ψ∗

Remark 3. Let (15)* and (16)* denote non-homogeneous boundary
conditions (15) and (16), respectively,. In other words, notation (15)* and
(16)* will indicate the fact that on the lateral facets x = xj and y = yj of
the parallelepiped Ω non-homogeneous boundary conditions of symmetry or
antisymmetry are satisfied. Further, let (17)* denote boundary conditions
(17a), for τ0 = 0 and τ1 = 1, and conditions (17b) - for τ0 = 1 and τ1 = 0.
Taking into account the above-mentioned, we can assert the following.

By superposition of three boundary value problems, which are quite
similar to boundary value problem (9), (10), (15), (16), (17)*, boundary
value problem (9), (10), (15)*, (16)*, (17)* can be proved for a thermoe-
lastic isotropic parallelepiped with non-homogeneity of the type µ = const,
λ = λ (x, y, z).

Now we should explain what the three boundary value problems the
sum of which gives the solution of the general boundary value problem (9),
(10), (15)*, (16)*, (17)* imply.

Boundary value problem (9), (10), (15), (16), (17)* will be considered
to be the first one. Boundary value problem (9), (10), (15)*, (16), (17)0 will
be considered to be the second one and boundary value problem (9), (10),
(15), (16)*, (17)0 will be considered the third one, number (17)0 denoting
homogeneous (zero) boundary conditions in (17)*, i.e. the case when in
conditions (17)* we have fj1 = 0, fj2 = 0, fj3 = 0, fj4 = 0, and in the case
(17a)∗ we have τ0 = 0, τ1 = 1, while in the case (17b)∗ τ0 = 1, τ1 = 0.

6 Partial Solution Construction for Poisson’s Equation (21)

Now we will find a partial solution of Equation (21).
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First of all we assume that the function g(x, y, z)can be expressed by a
uniformly converging infinite trigonometric threefold Fourier series. From
this infinite series one can always obtain a threefold finite trigonometric
series which represents the function g(x, y, z) with any a priori defined
degree of precision. By virtue of the just stated when any application
problem of thermoelasticity (including thermoelasticity problems arising
in precision engineering) is being solved use of the corresponding finite
series (“ corresponding finite series implies a sufficiently high approximation
precision of the function g by a finite series) for the function g(x, y, z)
practically in no way limits either precision or effectiveness of the solution.

Taking into consideration the above-stated and Conditions (18) we can
represent the function g(x, y, z) in the following form

g(x, y, z) =
h0∑
h=0

m0∑
m=0

n0∑
n=0

[
g
(c)
mnh cos(h̃z) + g

(s)
mnh sin(h̃z)

]
× cos(m̃x) cos(ñy),

(33)

where h̃ = h̃(h), m̃ = πm
x1

, ñ = πn
y1

; h0, m0, n0 are natural numbers

and h0 ≥ 1, m0 ≥ 1, n0 ≥ 1; g
(c)
mnh g

(s)
mnh are Fourier’s functions

g(x, y, z).
Examining Formula (33) one can easily conclude that when constructing

a partial solution of Equation (21) i.e. when constructing the function Ψ∗,
it is sufficient to take just one summand instead of the whole series (33).
Indeed, the members of series (33) differ from each other only by their

constants g
(c)
mnh, g

(s)
mnh, h̃, m̃, ñ, so having a partial solution for a single

member of the series, if we sum the partial solutions we will obtain the
desired full partial solution.

The mentioned single member out of the set of members of series (33)
can be written in the following form :

G(x, y, z) =
[
Ḡmnh cos(h̃z) + G̃mnh sin(h̃z)

]
×

× cos
(
πm1
x1

x
)
cos

(
πn1
y1

y
)
,

(34)

where Ḡmnh,G̃mnh are constants depending on m, n and h; h̃ = h̃(h); m1

and n1 are some particular natural numbers.
Actually, one can believe that this completes the construction of the

function Ψ∗, if we assume that a partial solution of Equation (21) has been
constructed when in Equation (21) the function g(x, y, z) is substituted
by the function G(x, y, z). We should indicate that the function G(x, y, z)
will appear when we examine one example at the end of the present paper.
It is just this example that will complete the final understanding of the
algorithm of the search for a partial solution of Equation (21).
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Further we will consider non-homogeneity of the type:

µ = const, λ = λ(z). (35)

This non-homogeneity is particularly important due to the fact that when
conditions (35) are satisfied the class of analytically solvable boundary value
and boundary value contact problems of thermoelasticity can be extended.
Let us examine this in more detail.

7 Problem Solution in the Case When g = g(z)

In the case when g = g(z), boundary conditions(15) and (16) remain un-
changed while the number of boundary conditions on the facets z = zj
can markedly increase. Specifically, boundary conditions on the indicated
facets can be considered arbitrary although in the forthcoming we assume
that on each of the facets z = zj one of the four basic boundary conditions
is defined.

Let us state the indicated boundary conditions.
For z = zj (j = 0, 1; z0 = 0) :

a) Zz = fj1 , Zx = fj2, Zy = fj3 , τ0T + τ1
∂T
∂z = fj4 ⇒

⇒ ∂

∂z
Kz =

∂fj3
∂x

− ∂fj2
∂y

or

b) w = fj1 , u = fj2, v = fj3, τ0T + τ1
∂T
∂z = fj4 ⇒

⇒ Kz =
∂fj3
∂x

− ∂fj2
∂y

or

c) w = fj1 , Zx = fj2 , Zy = fj3 , τ0T + τ1
∂T
∂z = fj4 ;

from the first three conditions the functions
∂

∂z
D,

∂

∂z
Kz,

∂u

∂z
,

∂v

∂z
, Kx, Ky

are defined on the boundaryz = zj or

d) Zz = fj1 , u = fj2, v = fj3, τ0T + τ1
∂T

∂z
= fj4 ;

from the first three conditions the functions

D, Kz,
∂w

∂z
,

∂

∂z
Kx,

∂

∂z
Ky.

are defined on the boundaryz = zj .

(36)

Naturally, boundary conditions (36) markedly expand compared to Con-
ditions (17), the class of boundary value problems of thermoelasticity stud-
ied in the given paper. Moreover, non-homogeneity of type (35) allows
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us to find a partial solution of Equation (21) easier than in the case g =
g(x, y, z), and complete the solution of the corresponding boundary value
problem of thermoelasticity.

We will find a partial solution of Equation (21) in this section. As for
problems we have often mentioned above dealing with a multilayer piecewise
non-homogeneous rectangular parallelepiped their statement and solution
methods are given in the next section.

We will search for a partial solution of Equation (21), similar to Series
(33), as a form of the following single finite series

g(z) =

h0∑
h=0

[
ḡh cos

(
h̃z

)
+ g̃h sin

(
h̃z

)]
, (37)

where h̃ = h̃(h), h0 is a particular natural number and ḡh and g̃h are
Fourier coefficients of the function g(z).

Due to the same reason as in the case of Decomposition (33), we take
just one member of series (37), which can be written in the following way:

G∗(z) = Ḡh cos
(
h̃z

)
+ G̃h sin

(
h̃z

)
, (38)

where Ḡh and G̃h are constants.

We consider the construction of Equation (21) in the case when

D, T, Ψ0 =

∞∑
m=1

∞∑
n=1

[
Almne

−pz +Blmne
p(z−z1)

]
sin(m̃x) sin(ñy) , (39)

where l = 1, 3, 4; m̃ = πm
x1

, ñ = πn
y1
. Note that solution construction in

other cases will not be very different from the case under consideration.

If we search now for the partial solution of Equation (21) in the form

of Ψ∗ =
∞∑

m=1

∞∑
n=1

Fmn(z) sin(m̃x) sin(ñy) , we will have

d2Fmn(z)

dz2
− p2Fmn(z) =

[
Ḡh cos

(
h̃z

)
+ G̃h sin

(
h̃z

)]
. (40)

Since it is not a problem to write a partial solution of Equation (40)
we can consider the function Ψ∗ to be known. And if this is true, we
will know the form of all basic function through which displacements are
expressed in the case of any of boundary value (9), (10), (15b), (16b), (36).
Indeed, these are functions D, Tand Ψ0 , defined by Formulas (39), the
function Kz , defined by formulas of Example 1 and, finally, the function
Ψ∗ . that we have defined. Using the listed functions we compose series
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for the boundary conditions selected from (36) (e.g., we assume that these
are Conditions (36 a) both for z = 0 and for z = z1) and compare them
with their corresponding trigonometric series representing the functions
fj1, fj2, fj3, fj4. As a result we have an infinite system of linear algebraic
equations with respect to unknown Almn, Blmn, l = 1, 2, 3, 4 with a block
diagonal matrix. Each block of the infinite matrix is of the eighths order
and always breaks into two blocks of the second order and one block of the
fourth order. None of the listed block matrices is degenerate.

Hence the solution of boundary value problems (9), (10), (15b), (16b),
(36) can be considered complete.

8 Multilayer Piecewise Non-Homogeneous Rectangular Par-
allelepiped

Consider a piecewise non-homogeneous rectangular parallelepiped which is
multilayer along the coordinate z and occupies the domain Ωz. Here Ωz

is a union of the domains Ωz1 = {0 < x < x1, 0 < y < y1, 0 < z < z1} ,
Ωz2 = {0 < x < x1, 0 < y < y1, z1 < z < z2} , . ., Ωzq = {0 < x <
x1, 0 < y < y1, zq−1 < z < zq} , which contact with each other along
the planes z = zj , where j = 1, 2 , ... , q − 1 , and q is the number of
layers (Fig. 2). Each layer has its own elastic and thermal characteristics.
For x = xj (here j = 0, 1 ) for all layers some of Conditions (15) are
simultaneously satisfied, while for y = yj (j = 0, 1) some of conditions
(16) are simultaneously satisfied.

Fig. 2. The studied piecewise non-homogeneous rectangular
parallelepiped multilayer along the coordinate z
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If a body occupies the domain Ωz, Conditions (15), (16) and (36) are
satisfied on the boundaries of this domain, with z1 in (36) being substituted
by zq. On the contact planes z = zj (j = 1, 2 , ... , q − 1 ; z = zj is the
contact plane of the layer number j, which contacts with the layer number
j+1), various contact conditions can be defined. We will give some of them
here.

1. Contact conditions with a rigid contact between the layers.

Tj − Tj+1 = 0, k∗j
∂Tj

∂z
− k∗j+1

∂Tj+1

∂z
= 0,

wj − wj+1 = 0, Zz j − Zz j+1 = 0, uj − uj+1 = 0,

Zx j − Zx j+1 = 0, vj − vj+1 = 0, Zy j − Zy j+1 = 0,

(41)

where k∗ is a coefficient of heat conductivity.

2. The contact between the layers takes place only in a normal direction,
i.e. along the coordinate z , while in the tangential direction ( along
x and y) the contact planes of the layers z = zj are free and do not
contact. This is the so called sliding contact.

Tj − Tj+1 = 0, k∗j
∂Tj

∂z − k∗j+1
∂Tj+1

∂z = 0, wj − wj+1 = 0,

Zz j − Zz j+1 = 0, Zx j = 0, Zx j+1 = 0, Zy j = 0, Zy j+1 = 0.
(42)

3. The contact between the layers is along the coordinate z , while in the
tangential direction the contact planes of the layers z = zj are fixed
(do not allow displacements)

Tj − Tj+1 = 0, k∗j
∂Tj

∂z − k∗j+1
∂Tj+1

∂z = 0, wj − wj+1 = 0,

Zz j − Zz j+1 = 0, uj = 0, uj+1 = 0, v j = 0, v j+1 = 0.
(43)

When we state the problem of establishing the thermoelastic equilib-
rium of a piecewise non-homogeneous multilayer parallelepiped we do the
following. Bearing in mind boundary conditions (15) and (16) ( for a com-
plete definiteness we assume that both for z = 0 and z = zj stresses
and temperature are defined) we write the expressions for the functions

D(j), K
(j)
z , T (j), Ψ

(j)
0 and Ψ

(j)
∗ for each of the layers and following the

methods of the previous section obtain an infinite system of linear alge-
braic equations with a block diagonal matrix of the 8q-th order. The latter
matrix can be decomposed into two matrices of the 2q-th order and one
matrix of the 4q-th order. Respectively, the solution of the whole problem
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becomes much simpler. Solvability of the infinite systems of equations, con-
vergence of the corresponding infinite series and uniqueness of the obtained
solutions can be easily shown.

Besides the listed contact conditions we can also consider a number
of other contact conditions under which the solutions can be effectively
constructed.

9 Solution of a Boundary Value Problem of Thermoelastic-

ity in the CaseWhen G = A0+A cos
(
h̃z

)
cos

(
πm1

x1
x
)
cos

(
πn1

y1
y
)

First we should note that after the problem with non-homogeneity indicated
in the heading (A0 and A that appear in the heading are constant ) of this
section has been solved it will be quite easy to solve the problem with
non-homogeneity defined by Formula (34) as well.

In this section we construct the solution of the boundary value problem
(9), (10), (15b), (16b), (17b)0 for z = 0, (17b)∗ for z = z1 (explanations
related to Formulas (17b)0and (17b)∗are given in Section 4 ). We assume
that under Conditions (17b)∗ for z = z1 f12 = 0, f13 = 0 .

It follows from Equation (19b) and the boundary conditions for the
function Kz that at any point of the closed domain Ω̄ the function Kz = 0.

From equations (19a), (19c)and (20b)and boundary conditions for the
functions D, T and Ψ0 ,using the method of separation of variables we have

a) D =
∞∑

m=1

∞∑
n=1

A1mn sinh(pz) sin
(
πm
x1

x
)
sin

(
πn
y1
y
)
,

b) T =
∞∑

m=1

∞∑
n=1

A3mn sinh(pz) sin
(
πm
x1

x
)
sin

(
πn
y1
y
)
,

c) Ψ0 =
∞∑

m=1

∞∑
n=1

A4mn cosh(pz) sin
(
πm
x1

x
)
sin

(
πn
y1
y
)
.

(44)

From boundary conditions (17b)∗ for z = z1, for functions Dand T we
have

D = f11(x, y) + 4µkf14(x, y), T = f14(x, y) .

Bearing in mind Conditions (15b), (16b), and expanding the functions f11
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and f14 , into trigonometric Fourier series we have

a) D|z=z1
=

∞∑
m=1

∞∑
n=1

(f11mn

+4µkf14mn) sin

(
πm

x1
x

)
sin

(
πn

y1
y

)
,

b) T |z=z1
=

∞∑
m=1

∞∑
n=1

f14mn sin

(
πm

x1
x

)
sin

(
πn

y1
y

)
,

(45)

where both f11mn and f14mn - are Fourier’s coefficients of the functions f11
and f14 respectively.

Comparing Series (45a)with Series (44a) for z = z1, we find

A1mn =
f11mn + 4µkf14mn

sinh(pz1)
. (46)

In quite a similar way we obtain

A14mn =
f14mn

sinh(pz1)
. (47)

In order to find a partial solution of Equation (21), we substitute the

function G = A0 + A cos
(
h̃z

)
cos

(
πm1
x1

x
)
cos

(
πn1
y1

y
)

and Formula (44a).

in its right-hand side. As a result we obtain the following equation

∆Ψ =
∞∑

m=1

∞∑
n=1

F0(z) sin
(
πm
x1

x
)
sin

(
πn
y1
y
)
+

+
∞∑

m=1

∞∑
n=1

F1(z) sin
(
π(m+m1)

x1
x
)
sin

(
π(n+n1)

y1
y
)

+
∞∑

m=1

∞∑
n=1

F1(z) sin
(
π(m−m1)

x1
x
)
sin

(
π(n−n1)

y1
y
)

+
∞∑

m=1

∞∑
n=1

F1(z) sin
(
π(m+m1)

x1
x
)
sin

(
π(n−n1)

y1
y
)

+
∞∑

m=1

∞∑
n=1

F1(z) sin
(
π(m−m1)

x1
x
)
sin

(
π(n+n1)

y1
y
)
,

(48)

where

F0(z) = pAA1mn cosh(pz), F1(z) =
AA1mn

4

[
p cos(h̃z) cosh(pz)

−h̃ sin(h̃z) sinh(pz)
]
.

We will search for a partial solution of Equation 48 separately for each
type of the series in the right-hand side. Omitting four summands in the
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right-hand side of Equation (48), we can preserve, for example, the second
summand. It is evident that if we find a partial solution in this case, we will
easily find it in the remaining four cases in a quite similar way. Summing
the five partial solutions we obtain the desired partial solution Ψ∗ .

If we search for a partial solution of the equation

∆Ψ̃ =

∞∑
m=1

∞∑
n=1

F1(z) sin

(
π(m+m1)

x1
x

)
sin

(
π(n+ n1)

y1
y

)

in the form of Ψ̃∗ =
∞∑

m=1

∞∑
n=1

F̃1mn(z) sin
(
π(m+m1)

x1
x
)
sin

(
π(n+n1)

y1
y
)
, we

will have
d2F̃1mn

dz2
− p̃2F̃1mn = F1(z) , (49)

where p̃ =

√[
π(m+m1)

x1

]2
+

[
π(n+n1)

y1

]2
.

It will not be a problem to find a partial solution of Equation (49);
therefore we believe that a partial solution Ψ∗has been found.. If this is
true, we can consider that the function Ψ0

has been found and this completes the solution of the problem stated
in the given section.

10 Solution of a Particular Problem for a Rectangular Par-
allelepiped

Let an isotropic rectangular parallelepiped be defined the dimensions of
which, for simplicity, are: x1 = y1 = 4π, z = π. This parallelepiped
occupying the domain Ω = {0 < x < 4π, 0 < y < 4π, 0 < z < π} ,has non-
homogeneity of the type: µ = const, g = c0 + c1 cos(2z), where c0and c1-
are constant and c0 > 0, c0 > |c1|so that for any z ∈ [0; π], we have g > 0.
On the facets x = 0, x = 4π, y = 0, y = 4π z = 0 boundary conditions of
antisymmetry are defined and for z = π

w = sin
(x
4

)
sin

(y
4

)
, Zx = 0, Zy = 0,

∂T

∂z
= 0. (50)

A problem is stated: to find all values of the constants c0and c1, for
which w (2π, 2π, 0) = 0. Naturally, the problem can be solved only after
boundary problem (9), (10), (15b), (16b), (17)0 for z = 0, (50) . has been
solved.

We start the solution of the problem bearing in mind that Equations
(19b), (19c)and boundary conditions imply that throughout the domain
Ω Kz = 0, T = 0.
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We search for the functions D and Ψ0 in the form

a) D = A1 sinh

(
z√
8

)
sin

(x
4

)
sin

(y
4

)
,

b) Ψ0 = A4 cosh

(
z√
8

)
sin

(x
4

)
sin

(y
4

)
,

(51)

where A1 and A4 are constant.
Somewhat further the establishment of the constant A4 in (51b) will

complete the solution of our problem, while it can be shown for A1 from
(51a) that A1 =

µ
4 .

Substitute the function g = c0 + c1 cos(2z) and Formula (51a) in the
right-hand side of Equation (21). After a transformation of the obtained
expression we have

∆Ψ =
µ

8
√
2

[
c1 cosh

(
z√
8

)
cos(2z)− 4

√
2c1 sinh

(
z√
8

)
sin(2z)

+c0 cosh

(
z√
8

)]
sin

(x
4

)
sin

(y
4

)
.

(52)

If we search for a partial solution of Equation (52) in the form of Ψ∗ =
F2(z) sin

(
x
4

)
sin

(y
4

)
, we wll have the following equation

d2F2

dz2
− 1

8
F2 =

µ

8
√
2

[
c1 cosh

(
z√
8

)
cos(2z)

−4
√
2c1 sinh

(
z√
8

)
sin(2z) + c0 cosh

(
z√
8

)]
.

(53)

With the help of [14] and the corresponding table of integrals a partial
solution of Equation (53) can be easily written. But we will do it somewhat
later, specifically, after we have obtained expressions for the displacement
w.

In our case Formula (22) will take the form w = Ψ0 − z
2µD + Ψ∗ , and

the first of Conditions (50) will be written in the following way(
Ψ0 −

z

2µ
D +Ψ∗

)
z=π

= sin
(x
4

)
sin

(y
4

)
. (54)

From Equality (54) and the expression for the function Ψ∗ , we have

A4 =

π
8 sinh

π√
8
+ 1− F2(π)

cosh π√
8

.
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Applying the last equality, we will have

w =

[
π
8
sinh π√

8
+1−F2(π)

cosh π√
8

cosh z√
8
− z

8 sinh
z√
8
+ F2(z)

]
× sin

(
x
4

)
sin

(y
4

)
.

(55)

for the displacement w .

Overcoming some tiresome computing difficulties we have

F2(π) =

√
2µ cosh π√

8

48

[(
10− 12 tanh

π√
8

)
c1 +

(
3π

√
2 tanh

π√
8
− 6

)
c0

]
,

F2(0) =

√
2µ

24
(5c1 + 3c0).

Using these formulas we can write

8 cosh π√
8

8 + sinh π√
8

w(2π, 2π, 0) = 1 +
2
√
2µ sinh π√

8

8 + sinh π√
8

c1 −
πµ sinh π√

8

8 + sinh π√
8

c0,

or

− c1
Q1

+
c0
Q2

+
w(2π, 2π, 0)

Q3
= 1,

(56)

where

Q1 =
8 + sinh π√

8

2
√
2µ sinh π√

8

, Q2 =
8 + sinh π√

8

πµ sinh π√
8

, Q3 =
8 + sinh π√

8

8 cosh π√
8

.

Formula (56) defines the plane equation in intervals in the rectangular
system of coordinates c1, c0, w(2π, 2π, 0) . We can show this plane in the
system of coordinates c1, c0, w(2π, 2π, 0) , assuming that c1 is an abscissa,
c0 is an ordinate and w (2π, 2π, 0) is an applicata.
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Fig. 3. Establishment of the desired constants c1and c0, bringing about
the condition w (2π, 2π, 0) = 0

In Fig. 3 the lengths of the intervals ob1, ob2 and ob3 areQ1(abscissa),Q2

(ordinate) and Q3 (z-axis), respectively. Besides, any point of the line lo-
cated on the interval b1b2, turns the applicata w(2π, 2π, 0)into zero, al-
though the abscissa and ordinate will be the desired couple of the values
c1and c0, defining the function gonly for some points of this line.

It is obvious that both on the interval b1b2 and on the continuation
of this interval (in the direction from the point b1 to the point b2), a
point can be found with equal in the modulus abscissa and ordinate. Let
M1 (−b0, b0, 0) and M2 (b∗, b∗, 0), be such points. Then it is evident that
all values of c1 will be located between −b0 and b∗, i.e. c1 ∈ (−b0, b∗) .

The equation for our plane, for w (2π, 2π, 0) = 0 , will take the form

− c1
Q1

+
c0
Q2

= 1. (57)

We note again that Q1 > Q2, c0 > 0, c0 > |c1| .
With the help of (57) we will have Q2b0+Q1b0 = Q1Q2 −Q2b∗+Q1b∗ =

Q1Q2, and these equalities imply that b0 =
Q1Q2

Q1 +Q2
and b∗ =

Q1Q2

Q1 −Q2
.

Hence, the solution of our problem is

c1 ∈
(
− Q1Q2

Q1 +Q2
,

Q1Q2

Q1 −Q2

)
,

59



AMIM Vol.19 No.2, 2014 N. Khomasuridze +

c0 =
Q2

Q1
c1 +Q2 .
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