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Abstract

Computational Convex Analysis focuses on the numerical computation of funda-

mental transforms of Convex Analysis. The objective of this paper is the application of

the algorithms of Computational Convex Analysis to numerical computation of the so-

lutions and their gradients of some nonlinear partial differential equations, in particular,

Hamilton–Jacobi equations, Scalar Conservation Laws and Monge–Ampere Equations.
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1 Introduction

The present article is concerned with the application of fundamental trans-
forms of Convex Analysis like the Legendre–Fenchel transform, the Moreau
envelope and the convex envelope of the given function to the numerical
computation of solutions of some nonlinear PDE.

The Legendre–Fenchel transform, also named Fenchel conjugate or con-
vex conjugate of a given real valued function f(x), x ∈ Rn, is defined in
the following manner

f∗(x) = sup
y∈Rn

(
(x, y)− f(y)

)
, x ∈ Rn, (1.1)

where (x, y) denotes the usual scalar product of two vectors x, y ∈ Rn.
The Moreau envelope of a real-valued function f(x), x ∈ Rn, is defined

as follows

Mλf(x) = inf
y∈Rn

(
f(y) +

|x− y|2

2 · λ

)
, x ∈ Rn, (1.2)
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and λ > 0 is a strictly positive real number.

The Fenchel conjugate has long been studied in a wide range of fields
for its duality properties. What concerns the Moreau envelope it has been
studied extensively both theoretically and algorithmically for its regulariza-
tion properties. Its origin goes back to the work of Yosida [12] on maximal
monotone operators and its behavior is well known in the field of convex
analysis (Rockafellar [7]) and variational analysis (Rockafellar, Wets [8]).

We note that the following simple relation exists between the above
fundamental transforms

Mλf(x) =
|x|2

2 · λ
− 1

λ
·
( |y|2

2
+ λ · f(y)

)∗
(x), (1.3)

f∗(x) =
|x|2

2
− λ ·Mλ

( 1
λ
· f(y)− |y|2

2 · λ

)
(x), (1.4)

where f(x), x ∈ Rn, is a real-valued function and λ > 0.

From the definition (1.1) and the relation (1.3) the important fact fol-
lows that the Legendre–Fenchel transform of any function is always a con-
vex function and the Moreau envelope is a semiconcave function with the
semiconcavity constant equal to 1

λ . From relations (1.3) and (1.4) we note
that the computation of the Moreau envelope is equivalent to the compu-
tation of the Legendre–Fechel conjugate, so algorithms for computing one
transform are trivially extended to compute the other.

The third fundamental transform of convex analysis we are interested in
is the convex hull or convex envelope of a function f(x). By definition the
convex envelope Γ(f) of a real-valued continuous function f(x), x ∈ Rn,
is the greatest convex function majorized by f (see Rockafellar [7, Section
5]).

It is a remarkable fact that an important relation exists between the
Legendre–Fechel transform and the convex envelope of f , namely

Γ(f) = (f∗)∗ = f∗∗, (1.5)

that is the convex envelope of the continuous function f(x), x ∈ Rn, is the
second Legendre–Fechel conjugate of f (Rockafellar, Wets [8,Chapter 11]).

Computational Convex Analysis focuses on the numerical computation
of fundamental transforms of Convex Analysis. Motivated by the study of
some Hamilton–Jacobi partial differential equations, computational algo-
rithms have been developed to compute the Legendre–Fechel transform on
grids. A log-linear algorithm named the Fast Legendre transform (FLT for
short) was first introduced by Brenier [3] to be subsequently improved by a
linear-time algorithm: The Linear-time Legendre transform (LLT) (Lucet
[6]).
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Another linear-time algorithm, motivated by applications in image pro-
cessing, was obtained by computing the Moreau envelope (Deniau [4,Ph.D.]).
The fast algorithm to compute the convex envelope on grids was developed
by Barber, Dobkin and Huhdanpaa [1] and is called “The Quickhull Algo-
rithm for Convex Hulls”. As it is well known the convex hull of a finite
set of points in Rn is the smallest convex set that contains the points.
Computing the convex hull is the fundamental problem of computational
geometry. The above authors succeeded in constructing the quickhull algo-
rithm (QHULL for short) which works for any number n of Euclidean Rn

space and is really fast for n ≤ 4.

The outline of the paper is as follows.

In Section 2 we review the basic theoretical results on Hamilton–Jacobi
equations, Scalar Conservation Laws and the Monge–Ampere equations.
Section 3 is dedicated to our basic inequalities in Convex Analysis which
constitute the theoretical foundation for the numerical computation of the
gradients of the solutions of the above mentioned equations, while in Sec-
tion 4 several particular examples of nonlinear partial differential equations
are considered and subsequently solved numerically. The errors in approx-
imating the analytically known solutions are given.

2 Hopf–Lax Formulas as Solutions to Hamilton–
Jacobi Equations. Links with Scalar
Conservation Laws

We start this section by considering the initial-value problem for the Ha-
milton–Jacobi Equation{

ut +H(gradu) = 0 in Rn × (0,∞),

u(x, 0) = g(x) x ∈ Rn,
(2.1)

where the Hamiltonian H : Rn → R and the initial function g : Rn → R
are given and the function u : Rn × (0,∞) → R is the unknown,

gradu(x, t) =
(∂u(x, t)

∂x1
, . . . ,

∂u(x, t)

∂xn

)
is the vector of partial derivatives of u with respect to argument x.

Throughout this paper we will assume that g : Rn → R is Lipschitz
continuous, i.e. there exists a nonnegative constant c ≥ 0, such that∣∣g(x)− g(y)

∣∣ ≤ c · |x− y|, x, y ∈ Rn. (2.2)
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What concerns the assumptions on Hamiltonian we will inevitably assume
that H is C2 (i.e. twice continuously differentiable),

H is convex and lim
|x|→∞

H(x)

|x|
= +∞.

(2.3)

Definition 2.1. A C2 convex function H : Rn → R is called uniformly
convex (with constant γ > 0) if

n∑
i=1

n∑
j=1

∂2H(x)

∂xi∂xj
· yi · yj ≥ γ · |y|2 for all x, y ∈ Rn. (2.4)

Definition 2.2. We say that the function f(x) : Rn → R is semiconcave
with constant c ≥ 0 if for all x, z ∈ Rn the following one-sided inequality
holds true

f(x+ z)− 2 · f(x) + f(x− z) ≤ c · |z|2. (2.5)

Definition 2.3. Consider the following infimal-convolution

u(x, t) = min
y∈Rn

{
g(y) + t ·H∗

(x− y

t

)}
, (2.6)

where t > 0 and x ∈ Rn. We call this expression the Hopf–Lax formula.
(Here H∗(x) is the Legendre–Fenchel conjugate of the Hamiltonian H(x).)

The following lemma demonstrates that the function u(x, t) inherits the
semiconcavity property for any time instant t > 0 from the initial function
g(x).

Lemma 2.1. Suppose that g(x), x ∈ Rn, is semiconcave with constant
c ≥ 0, then for any t ≥ 0 the function u(x, t) defined by formula (2.6) is
also semiconcave with the same constant c ≥ 0.

Surprisingly enough, even if g(x), x ∈ Rn, is not semiconcave but if we
require from convex Hamiltonian stronger condition of uniform convexity
(2.4) it turns out that the Hopf–Lax function (2.6) will become semiconcave
for times t > 0. Indeed, the following lemma holds true

Lemma 2.2. Suppose that H(x), x ∈ Rn, is uniformly convex with
constant γ > 0 and u(x, t) is defined by the Hopf–Lax formula (2.6). Then
for any strictly positive t > 0, the function u(x, t) is semiconcave with
constant c = 1

γ·t , i.e.

u(x+ z, t)− 2 · u(x, t) + u(x− z, t) ≤ 1

γ · t
· |z|2 for all x, z ∈ Rn. (2.7)

Definition 2.4. We say that a Lipschitz continuous function u : Rn ×
[0,∞) → R is a weak solution of the initial-value problem (2.1) provided
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(a) u(x, 0) = g(x), x ∈ Rn,

(b) ut(x, t) +H
(
gradu(x, t)

)
= 0 for a.e. (x, t) ∈ Rn × (0,∞), (2.8)

(c) there exists some constant c ≥ 0, such that for all t > 0, x, z ∈ Rn it
holds

u(x+ z, t)− 2u(x, t) + u(x− z, t) ≤ c
(
1 +

1

t

)
· |z|2. (2.9)

Theorem 2.1 Suppose the Hamiltonian H : Rn → R is C2 and satisfies
(2.3) and the initial function g : Rn → R is Lipschitz continuous (i.e.
satisfies (2.2)). If either g is semiconcave or H is uniformly convex, then

u(x, t) = min
y∈Rn

{
g(y) + t ·H∗

(x− y

t

)}
(2.10)

is the unique weak solution of the initial-value problem (2.1) for the Hamil-
ton–Jacobi equation.

Now we turn to the initial-value problem for scalar conservation laws
in one space dimension:{

ut +
(
H(u)

)
x
= 0 in R× (0,∞),

u(x, 0) = g(x), x ∈ R,
(2.11)

where the Hamiltonian H : R → R and the initial function g : R → R are
given and the function u : R× [0,∞) → R is the unknown, (H(u))x means
the partial derivative of the function H(u(x, t)) with respect to x.

Equation (2.11) is a conservation law and our interest in it is due to
the well-known connection between scalar conservation laws and Hamilton–
Jacobi equations in one dimension.

Indeed, if u(x, t) is an entropy solution (in Kruzkov’s sense to be defined
below) of the initial-value problem (2.11), then

v(x, t) =

x∫
0

u(y, t) dy (2.12)

is a weak solution of the initial-value problem for the following Hamilton–
Jacobi equation {

vt +H(vx) = 0 in R× (0,∞),

v(x, 0) = h(x), x ∈ R,
(2.13)
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where

h(x) =

x∫
0

g(y) dy. (2.14)

hence the solution u(x, t) for the scalar conservation laws (2.11) can be
obtained from the solution v(x, t) for the Hamilton–Jacobi equation (2.13)
by the following rule

u(x, t) =
∂

∂x
v(x, t), t > 0. (2.15)

Taking into account Theorem 2.1 (i.e. the formula (2.10)), the equality
(2.15) can be written in the following manner

u(x, t) =
∂

∂x
min
y∈R

{
h(y) + t ·H∗

(x− y

t

)}
. (2.16)

Next we define an entropy solution of the initial-value problem (2.11)
for scalar conservation laws.

Definition 2.5. We say that a function u ∈ L∞(R × (0,∞)) is an
entropy solution of the initial-value problem (2.11) provided

∞∫
0

∞∫
−∞

(
u · vt +H(u) · vx

)
dx dt+

∞∫
−∞

(g · v) dx

∣∣∣∣∣
t=0

= 0 (2.17)

for all test functions v : R× (0,∞) → R with compact support, and there
exists some constant c ≥ 0, such that

u(x+ z, t)− u(x, t) ≤ c
(
1 +

1

t

)
· z (2.18)

for a.e. x, z ∈ R, t > 0, with z > 0.
The following theorem is the classical result which asserts the existence

and uniqueness of the entropy solution.
Theorem 2.2 Assume H : R → R is C2, uniformly convex (H ′′(x) ≥

β > 0) and g ∈ L∞(R). Then for each time t > 0 the function

u(x, t) =
∂

∂x
min
y∈R

{
h(y) + t ·H∗

(x− y

t

)}
(2.19)

is defined for a.e x. This function u(x, t) as a function of two variables in
(x, t) is the unique entropy solution of the initial-value problem (2.11) for
scalar conservation laws.

Let us consider the case of quadratic Hamiltonian

H(x) =
1

2
· |x|2, x ∈ Rn. (2.20)
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It is well-known and easy to calculate that

H∗(x) = H(x) =
1

2
· |x|2, x ∈ Rn. (2.21)

In this particular case the Hopf–Lax formula (2.6) is the same as the Moreau
envelope

Mtg(x) = inf
y∈Rn

(
g(y) +

|x− y|2

2 · t

)
, t > 0, x ∈ Rn, (2.22)

but we recall that by the relation (1.3) the Moreau envelope can be written
in terms of the Legendre–Fenchel conjugate, hence we get

Mtg(x) =
|x|2

2 · t
− 1

t
·
( |y|2

2
+ t · g(y)

)∗
(x), t > 0, x ∈ Rn,

otherwise we obtain the following relation

u(x, t) =
|x|2

2 · t
− 1

t
·
( |y|2

2
+ t · g(y)

)∗
(x), t > 0, x ∈ Rn, (2.23)

where u(x, t) is the weak solution of the following initial-value problem for
Hamilton–Jacobi equation with quadratic Hamiltonianut +

1

2
· | gradu|2 = 0 in Rn × (0,∞),

u(x, 0) = g(x), x ∈ Rn.
(2.24)

As the Legendre–Fenchel transform of any function is a convex function,
we deduce from the relation (2.23) that for any t > 0 the function u(x, t)
is semiconcave even if the initial function g(x) was not.

We shall consider now the important particular case of scalar conserva-
tion, laws the so called Burger’s equation:ut +

(u2
2

)
x
= 0 in R× (0,∞),

u(x, 0) = g(x), x ∈ R.
(2.25)

This equation corresponds to the case of quadratic Hamiltonian H(x) =
1
2 x

2, x ∈ R. We apply Theorem 2.2 (Lax–Oleinik formula) to this case and
get that the unique entropy solution of the initial-value problem (2.25) for
Burger’s equation is given by the formula

u(x, t) =
∂

∂x
min
y∈R

{
h(y) +

1

t
· |x− y|2

2

}
=

=
∂

∂x

{
x2

2 · t
− 1

t
·
( |y|2

2
+ t · h(y)

)∗
(x)

}
=

=
x

t
− 1

t
· ∂

∂x

(y2
2

+ t · h(y)
)∗

(x).
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Thus we get the solution of the initial-value problem for Burger’s equa-
tion (2.25) in case of g ∈ L∞(R) as follows

u(x, t) =
x

t
− 1

t
· ∂

∂x

(y2
2

+ t · h(y)
)∗

(x), t > 0, x ∈ R, (2.26)

where

h(y) =

y∫
0

g(z) dz. (2.27)

We discuss next the Monge–Ampere equation. The Monge-Ampere
equation is a fully nonlinear elliptic PDE. Applications of the Monge-
Ampere equation appear in the classical problem of prescribed Gauss cur-
vature and in the problem of optimal mass transportation (with quadratic
cost).

We shall present a simple (nine point stencil) finite difference method
(see Benamou, Froese and Oberman [2]) which performs well for smooth as
well as for singular solutions. The Monge-Ampere PDE in a planar domain
D ⊂ R2 is the following

det(Hessianu(x)
)
= f(x), f(x) ≥ 0, (2.28)

or equivalently
∂2u

∂x2
· ∂

2u

∂y2
−
( ∂2u

∂x∂y

)2
= f in D ⊂ R2,

with Dirichlet boundary conditions u = g on ∂D
(2.29)

and the additional convexity constraint

u(x, y) is convex in D, (2.30)

which is required for the equation to be elliptic. Without the convexity
constraint this equation does not have a unique solution. For example,
taking the boundary function g = 0, if u is a solution, then −u is also a
solution.

The numerical method involves simply discretizing the second deriva-
tives using standard central differences on a uniform Cartesian grid. The
result is

(D2
xxuij) · (D2

yyuij)− (D2
xyuij)

2 = fij , (2.31)

where 

D2
xxuij =

ui+1,j + ui−1,j − 2uij
h2

,

D2
yyuij =

ui,j+1 + ui,j−1 − 2uij
h2

,

D2
xyuij =

ui+1,j+1 + ui,j−1 − ui−1,j+1 − ui+1,j−1

4h2
.

(2.32)
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Introduce the notation
a1 =

ui+1,j + ui−1,j

2
a2 =

ui,j+1 + ui,j−1

2
,

a3 =
ui+1,j+1 + ui−1,j−1

2
a4 =

ui−1,j+1 + ui+1,j−1

2

(2.33)

and rewrite (2.31) as a quadratic equation for uij :

4(a1 − uij)(a2 − uij)−
1

4
(a3 − a4)

2 = h4fij . (2.34)

Now solving for uij and selecting the smaller one (in order to select the
locally convex solution), we obtain

uij =
1

2
(a1 + a2)−

1

2

√
(a1 − a2)2 +

1

4
(a3 − a4)2 + h4fij . (2.35)

We can now use Gauss-Seidel iteration to find the fixed point of (2.35).

The Dirichlet boundary conditions are enforced at boundary grid points.
The convexity constraint (2.30) is not enforced (beyond the selection of the
positive root in (2.35)).

3 Quantitative Estimates for the Gradients
of the Semiconvex Functions

Consider a sequence un(x), x ∈ Rn, of differentiable convex functions,
defined on an open convex domain D of the Euclidean Rn space which
converges pointwise to the differentiable convex function u(x), x ∈ D. It
is a classical result (see Rockaffellar [7, Theorem 25.7, Section 25]) that on
any compact subset K of D the sequence of gradients gradun(x) converges
uniformly to the gradient gradu(x) of the limit function u(x). But until
recently there has been no quantitative estimate of the latter convergence
in terms of the convergence of the initial convex functions un(x) to its limit
function u(x). The two authors of this paper for one-dimensional case in
2005 [10] and for multidimensional case in 2014 [11] succecded to establish
such an estimate and this type of estimates are the theoretical basis for
the numerical approximation of the gradients of the solutions of nonlinear
differential equations considered in this article.

We recall below these estimates for the multidimensional case [11]. Let
D be a bounded open convex subset of Euclidean space Rn and d∂D(x) be
the distance function from an arbitrary point x ∈ D to its boundary ∂D.
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Theorem 3.1 Let u and v be two bounded convex functions in D. Then
the following weighted energy inequality is valid for the difference u− v∫

D

| gradu− grad v|2 ·
d2∂D
n

dx ≤

≤ 5 ·measD · ∥u− v∥L∞(D) ·
(
∥u∥L∞(D) + ∥v∥L∞(D)

)
. (3.1)

Proposition 3.1. Let u and v be two bounded semiconcave functions
in D with the semiconcavity constants cu and cv, respectively. Then the
following energy inequality holds for the difference u−v of two semiconcave
functions∫

D

| gradu− grad v|2 ·
d2∂D
n

dx ≤ 5 ·measD · ∥u− v∥L∞(D)×

×
(
∥u∥L∞(D) + ∥v∥L∞(D) + 2max(cu, cv) · ∥v0∥L∞(D)

)
, (3.2)

where

v0(x) =
1

2
· |x|2. (3.3)

Next we remind that the convex envelope of a bounded continuous
function u in D is defined as the supremum of all convex functions which
are majorized by the function u:

Γ(u) = sup
{
v(x) : v(x) convex in D, v(x) ≤ u(x) for all x ∈ D

}
. (3.4)

Proposition 3.2. On the space C(D)∩L∞(D) the mapping u → Γ(u)
possesses the following important property∫

D

∣∣ gradΓ(u)− gradΓ(v)
∣∣2 · d2∂D

n
dx ≤

≤ 5 ·measD · ∥u− v∥L∞(D) ·
(
∥u∥L∞(D) + ∥v∥L∞(D)

)
. (3.5)

The consequence of the Theorem 3.1 is that if we have a sequence of
arbitrary convex functions un(x) (not necessarily differentiable) which con-
verges pointwise to the limit convex function u(x) on the open convex set
D, then on the arbitrary compact subset K of D the sequence of gradients
gradun(x) converges in L2(K) to the gradu(x).

71



AMIM Vol.19 No.2, 2014 J. Rogava, K. Shashiashvili, ... +

Now we return to the Hamilton–Jacobi equation with quadratic Hamil-
tonian (2.24) and to the Burger’s equation (2.25) (which is the particular
case of scalar conservation laws). Observe that the solution of the first
one (2.23) is the Legendre–Fenchel transform of the given function and the
solution of the second one (2.26) is the derivative of the Legendre–Fenchel
transform and by the definition the Legendre–Fenchel transform of any
function (not necessarily convex) is inevitably a convex function. Therefore
applying any algorithm of the computational convex analysis to compute
the Legendre–Fenchel transform which preserves the convexity property we
conclude that we automatically get the convergence in L2 of the computed
numerical gradients to the gradient of the solution of the Hamilton–Jacobi
equation (2.24). In a similar manner we obtain L2-approximation of the
solution of Burger;s equation (2.25) via the formula (2.26).

Next we consider the Monge–Ampere PDE in a planar domain (2.29).
Numerical experiments show that the finite difference method (2.31)–(2.35)
performs well even for singular solutions, though the numerical solution
does not preserve the convexity property. Nevertheless, provided that the
finite difference numerical solution gives the uniform approximation in the
domain D to the unique convex solution of the planar Monge–Ampere PDE
(2.29), we next apply our basic idea: we construct the convex envelope of
the computed numerical solution by the “Quickhull algorithm for Convex
Hulls” (Barber, Dobkin and Huhdanpaa [1]) and we replace the computed
numerical solution by its convex envelope. The first advantage is that
the obtained numerical approximation is a convex function and hence it
better imitates the exact convex solution then the previous one and the
second essential advantage comes from our L2-estimate (3.5), which tells
us that the gradient of the computed convex envelope approximates in L2

the gradient of the exact solution (we note that the exact solution u of the
Monge–Ampere PDE (2.29)–(2.30) is convex and hence Γ(u) = u).

4 Examples

In this section we consider several particular examples of the above men-
tioned nonlinear PDE and solve them numerically. We shall compare the
numerical solutions with the exact solutions and calculate the errors of
approximation.

For Hamilton–Jacobi equation (2.24) we consider two particular initial
conditions
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Figure 1.

Example 1.

g(x) = |x|, x ∈ R2. (4.1)

Example 2.

g(x) = −|x|, x ∈ R2. (4.2)

The explicit solutions are known (see Evans [5, Section 3.3, pp. 135–
136]):

in case of g(x) = |x| we have

u(x, t) =


|x| − t

2
, if |x| ≥ t,

|x|2

2 · t
, if |x| ≤ t, t > 0,

(4.3)

and in case of g(x) = −|x| we have

u(x, t) = −|x| − t

2
, t ≥ 0. (4.4)
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Figure 2.

For Burger’s equation (2.25) we shall consider the following initial con-
ditions

Example 3.

g(x) =


1, if x ≤ 0,

1− x, if 0 ≤ x ≤ 1,

0, if x ≥ 1.

(4.5)

Example 4.

g(x) =


0, if x < 0,

1, if 0 ≤ x ≤ 1,

0, if x > 1.

(4.6)
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Figure 3.

A curve of the discontinuity x = s(t) for the solution u(x, t) of the Burg-
ers’ equation is called a shock curve (shock wave). The explicit solutions for
these examples are known as well (see Evans [5, Section 3.4, pp.140–143]):

Figure 4.

In case of the initial condition in Example 3 we have



u(x, t) =


1, if x ≤ t,
1− x

1− t
, if t ≤ x ≤ 1,

0, if x ≥ 1,

0 ≤ t < 1,

u(x, t) =


1, if x <

1 + t

2
,

0, if x >
1 + t

2
,

t ≥ 1,

(4.7)

S(t) =
1 + t

2
is a shock curve for t ≥ 1, (4.8)
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and in case of the Example 4 we have



u(x, t) =



0, if x < 0,
x

t
, if 0 < x < t,

1, if t < x < 1 +
t

2
,

0, if x > 1 +
t

2
,

0 < t < 2,

u(x, t) =


0, if x < 0,
x

t
, if 0 < x < (2 · t)1/2,

0, if x > (2 · t)1/2,
t ≥ 2.

(4.9)

S(t) = (2 · t)1/2 is a shock curve for t ≥ 2. (4.10)

Figure 5.

Next we consider two exact solutions for the Monge–Ampere PDE
(2.29)–(2.30) on the square [0, 1]× [0, 1].

Example 5.

u(x, y) = exp
(x2 + y2

2

)
,

f(x, y) = (1 + x2 + y2) · exp(x2 + y2).
(4.11)
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Figure 6.

Example 6. 
u(x, y) =

2 ·
√
2

3
· (x2 + y2)3/4,

f(x, y) =
1√

x2 + y2
.

(4.12)

In this example the function f blows up at the boundary point (0, 0).

We note that we use fast algorithm to accelerate computations in the
finite difference method (2.31)–(2.35). For the Hamilton–Jacobi equation
(Examples 1 and 2 above) we consider the numerical solutions u(x, t) at
the time instant t = 1 and the spatial argument x restricted to the square
area (2, 3)× (2, 3).

Errors for the exact solution and its gradient for Example 1 on an N×N
grid:

N uniform error uniform error L2-error for the
for the exact solution for the exact gradient exact gradient

1001 3× 10−7 0.004 0.0012

Errors for the exact solution and its gradient for Example 2 on an N×N
grid:

N uniform error uniform error L2-error for the
for the exact solution for the exact gradient exact gradient

1001 2× 10−7 0.004 0.0011
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Figure 7.

Convergence results for the Burgers’ equation (Examples 3 and 4) for
the times t = 0.5, t = 1 and t = 2 and the argument x restricted to the
interval (−100,+100).

L2-errors for the exact solution for Example 3:

number time argument L2-error for the
of grid points N t exact gradient

2000001 0.5 0.0007

2000001 1 0.0007

L2-errors for the exact solution for Example 4:

number time argument L2-error for the
of grid points N t exact solution

2000001 1 0.0007

2000001 2 0.0003

Below the numerical solution for the Example 4 at times
t = 2, 2.5, 3, 3.5, 4, . . . , 10 are plot on the same figure. Observe the move-
ment of the shock curve on this figure
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Figure 8.

The Monge–Ampere equations (the Examples 5 and 6) are considered
on the square [0, 1]× [0, 1].

In the tables below for the different grid points we compute the number
of iterations, the computation times, the errors of approximation of the
exact solution and of the exact gradient.

Computation times and errors for the exact solution and its gradient
for the Example 5 on an N ×N grid:

Number of Computation uniform error uniform error L2-error
N iterations times for the exact for the exact for the exact

solution gradient gradient

21 1362 1 sec. 1.5× 10−4 0.1255 0.011

61 10840 10 sec. 1.8× 10−5 0.0441 0.0038

101 28764 60 sec. 6.7× 10−6 0.0267 0.0023

141 54802 300 sec. 3.4× 10−6 0.0192 0.0016

Computation times and errors for the exact solution and its gradient
for the Example 6 on an N ×N grid:
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Figure 9.

Number of Computation uniform error uniform error L2-error
N iterations times for the exact for the exact for the exact

solution gradient gradient

21 1397 1 sec. 5× 10−4 0.1511 0.0077

61 11065 10 sec. 1× 10−4 0.0887 0.0027

101 29312 70 sec. 4.9× 10−5 0.0689 0.0016

141 55768 300 sec. 2.9× 10−5 0.0583 0.0011

We give the surface plots (for Examples 5 and 6) of the following func-
tions:

(a) the exact solution,

(b) finite difference numerical approximation,

(c) the convex envelope of the numerical approximation,

(d) partial derivative w.r. to x of the exact solution,

(e) partial derivative w.r. to y of the exact solution,

(f) partial derivative w.r. to x of the convex envelope,

(g) partial derivative w.r. to y of the convex envelope.
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l’identification de signaux et images. Ph.D. Thesis, Universite de
Paris–Sud, Centre d’Orsay, Dec., 1997.

5. Evans L. C. Partial differential equations. Graduate Studies in Math-
ematics, 19. American Mathematical Society, Providence, RI, 1998.

6. Lucet Y. Faster than the fast Legendre transform, the linear-time
Legendre transform. Numer. Algorithms 16 (1997), no. 2, 171–185
(1998).

7. Rockafellar R. T. Convex Analysis. Princeton Mathematical Series,
no. 28, Princeton University Press, Princeton, N.J., 1970.

8. Rockafellar R. T., Wets R. J.-B. Variational Analysis. Fundamental
Principles of Mathematical Sciences, 317, Springer-Verlag, Berlin,
1998.

9. Rogava J. L. Semi-discrete schemes for operator differential equations.
(Russian) Tbilisi, Georgian Technical University press, 1995.

10. Shashiashvili K., Shashiashvili M. Estimation of the derivative of the
convex function by means of its uniform approximation. JIPAM. J.
Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 113, 10 pp.
(electronic).

81



AMIM Vol.19 No.2, 2014 J. Rogava, K. Shashiashvili, ... +

11. Shashiashvili K., Shashiashvili M. From the uniform approximation
of a solution of the PDE to the L2-approximation of the gradient of
the solution. J. Convex Anal. 21 (2014), no. 1, 237–252.

12. Yosida K. Functional analysis. Fundamental Principles of Mathemat-
ical Sciences, 123. Springer-Verlag, Berlin–New York, 1980.

82


