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Abstract

Static thermoelastic equilibrium is considered for an N-layer along the radial co-

ordinate body bounded by coordinate surfaces of a circular cylindrical system of co-

ordinates. Each layer is isotropic and homogeneous and some of the layers may be

composed of an incompressible elastic material. On the flat boundaries of the cylin-

drical body boundary conditions of either symmetrical or anti-symmetrical continuous

extension of the solution are imposed. Between the layers contact conditions of rigid,

sliding or other type of contact may be defined. The stated problems are solved using

the method of separation of variables,the general solution being represented by means

of harmonic functions. The solution of the problems is reduced to the solution of

systems of algebraic equations with block diagonal matrices. At the end of the paper

an application example is given which illustrates the applied approach for an analytical

solution of problems.
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1 Introduction

The paper deals with a solution of some application problems of thermoe-
lasticity for a multilayer cylindrical body and was supported by National
Scientific Foundation for applied studies AR/91/5-109/11 (Agreement N
10/17). There are a number of papers [1-4] devoted to the solution of
three-dimensional problems of elastic equilibrium of cylindrical bodies. Re-
views of related studies are given in monographs [1], [2]. In contrast to
the above-mentioned works we study a whole class of boundary value and



+ Analytical Solution of Classical ... AMIM Vol.19 No.2, 2014

boundary value contact problems of thermoelasticity for multilayer cylin-
drical bodies bodies the vast majority of which have been solved for the first
time [5-9]. It should be noted that some layers may consist of an incom-
pressible elastic material. Analytical solutions of the studied problems are
obtained by means of the method of separation of variables. A computer
program is also given that enables one to perform numerical procedures
and give a visual representation of the solutions.

For an N -layer along the radial coordinate body bounded by coordinate
surfaces of a circular cylindrical system of coordinates static thermoelastic
equilibrium [5],[6] is considered. On the flat boundaries of the cylindrical
body symmetry or anti-symmetry conditions of a continuous extension of
the solution are imposed [8]. Contact conditions of a rigid, sliding or other
type of contact may be imposed between the layers. Arbitrary boundary
conditions are defined on cylindrical boundary surfaces. The problems are
solved analytically using the method of separation of variables. The general
solution is expressed by means of harmonic functions. Problem solution is
reduced to the solution of systems of linear algebraic equations with block
diagonal matrices.

2 Equilibrium equations. Statement of the problem

Consider a multilayer cylindrical body which in the circular cylindrical sys-
tem of coordinates r, α, z occupies the domain Ω = Ω1

∪
Ω2
∪

· · ·
∪

Ωk
∪

· · ·
∪

ΩN , Ωk = {rk−1 < r < rk, 0 < α < α1, 0 < z < z1}, k = 1, N , where
rj , α1, z1, j = 0, N are positive constants. Hence the domain Ω represents
a cylindrical body which consists of N layers (see Fig. 1). This multilayer
elastic body is called the curvilinear coordinate parallelepiped. It is as-
sumed in the paper that N = 1, 12, i.e. we can have a one-layer, two-layer,
etc. twelve-layer body. Note that twelve - the maximal number of layers-
is taken in order to make software definite. But if the number of layers
exceeds twelve the program can be easily adjusted.

Assume that every domain Ωk is filled by an isotropic homogeneous
elastic material. As we know, homogeneous equilibrium equations have the
following form [5] :

r∂rσ
(k)
rr + ∂ασ

(k)
rα + r∂zσ

(k)
rz + σ(k)

rr − σ(k)
αα = 0,

∂ασ
(k)
αα + r∂zσ

(k)
αz +

1

r
∂r(r

2σ(k)
αr ) = 0,

r∂zσ
(k)
zz + ∂r(rσ

(k)
zr ) + ∂ασ

(k)
zα = 0,

(1)

where ∂r ≡ ∂
∂r , ∂α ≡ ∂

∂α , ∂z ≡ ∂
∂z ; σ

(k)
rr , σ

(k)
αα , σ

(k)
zz are normal stresses,
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σ
(k)
αr = σ

(k)
rα , σ

(k)
zr = σ

(k)
rz , σ

(k)
αz = σ

(k)
zα are tangential stresses. The Duhamel-

Neumann relations are expressed as [10]

σ(k)
rr =

E(k)

1 + ν(k)

{
1− ν(k)

1− 2ν(k)
1

r

[
∂r

(
ru(k)

)
+ ∂αv

(k)
]
−

−1

r

(
∂αv

(k) + u(k)
)
+

ν(k)

1− 2ν(k)
∂zw

(k)

}
− β(k)T (k),

σ(k)
αα =

E(k)

1 + ν(k)

{
1− ν(k)

1− 2ν(k)
1

r

[
∂r

(
ru(k)

)
+ ∂αv

(k)
]
−

−1

r
∂ru

(k) +
ν(k)

1− 2ν(k)
∂zw

(k)

}
− β(k)T (k),

σ(k)
zz =

E(k)

1 + ν(k)

{
ν(k)

1− 2ν(k)
1

r

[
∂r

(
ru(k)

)
+ ∂αv

(k)
]
+

+
1− ν(k)

1− 2ν(k)
∂zw

(k)

}
− β(k)T (k),

σ(k)
rz =

E(k)

2(1 + ν(k))

[
∂zu

(k) + ∂rw
(k)
]
,

σ(k)
zα =

E(k)

2(1 + ν(k))

[
1

r
∂αw

(k) + ∂zv
(k)

]
,

σ(k)
rα =

E(k)

2(1 + ν(k))

[
r∂r

(
v(k)

r

)
+

1

r
∂αu

(k)

]
,

(2)

where ν(k) is Poisson’s ratio for the k-th layer, E(k)is Young’s modulus for
the k-th layer; U⃗ (k) =

(
u(k), v(k), w(k)

)
is the displacement vector for the

k–th layer; β(k)is a coefficient depending on the thermal characteristics of
the k–th layer; T (k) is the temperature change in the k–th layer satisfying
Laplace’s equation(

1

r
∂r(r∂r) +

1

r2
∂αα + ∂zz

)
T (k) = 0. (3)

We also consider cases when some of the layers of the body under study
are made of incompressible thermoelastic materials. In this case the incom-
pressible layers are also assumed to be isotropic and homogeneous. Material
incompressibility implies a property such that under any strain and at any
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point the volume remains unchanged. Besides, studying the static ther-
moelastic equilibrium, we assume that the change in the temperatures in
the incompressible layers, similar to the classical case, satisfies Laplace’s
equation (3).

Let the j–th layer of the curvilinear coordinate parallelepiped under
study consist of an incompressible thermoelastic material. Then equilib-
rium equations written in the invariant form will be the following [11]

{
grad

(
s(j) + 4ν(j)T (j)

)
− rot rot

−→
U (j) = 0,

div
−→
U (j) = 3ν(j)T (j),

in Ωj , (4)

where s(j)is the so called hydrostatic pressure of the j–th layer.

Fig.1. Multilayer cylindrical body

On the flat boundaries of each layer the following homogeneous bound-
ary conditions are defined:
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For α = αj : a) σ
(k)
αα = 0, u(k) = 0, w(k) = 0, T (k) = 0

or

b) v(k) = 0, σ
(k)
αr = 0, = 0, σ

(k)
αz = 0, ∂αT

(k) = 0 ,

rk−1 < r < rk, k = 1, N, 0 < z < z1;

(5)

For z = zj : a) σ
(k)
zz = 0, u(k) = 0, v(k) = 0, T (k) = 0

or

b) w(k) = 0, σ
(k)
zr = 0, σ

(k)
zα = 0, ∂zT

(k) = 0 ,

rk−1 < r < rk, k = 1, N, 0 < α < α1 ,

(6)

where j = 0, 1, and α0 = 0, z0 = 0.

Note that boundary conditions (5a) and (6a) are conditions of an anti-
symmetric continuous extension of the solution while boundary conditions
(5b) and (6b) are conditions of a symmetric continuous extension of the
solution [8].

Thus on the flat boundaries of the domain Ω we will have nine different
combinations of symmetry and anti-symmetry conditions (see Fig. 2).

Fig. 2. Boundary conditions on flat boundaries

The following boundary conditions are defined on cylindrical boundary
surfaces.
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For r = rδj : σ
(j)
rr = F

(j)
1 (α, z) or u(j) = f

(j)
1 (α, z),

σ
(j)
rα = F

(j)
2 (α, z) or v(j) = f

(j)
2 (α, z),

σ
(j)
rz = F

(j)
3 (α, z) or w(j) = f

(j)
3 (α, z),

∂rT
(j) = t(j)(α, z) or T (j) = τ (j)(α, z),

(7)

where j = 1, N , δj =

{
0, j = 1,
N, j = N,

and r0 = 0; F
(j)
i (α, z),

f
(j)
i (α, z), t(j)(α, z) and τ (j)(α, z), i = 1, 2, 3 are defined functions which
in the domain ω = {0 < α < α1, 0 < z < z1} are decomposed into uni-
formly converging Fourier series.

Hence arbitrary boundary conditions may be defined on the cylindrical
boundary surfaces of the domain Ω.

As for contact conditions, the article shows cases when contact condi-
tions of rigid or sliding contact may be defined between neighboring layers.

Rigid contact conditions have the following form:

r = rj : u(j) = u(j+1), v(j) = v(j+1), w(j) = w(j+1);

σ
(j)
rα = σ

(j+1)
rα , σ

(j)
rz = σ

(j+1)
rz , σ

(j)
rr = σ

(j+1)
rr ;

T (j) = T (j+1), k(j)∂rT
(j) = k(j+1)∂rT

(j+1),

j = 1, N − 1.

(8)

Sliding contact conditions have the following form:

r = rj : σ
(j)
rr = σ

(j+1)
rr , u(j) = u(j+1), σ

(j)
rα = 0 ,

σ
(j+1)
rα = 0, σ

(j)
rz = 0, σ

(j+1)
rz = 0;

T (j) = T (j+1), k(j)∂rT
(j) = k(j+1)∂rT

(j+1),

j = 1, N − 1.

(9)

In formulas (8) and (9) k(j)is thermal conductivity of the j-th layer.

Thus between layers Ωjand Ωj+1 either (8) type conditions (rigid con-
tact) can be defined or (9) type contact conditions (sliding contact). Al-
though the paper deals with (8) or (9) type contact conditions, we can
analytically solve boundary value contact problems in the case when other
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types of conditions are defined between the neighboring layers, e.g. we can
consider contact conditions of the following form:

r = rj : w(j) = w(j+1), σ
(j)
rz = σ

(j+1)
rz , σ

(j)
rα = 0 ,

σ
(j+1)
rα = 0, σ

(j)
rr = 0, σ

(j+1)
rr = 0;

T (j) = T (j+1), k(j)∂rT
(j) = k(j+1)∂rT

(j+1)

j = 1, N − 1.

3 Solution of the stated boundary value contact problems

It is proved that the general solution of equation system (1), (2) can be
represented by means of four harmonic functions [5]. Just for simplicity we
write out general solutions expressed by means of four harmonic functions
for the case when on one of the flat boundaries α = const anti-symmetry
conditions are defined while on the other – those of symmetry. For the
general case when symmetry and anti-symmetry conditions are arbitrarily
mixed up the solutions are given in paper [5]. The above-mentioned refers
to boundary conditions on flat boundaries. As for boundary conditions on
cylindrical surfaces they are arbitrary in all of the above-mentioned cases.

Components of the displacement vector are expressed by means of the
following formulas:

2µku
(k) = ∂r

(
r∂rΦ

(k) +G(k)
)
+

1

r
∂αΨ

(k)−

−
µk −

(
1 + ν(k)

)
1− ν(k)

γ(k)∂r

(
r∂rT̃

(k)
)
,

2µkv
(k) = ∂α

(
∂rΦ

(k) +
1

r
G(k)

)
− ∂rΨ

(k)−

−
µk

(
1 + ν(k)

)
1− ν(k)

γ(k)∂rαT̃
(k),

2µkw
(k) = ∂z

(
r∂rΦ

(k) +G(k)
)
+ 4

(
1− ν(k)

)
∂zΦ

(k)−

−
µk

(
1 + ν(k)

)
1− ν(k)

γ(k)∂z

(
r∂rT̃

(k)
)
, k = 1, N.

(10)

where Φ(k), Ψ(k), G(k) are arbitrary harmonic functions in the domain Ωk;
γ(k)is a linear heat expansion coefficient of the k-th layer, which is expressed
through β(k) by means of the formula

γ(k) =
1− 2ν(k)

2µk

(
1 + ν(k)

)β(k);
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T̃ (k) is also a harmonic function, which is related to the function T (k) by
means of

T (k) = ∂zzT̃
(k).

If we substitute formulas (10) in Duhamel-Neumann relations (2), then we
shall have stresses expressed by means of the introduced harmonic func-

tions. In particular, for the stresses σ
(k)
rr , σ

(k)
rα and σ

(k)
rz we will have the

following formulas:

σ(k)
rr = ∂rr

(
r∂rΦ

(k) +G(k)
)
+ 2ν(k)∂zzΦ

(k) + ∂αr

(
1

r
Ψ(k)

)
−

−
µk

(
1 + ν(k)

)
1− ν(k)

γk

[
∂zzT̃

(k) + ∂rr

(
r∂rT̃

(k)
)]

,

σ(k)
rα = ∂rα

(
∂rΦ

(k) +
1

r
G(k)

)
− 1

2
∂zzΨ

(k) − ∂rrΨ
(k)−

−
µk

(
1 + ν(k)

)
1− ν(k)

γk∂rrαT̃
(k),

σ(k)
rz = ∂zr

(
r∂rΦ

(k) +G(k)
)
+ 2(1− ν(k))∂zrΦ

(k) +
1

2r
∂zαΨ

(k)−

−
µk

(
1 + ν(k)

)
1− ν(k)

γk∂zr

(
r∂rT̃

(k)
)
.

(11)

It is proved that the general solution of a system of equilibrium equa-
tions for an incompressible material (3) can be obtained from formulas (9)
and (10), if instead of ν(k) we take the value 1

2 . As for hydrostatic pressure,
its value is defined by formula

µ(k)s(k) = ∂zΦ
(k) − µ(k)ν(k)T (k).

It should be noted that in the case of an incompressible material as well
boundary conditions (4)–(6) are imposed. The same can be also said about
contact conditions, i.e. in the case when one of the two neighboring layers
is incompressible, contact conditions (7) or (8) still hold.

Furthermore, using the method of separation of variables and bearing in
mind boundary conditions defined on the flat boundaries of the cylindrical
body, we establish the form of harmonic functions Φ(k), Ψ(k), G(k) and T̃ (k).

In particular, here we consider the following three cases of boundary
conditions on flat surfaces of the body under study.

Problem 1. On all of the four flat boundary surfaces anti-symmetry
conditions are defined while non-homogeneous conditions on the cylindrical

boundary surfaces are symmetrical with respect to the planes α =
α1

2
, z =

z1
2
.
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Problem 2. On all of the four flat boundary surfaces symmetry
conditions are defined while non-homogeneous conditions on the cylin-
drical boundary surfaces are antisymmetrical with respect to the planes

α =
α1

2
, z =

z1
2
.

Problem 3. On the boundaries α = 0 and z = 0 anti-symmetry
conditions are defined, while on the boundaries α = α1 and z = z1symmetry
conditions are given (Fig. 2, 5).

It can be easily seen that taking into account conditions of continuous
extension of the solution the first two problems can be reduced to the third
one. In the case of Problem 3 the functions Φ(k), Ψ(k), G(k) and T̃ (k) have
the following form:

Φ(k) =

∞∑
m=1

∞∑
n=1

(
A(k)

mn

Ip(qr)

Ip(qr1)
+B(k)

mn

Kp(qr)

Kp(qr0)

)
×

× sin
(2m− 1)πα

2α1
sin

(2n− 1)πz

2z1
,

Ψ(k) =
∞∑

m=0

∞∑
n=1

(
C(k)
mn

Ip(qr)

Ip(qr1)
+D(k)

mn

Kp(qr)

Kp(qr0)

)
×

× cos
(2m− 1)πα

2α1
sin

(2n− 1)πz

2z1
,

G(k) =

∞∑
m=1

∞∑
n=1

(
E(k)

mn

Ip(qr)

Ip(qr1)
+ F (k)

mn

Kp(qr)

Kp(qr0)

)
×

× sin
(2m− 1)πx

2x1
sin

(2n− 1)πny

2z1
,

(12)

T̃ (k) =
∞∑

m=1

∞∑
n=1

1

γ2mn

(
t(k)mn

Ip(qr)

Ip(qr1)
+ T (k)

mn

Kp(qr)

Kp(qr0)

)
×

× sin
(2m− 1)πα

2α1
sin

(2n− 1)πz

2z1
,

(13)

where Ip(qr) and Kp(qr)are the first and second kind modified Bessel func-
tions, correspondingly, p = (2m− 1)π/2α1 ,q = (2n− 1)π/2z1 .

In order to find the desired displacements and stresses the expressions
for functions Φ(k), Ψ(k), G(k) and T̃ (k)(formulas (12) and (13)) are substi-
tuted in the corresponding formulas (9) or (10). For example, if we substi-
tute expressions (12) in formulas (10), displacements will be expressed in
the following way
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2µku
(k) =

∞∑
m=1

∞∑
n=1

{(
q
I
/
p (qr)

Ip(qr1)
+ q2

I
//
p (qr)

Ip(qr1)

)
A(k)

mn+

+

(
q
K

/
p(qr)

Kp(qr0)
+ q2

K
//
p (qr)

Kp(qr0)

)
B(k)

mn−

−p
1

r

Ip(qr)

Ip(qr1)
C(k)
mn − p

1

r

Kp(qr)

Kp(qr0)
D(k)

mn+

+q
I
/
p (qr)

Ip(qr1)
E(k)

mn + q
K

/
p(qr)

Kp(qr0)
F (k)
mn−

−µk (1 + νk)

1 + νk
γ(k)

[(
q
I
/
p (qr)

Ip(qr1)
+ q2

I
//
p (qr)

Ip(qr1)

)
t(k)mn +

+

(
q
K

/
p(qr)

Kp(qr0)
+ q2

K
//
p (qr)

Kp(qr0)

)
T (k)
mn

]}
×

× sin
(2m− 1)πα

2α1
sin

(2n− 1)πz

2z1
,

2µkv
(k) =

∞∑
m=0

∞∑
n=1

{
pq

(
I
/
p (qr)

Ip(qr1)
A(k)

mn +
K

/
p(qr)

Kp(qr0)
B(k)

mn

)
−

−q

(
I
/
p (qr)

Ip(qr1)
C(k)
mn +

K
/
p(qr)

Kp(qr0)
D(k)

mn

)
C(k)
mn+

+D(k)
mn + p

1

r

(
Ip(qr)

Ip(qr1)
E(k)

mn +
Kp(qr)

Kp(qr0)
F (k)
mn

)
−

−µk (1 + νk)

1 + νk
pqγ(k)

(
I
/
p (qr)

Ip(qr1)
t(k)mn +

K
/
p(qr)

Kp(qr0)
T (k)
mn

)}
×

× cos
(2m− 1)πα

2α1
sin

(2n− 1)πz

2z1
,

2µkw
(k) =

∞∑
m=1

∞∑
n=1

{(
q2

rI
/
p (qr)

Ip(qr1)
+ 4(1− ν(k))q

I
//
p (qr)

Ip(qr1)

)
A(k)

mn+

+

(
q2

rK
/
p(qr)

Kp(qr0)
+ 4(1− ν(k))q

K
//
p (qr)

Kp(qr0)

)
B(k)

mn+

+q

(
Ip(qr)

Ip(qr1)
E(k)

mn +
Kp(qr)

Kp(qr0)
F (k)
mn

)
−

−µk (1 + νk)

1 + νk
q2γ(k)

(
rI

/
p (qr)

Ip(qr1)
t(k)mn +

rK
/
p(qr)

Kp(qr1)
T (k)
mn

)}
×

× sin
(2m− 1)πα

2α1
cos

(2n− 1)πz

2z1
.

(14)
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The defined functions on boundary cylindrical surfaces of a multilayer cylin-
drical body are extended into corresponding trigonometric series. Expres-
sions for functions defined on the boundary and contact surfaces and ap-
propriate extensions into function series defined on boundary cylindrical
surfaces of the body are substituted into corresponding conditions (7), (8)
or (9) and expressions for identical trigonometric functions are equated. As
a result, infinite systems of algebraic equations are obtained for the desired
coefficients of harmonic functions, the main matrix of these equations for
a fixed m = m̄ and arbitrary values of n from 1 to infinity having a block
diagonal form shown in Fig.3.

Fig.3. Form of the main matrix

In all of the investigated nine cases of boundary conditions on flat
boundaries of the cylinder the main matrix corresponding to linear alge-
braic equations of any of the above-stated problems will have the form
shown in Fig.3. Each of its (dij) blocks represents a matrix of the following
form (× denotes non-zero elements of the matrix):
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

×× ××××
× ×××××
× × ×××
× ×××××××××××
× ×××××××××××
×× ×××× ××
×× ×××××× ××××
×× ×××××× ××××
×× ×××× ××

× ×××××××××××
× ×××××××××××
×× ×××× ××
×× ×××××× ××××
×× ×××××× ××××
×× ×××× ××

. . .

× ×××××××××××
× ×××××××××××
×× ×××× ××
×× ×××××× ××××
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
Fig. 4. Form of the matrix (dij)(i = 1, 2, . . . ; j = 1, 2, . . .)

The N -layer cylindrical body under consideration has N − 1 contact
cylindrical surfaces contact conditions on which generate 6 (N − 1) equa-
tions while boundary conditions on boundary cylindrical surfaces of the
body give three more equations each. As a result, for each fixed m and n
there is a system of 6N equations with 6N unknowns, i.e. the main matrix
represents a square matrix of the dimension 6N × 6N .

As it was noted above, Problems 1 and 2 result from a continuous ex-
tension of the solutions. In particular, Problem 1 results from a continuous
symmetrical extension of the solution through α = α1 and z = z1, while
we have Problem 2 when the solution is continuously anti-symmetrically
extended through α = 0 and z = 0 .
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As for the change in temperature, this problem is reduced to integration
of Laplace’s equation for a multilayer cylindrical domain.

Convergence of the obtained series can be easily proved as well as the
uniqueness of the obtained solutions.

For a numerical implementation and visual representation of the solu-
tions of the problems studied above a computer program using MATLAB
language has been developed [12]. The program has a simple form, is
user-friendly and when necessary can be supplemented by a corresponding
computation program module.

4 Numerical example of elastic equilibrium determination
for a one-layer cylindrical body

We end the given paper with the following application problem. In particu-
lar, find the elastic equilibrium of a cylindrical body Ω = {r0 < r < r1, 0 <

α <
2π

3
, 0 < z < 2z1} when on flat lateral surfaces α = 0, α =

2π

3
, z = 0

and z = 2z1 anti-symmetry conditions are satisfied, while the cylindrical
boundary surface r = r0 is free of stresses

For r = r0 : σrα = 0, σrz = 0, σrr = 0; (15)

On the cylindrical boundary surface r = r1 the following boundary
conditions

For r = r1 : σrα = 0, σrz = 0, σrr = f(α, z) = p sin
3α

2
sin

πz

2z1
, (16)

are defined where p = const.
In addition to the determination of the elastic equilibrium of the given

body another problem is also stated – to find how the displacement u

at the point M

(
r1 + r2

2
,
π

3
, z1

)
depends on the value z1. The above-

stated problem using symmetry of the function f (α, z) defined on the

boundary with respect to the planes α =
π

3
and z = z1, is reduced to the

following boundary value problem: to find the elastic equilibrium of the
cylindrical body Ω̃ =

{
r0 < r < r1, 0 < α < π

3 , 0 < z < z1
}

when on the
flat lateral boundary surfaces α = 0 and z = 0 anti-symmetry conditions
are satisfied while on the surfaces α = π

3 and z = z1 symmetry conditions
hold. Boundary conditions on cylindrical surfaces remain unchanged as
well as another aim of the given example - to determine how the value of

the displacement u at the point M

(
r1 + r2

2
,
π

3
, z1

)
depends on the value

z1.
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It can be easily seen that in this case the harmonic functions Φ, Ψ and
G will have the following form

Φ =

{
AI3/2

(
πr

2z1

)
+B I−3/2

(
πr

2z1

)}
sin

3α

2
sin

πz

2z1
,

Ψ =

{
C I3/2

(
πr

2z1

)
+D I−3/2

(
πr

2z1

)}
cos

3α

2
sin

πz

2z1
,

G =

{
E I3/2

(
πr

2z1

)
+ F I−3/2

(
πr

2z1

)}
sin

3α

2
sin

πz

2z1
,

(17)

where A, B, C, D, E, F are the desired constants.

Substitute formulas (17) in the relations (11) and then substituting the
obtained expressions in boundary conditions (15) and (16) and compar-
ing coefficients of identical trigonometric functions we obtain the following
system of equations with respect to the coefficients A, B, C, D, E, F .

Ã(r0)A+ B̃(r0)B + C̃(r0)C + D̃(r0)D +
π2

4z21
I
//
3/2

(
πr0
2z1

)
E+

+
π2

4z21
I
//
−3/2

(
πr0
2z1

)
F = 0,

3

2
I
//
3/2

(
πr0
2z1

)
A+

3

2
I
//
−3/2

(
πr0
2z1

)
B +

π2

4z21

[
1

2
I3/2

(
πr0
2z1

)
−

−I
//
3/2

(
πr0
2z1

)]
C +

π2

4z21

[
1

2
I3/2

(
πr0
2z1

)
− I

//
3/2

(
πr0
2z1

)]
D−

−C̃(r0)E − D̃(r0)F = 0,

Ẽ(r0)A+ F̃ (r0)B − 3π

8z1

1

r0
I3/2

(
πr0
2z1

)
C − 3π

8z1

1

r0
I−3/2

(
πr0
2z1

)
D+

+
π2

4z21
I
/
3/2

(
πr0
2z1

)
E +

π2

4z21
I
/
−3/2

(
πr0
2z1

)
F = 0,

Ã(r1)A+ B̃(r1)B + C̃(r1)C + D̃(r1)D +
π2

4z21
I
//
3/2

(
πr1
2z1

)
E+

+
π2

4z21
I
//
−3/2

(
πr1
2z1

)
F = p,

(18)
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3

2
I
//
3/2

(
πr1
2z1

)
A+

3

2
I
//
−3/2

(
πr1
2z1

)
B +

π2

4z21

[
1

2
I3/2

(
πr1
2z1

)
−

−I
//
3/2

(
πr1
2z1

)]
C +

π2

4z21

[
1

2
I3/2

(
πr1
2z1

)
− I

//
3/2

(
πr1
2z1

)]
D−

−C̃(r1)E − D̃(r1)F = 0,

Ẽ(r1)A+ F̃ (r1)B − 3π

8z1

1

r0
I3/2

(
πr1
2z1

)
C − 3π

8z1

1

r1
I−3/2

(
πr1
2z1

)
D+

+
π2

4z21
I
/
3/2

(
πr1
2z1

)
E +

π2

4z21
I
/
−3/2

(
πr1
2z1

)
F = 0,

(18)

where

Ã(r) = ∂r

[
π

2z1
I
/
3/2

(
πr

2z1

)
+

π2

4z21
I
//
3/2

(
πr

2z1

)]
− νπ2

2z21
I3/2

(
πr

2z1

)
,

B̃(r) = ∂r

[
π

2z1
I
/
−3/2

(
πr

2z1

)
+

π2

4z21
I
//
−3/2

(
πr

2z1

)]
− νπ2

2z21
I−3/2

(
πr

2z1

)
,

C̃(r) =
3

2

(
1

r2
I3/2

(
πr

2z1

)
− π

2rz1
I
/
3/2

(
πr

2z1

))
,

D̃(r) =
3

2

(
1

r2
I−3/2

(
πr

2z1

)
− π

2rz1
I
/
−3/2

(
πr

2z1

))
,

Ẽ (r) =
π2

4z21

[
(3− 2ν)I

/
3/2

(
πr

2z1

)
+

π

2z1
I
//
3/2

(
πr

2z1

)]
,

F̃ (r) =
π2

4z21

[
(3− 2ν)I

/
−3/2

(
πr

2z1

)
+

π

2z1
I
//
−3/2

(
πr

2z1

)]
.

The values of modified Bessel functions entering system (18) are com-
puted according to the well-known formulas

I3/2 (x) =

√
2

πx

(
coshx− sinhx

x

)
, I−3/2 (x) =

√
2

πx

(
sinhx− coshx

x

)

and the resulting relations
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I
/
3/2 (x) =

√
2

πx

(
sinhx− 3 coshx

2x
+

3 sinhx

2x2

)
,

I
/
3/2 (x) =

√
2

πx

(
coshx− 3 sinhx

2x
+

3 coshx

2x2

)
,

I
//
3/2 (x) =

√
2

πx

(
coshx− 2 sinhx

x
+

3, 75 coshx

x2
− 3, 75 sinhx

x3

)
,

I
//
−3/2 (x) =

√
2

πx

(
sinhx− 2 coshx

x
+

3, 75 sinhx

x2
− 3, 75 coshx

x3

)
.

According to formulas (10) and (17) the displacements will be expressed
in the following way

2µu =

{[
π

2z1
I
/
3/2

(
πr

2z1

)
+

π2

4z21
I
//
3/2

(
πr

2z1

)]
A+

[
π

2z1
I
/
3/2

(
πr

2z1

)
+

+
π2

4z21
I
//
3/2

(
πr

2z1

)]
B − 3

2

1

r
I3/2

(
πr

2z1

)
C − 3

2

1

r
I−3/2

(
πr

2z1

)
D+

+
π

2z1
I
/
3/2

(
πr

2z1

)
E +

π

2z1
I
/
−3/2

(
πr

2z1

)
F

+
π

2z1
I
/
−3/2

(
πr

2z1

)
F

}
sin

3α

2
sin

πz

2z1
,

2µv =

{
3π

4z1
I
/
3/2

(
πr

2z1

)
A+

3π

4z1
I
/
−3/2

(
πr

2z1

)
B − π

2z1
I
/
3/2

(
πr

2z1

)
C−

− π

2z1
I
/
−3/2

(
πr

2z1

)
D +

3

2

1

r
I3/2

(
πr

2z1

)
E+

+
3

2

1

r
I−3/2

(
πr

2z1

)
F

}
cos

3α

2
sin

πz

2z1
,

2µw =

{[
π2r

4z21
I
/
3/2

(
πr

2z1

)
+

4(1− ν)π

2z1
I3/2

(
πr

2z1

)]
A+

[
π2r

4z21
I
/
−3/2

(
πr

2z1

)
+

+
4(1− ν)π

2z1
I−3/2

(
πr

2z1

)]
B +

π

2z1
I3/2

(
πr

2z1

)
E+

+
π

2z1
I−3/2

(
πr

2z1

)
F

}
sin

3α

2
cos

πz

2z1
.
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Fig.5. Graph showing how the displacement u depends on z1 (r0 = 192sm, r1 = 208sm,

ν = 0, 3, E = 2 · 106kg /cm 2).

The desired dependence of the displacement u on z1 after the solution
of the boundary value problem is shown in Fig.5.

Just as we expected , for the time being, the value u is also growing
along with z1 and then it stabilizes and tends to a certain definite value.
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