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Abstract

Initial-boundary value problem with mixed boundary conditions for one nonlinear

integro-differential equation with source term is considered. The model arises at de-

scribing penetration of a magnetic field into a substance. Large time asymptotic as

t → ∞ is given. Corresponding semi-discrete difference scheme is studied as well.

More general cases of nonlinearity are studied than one has been studied earlier.
Key words and phrases: Nonlinear partial integro-differential equation, asymp-

totic behavior, semi-discrete scheme.
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1 Introduction

In mathematical modeling nonlinear partial integro-differential models are
received very often (see, for example, [1]-[5], [11], [12], [16], [22]). In the
present work one such kind of equation, which describe the process of a
magnetic field penetration into a substance is considered. The investigated
model is obtained by reduction of the well-known Maxwell’s system [17] to
the following integro-differential form [10]

∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH

 , (1.1)

where H = (H1, H2,H3) is a vector of the magnetic field and function
a = a(S) is defined for S ∈ [0,∞).
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Our aim is to study asymptotic behavior as t→ ∞ and semi-discrete fi-
nite difference scheme for numerical solution of initial-boundary value prob-
lem with mixed boundary conditions for the one-dimensional case of equa-
tion (1.1) with nonlinear source term. Attention is paid to the investigation
of a wider case of nonlinearity than already were studied.

Note that the investigation and numerical approximation of integro-
differential parabolic models of (1.1) type are complex and still yields to
the investigation only for special cases (see, for example, [6] - [10], [13] -
[15], [18] - [20] and references therein).

2 Large Time Behavior of Solution

If the magnetic field has the form H = (0, 0, U), U = U(x, t), then, adding
the source term f(U), from (1.1) we obtain the following nonlinear integro-
differential equation

∂U

∂t
− ∂

∂x

[
a(S)

∂U

∂x

]
+ f(U) = 0, (2.1)

where

S(x, t) =

t∫
0

(
∂U

∂x

)2

dτ. (2.2)

In the cylinder [0, 1]× [0,∞) let us consider the following boundary and
initial conditions:

U(0, t) =
∂U(x, t)

∂x

∣∣∣∣
x=1

= 0, (2.3)

U(x, 0) = U0(x), (2.4)

where U0 is a given function.

We use usual L2(0, 1) and Sobolev spaces Hk(0, 1) and the correspond-
ing norms. The symbol C below in this section denotes positive constant
independent of t.

The following statement takes place.

Theorem 1. If a(S) = (1 + S)p, 0 < p ≤ 1, f(U) = |U |q−2U , q ≥ 2

and U0 ∈ H3(0, 1), U0(0) =
dU0(x)

dx

∣∣∣
x=1

= 0 , then problem (2.1) - (2.4) has

not more than one solution and the following estimate holds as t→ ∞∥∥∥∥∂U(x, t)

∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.
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Let us note that the same result as in Theorem 1 is true for a problem
with first type homogeneous conditions on the whole boundary (see, for
example, [14], [15]).

3 Convergence of the Semi-discrete Scheme

Let us consider the following problem:

∂U

∂t
− ∂

∂x

1 +

t∫
0

(
∂U

∂x

)2

dτ

p

∂U

∂x

+ f(U) = 0, (3.1)

U(0, t) =
∂U(x, t)

∂x

∣∣∣∣
x=1

= 0, (3.2)

U(x, 0) = U0(x), (3.3)

where 0 < p ≤ 1 and f is an increasing function.
On [0,1] let us introduce a net with mesh points denoted by xi = ih,

i = 0, 1, . . . ,M , with h = 1/M . The boundaries are specified by i = 0 and
i =M . In this section the semi-discrete approximation at (xi, t) is designed
by ui = ui(t). The exact solution to the problem at (xi, t) is denoted by
Ui = Ui(t). At points i = 1, 2, . . . ,M − 1, the integro-differential equation
will be replaced by approximation of the space derivatives by a forward
and backward differences. We will use the following known notations, inner
products and norms [21]:

(u, v) = h
M−1∑
i=1

uivi, (u, v] = h
M∑
i=1

uivi,

∥u∥ = (u, u)1/2, ∥u]| = (u, u]1/2.

ux,i(t) =
ui+1(t)− ui(t)

h
, ux̄,i(t) =

ui(t)− ui−1(t)

h
.

Let us correspond to problem (3.1) - (3.3) the following semi-discrete
scheme:

dui
dt

−


1 +

t∫
0

(ux̄,i)
2 dτ

p

ux̄,i


x

+ f(ui) = 0,

i = 1, 2, . . . ,M − 1,

(3.4)

u0(t) = ux̄,M (t) = 0, (3.5)
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ui(0) = U0,i, i = 0, 1, . . . ,M. (3.6)

So, we obtained Cauchy problem (3.4) - (3.6) for the nonlinear system of
ordinary integro-differential equations.

Multiplying equations (3.4) scalarly by u(t) = (u1(t), u2(t), . . . , uM−1(t)),
after simple transformations we get

d

dt
∥u(t)∥2 + h

M∑
i=1

1 +

t∫
0

(ux̄,i)
2 dτ

p

(ux̄,i)
2 ≤ 0.

From this we obtain the inequality

∥u(t)∥2 +
t∫

0

∥ux̄]|2dτ ≤ C, (3.7)

where, here and below in this section, C denotes a positive constant which
does not depend on h.

The a priori estimate (3.7) guarantees the global solvability of problem
(3.1) - (3.3).

The principal aim of the present section is the proof of the following
statement.

Theorem 2. If 0 < p ≤ 1, f is an increasing function and problem
(3.1) - (3.3) has a sufficiently smooth solution U = U(x, t), then solution
u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of the problem (3.1) - (3.3) tends
to U = U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the following
estimate is true

∥u(t)− U(t)∥ ≤ Ch. (3.8)

Proof. For U = U(x, t) we have:

dUi

dt
−


1 +

t∫
0

(Ux̄,i)
2dτ

p

Ux̄,i


x

+ f(Ui) = ψi(t),

i = 1, 2, . . . ,M − 1,

(3.9)

U0(t) = Ux̄,M (t) = 0, (3.10)

Ui(0) = U0,i, i = 0, 1, . . . ,M, (3.11)

where

ψi(t) = O(h).
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Let zi(t) = ui(t)− Ui(t). From (3.1) - (3.3) and (3.9) - (3.11) we have:

dzi
dt

−


1 +

t∫
0

(ux̄,i)
2dτ

p

ux̄,i

−

1 +

t∫
0

(Ux̄,i)
2dτ

p

Ux̄,i


x

+ f(ui)− f(Ui) = −ψi(t),

(3.12)

z0(t) = zx̄,M (t) = 0,

zi(0) = 0.

Multiplying equation (3.12) scalarly by z(t) = (z1(t), z2(t), . . . , zM−1(t)),
using the discrete analogue of the formula of integration by parts we get

1

2

d

dt
∥z∥2 +

M∑
i=1


1 +

t∫
0

(ux̄,i)
2dτ

p

ux̄,i

−

1 +

t∫
0

(Ux̄,i)
2dτ

p

Ux̄,i

 zx̄,ih

+h

M−1∑
i=1

(f(ui)− f(Ui)) (ui − Ui) = −h
M−1∑
i=1

ψizi.

(3.13)

Note that,
1 +

t∫
0

(ux̄,i)
2dτ

p

ux̄,i −

1 +

t∫
0

(Ux̄,i)
2dτ

p

Ux̄,i

 (ux̄,i − Ux̄,i)

= p

1∫
0

1 +

t∫
0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2 dτ

p−1

× d

dt

 t∫
0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)dτ

2

dξ

+

1∫
0

1 +

t∫
0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2 dτ

p

dξ (ux̄,i − Ux̄,i)
2 .
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After substituting this equality in (3.13), taking into account mono-
tonicity of f , integrating received equality on (0, t) and using formula of
integrating by parts we get

∥z∥2 + 2h
M∑
i=1

t∫
0

1∫
0

1 +

t
′∫

0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2 dτ

′


p

(ux̄,i − Ux̄,i)
2 dξdτ

+ph

M∑
i=1

1∫
0

1 +

t∫
0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2 dτ

p−1

×

 t∫
0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)dτ

2

dξ

−p(p− 1)h
M∑
i=1

1∫
0

t∫
0

1 +

t
′∫

0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2 dτ

′


p−2

× [Ux̄,i + ξ(ux̄,i − Ux̄,i)]
2

×

 t
′∫

0

[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)dτ
′


2

dξdτ = −2h

M−1∑
i=1

ψizi.

Taking into account relation 0 < p ≤ 1 we have from the last equality

∥z(t)∥2 ≤
t∫

0

∥z(τ)∥2dτ +
t∫

0

∥ψi∥2dτ. (3.14)

From (3.14) we get (3.8), and Theorem 2 thus is proved.
Various numerical experiments for the studied schemes are carried out.

The results of these numerical experiments agree with theoretical researches.
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