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Abstract

In the present paper by means of the I. Vekua method the system of differential

equations for shallow spherical shells is obtained, when on upper and lower face surface

displacement are assumed to be known. Using the method of the small parameter

approximate solutions of I. Vekua’s equations for approximations N = 0 is constructed.

The small parameter ε = 2h/R, where 2h is the thickness of the shell, R is the radius

of the sphere.
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1 Equations of Equilibrium of an Elastic Medium

Let Ω denote a shell and the domain of the space occupied by this shell.
Inside the shell, we consider a smooth surface S with respect to which the
shell Ω lies symmetrically. The surface S is called the midsurface of the shell
Ω. To construct the theory of shells, we use the more convenient coordinate
system which is normally connected with the midsurface S. This means
that the radius-vector R of any point of the domain Ω can be represented
in the form

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2),

where r and n are the radius-vector and the unit vector of the normal of
the surface S (x3 = 0), respectively, (x1, x2) are the Gaussian parameters
of the midsurfaces [1].

Making use of tensor notation, we can write the equilibrium equation
of the continuous medium and stress-strain relations (Hooke’s law) in the
form [1]

∇iσ
ij +Φj = 0 (j = 1, 2, 3), (1)
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σij = λθgij + 2µeij (i, j = 1, 2, 3), (2)

where ∇i are covariant derivatives with respect to the space coordinates xi,
σij are contravariant components of the stress tensor, Φj are contravariant
components of the volume force Φ, eij are contravariant components of the
strain tensor, θ is the cubical dilatation

θ = eii = gike
ki,

gij and g
ij are covariant and contravariant components of the discriminant

g of the metric quadratic form of the space, λ and µ are Lamé’s constants

λ =
Eσ

(1 + σ)(1− 2σ)
, µ =

E

2(1 + σ)
,

where E and σ are Young’s modulus and Poisson’s ratio, respectively.
We shall hereafter confine ourselves to the consideration of infinitesimal

deformations of a shell. Therefore for components of the strain tensor we
consider only linear relations, expressing them by the displacement vector.
For the covariant components of the strain tensor these relations have the
form

eij =
1

2
(∇iUj +∇jUi),

where Ui are covariant components of the displacement vector.
For thin or shallow shells we can write [1]

Rα
∼= rα, Rα ∼= rα, R3 = R3 = n, g ∼= a,

where Ri and Ri are covariant and contravariant base vectors of the space,
rα and rα are covariant and contravariant base vectors of the midsurface,
a is the discriminant of the metric tensor of the midsurface.

2 I. Vekua’s reduction method

Multiplying both sides of equations (1) and (2) by Legendre polynomials

Pm

(
x3

h

)
and then integrating with respect to x3 from −h to h we obtain

the equivalent infinite system of 2-D equations [1-2]

∇α
(m)
σ αβ − bβα

(m)
σ α3 +

2m+ 1

h

(
(m+1)
σ β3 +

(m+3)
σ β3 + · · ·

)
+

(m)

Φ
β = 0,

∇α
(m)
σ α3 + bβα

(m)
σ α

β +
2m+ 1

h

(
(m+1)
σ 33 +

(m+3)
σ 33 + · · ·

)
+

(m)

Φ
3 = 0,

(3)
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where

(m)
σ αβ= λ

[
∇γ

(m)

U
γ − 2H

(m)

U 3 −
2m+ 1

h

(
(m−1)

U 3 +
(m−3)

U 3 + · · ·
)]

aαβ

+µ

(
∇β

(m)

U
α +∇α

(m)

U
β − 2bαβ

(m)

U 3

)
+λ

2m+ 1

h

(
(+)

U 3 − (−1)m
(−)

U 3

)
aαβ ,

(m)
σ α3 = µ

[
∇α

(m)

U
3 + bαβ

(m)

U
β − 2m+ 1

h

(
(m−1)

U
α +

(m−3)

U
α + · · ·

)]
+µ

2m+ 1

h

(
(+)

U
α − (−1)m

(−)

U
α

)
,

(m)
σ 33 = λ

(
∇γ

(m)

U
γ − 2H

(m)

U 3

)
−(λ+ 2µ)

2m+ 1

h

(
(m−1)

U 3 +
(m−3)

U 3 + · · ·
)

+(λ+ 2µ)
2m+ 1

h

(
(+)

U 3 − (−1)m
(−)

U 3

)
,

(4)

(±)

U
i = U i(x1, x2,±h),

where ∇α are covariant derivatives on the midsurface S (x3 = 0) of the
shell, aαβ and bαβ are the contravariant components of the metric tensor
and curvature tensor of the midsurface S, H denote the middle curvature
of the midsurface S.

If we substitute expressions (3) into (4) equations we arrive at an infinite
system of second-order equations with respect to components of vectors
(m)
u , when on upper and lower face surfaces displacements are assumed to
be known.

An infinite system of equations (3) has the advantage that it contains
two independent variables - Gaussian coordinates x1, x2 of the surface S.
But the decrease in the number of independent variables one is achieved
by increasing the number of equations to infinity, which, naturally, has an
obvious practical inconvenience. Therefore it is necessary to make the next
step at further simplification of the problem.
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3 Approximation of Order N = 0 for Spherical
Shells

Then we consider N = 0 approximation. In other words, in the previous
equations it is assumed that

(m)

U
i = 0,

(m)
σ ij = 0, if m > 0.

For spherical shell of radius R we have

b11 = b22 = − 1

R
, b21 = b12 = 0, H = − 1

R
.

The system of equations (3-4) becomes

µ∇α∇α
(0)

U
β + µ∇α∇β

(0)

U
α + λ∇β∇α

(0)

U
α − µ

R2

(0)

U
β

+
2λ+ 3µ

R
∇β

(0)

U
3 +

(0)

F
β = 0,

µ∇α∇α
(0)

U
3 − 4(λ+ µ)

R2

(0)

U
3 − 2λ+ 3µ

R
∇α

(0)

U
α +

(0)

F
3 = 0,

(5)

where

(0)

F
β =

(0)

Φ
β +

λ

h
∇β

(
(+)

U
3 +

(−)

U
3

)
+

µ

hR

(
(+)

U
β +

(−)

U
β

)
,

(0)

F
3 =

(0)

Φ
3 +

µ

h
∇α

(
(+)

U
α +

(−)

U
α

)
− 2λ

hR

(
(+)

U
3 +

(−)

U
3

)
.

(6)

Let us consider the isometric coordinates on the sphere

ξ = tg
ϑ

2
cosφ, η = tg

ϑ

2
sinφ,

where ϑ and φ are geographical coordinates. For the shallow spherical shell
the coordinate ϑ varies inside the small segment: 0 ≤ ϑ ≤ ϑ0. Therefore
one can put

ξ =
ϑ

2
cosφ, η =

ϑ

2
sinφ.

Further it will be more convenient to consider the following new coordinates
[3]

x1 =
R

2h
ϑ cosφ, x2 =

R

2h
ϑ sinφ.

Then for the metric quadratic form we obtain the formula

ds2 = (2h)2((dx1)2 + (dx2)2) = (2h)2dzdz̄,
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where
z = x1 + ix2, z̄ = x1 − ix2.

Now the system of equations of the elastic spherical shell may be written
in the following form

µ∆
(0)

U 1 + (λ+ µ)
∂

(0)

Θ

∂x1
+ ε(2λ+ 3µ)

∂
(0)

U 3

∂x1
− ε2µ

(0)

U 1 +
(0)

F 1 = 0,

µ∆
(0)

U 2 + (λ+ µ)
∂

(0)

Θ

∂x2
+ ε(2λ+ 3µ)

∂
(0)

U 3

∂x2
− ε2µ

(0)

U 2 +
(0)

F 2 = 0,

µ∆
(0)

U 3 − ε(2λ+ 3µ)
(0)

Θ −ε24(λ+ µ)
(0)

U 3 +
(0)

F 3 = 0,

(7)

(0)

Θ =
∂

(0)

U 1

∂x1
+
∂

(0)

U 2

∂x2
,

where ε is the small parameter

ε =
2h

R
.

Introduce the notation
(0)

Ui = ui.

Let us try to construct the solutions of the form [3-5]

ui =

∞∑
k=0

(k)
u iε

k. (8)

The formal substitution of (8) into (7) shows that series (8) may satisfy
equations (7) if the following equations are fulfilled

µ∆
(k)
u 1 + (λ+ µ)

∂
(k)

Θ

∂x1
=

(k)

X 1,

µ∆
(k)
u 2 + (λ+ µ)

∂
(k)

Θ

∂x2
=

(k)

X 2,

(9)

µ∆
(k)
u 3 =

(k)

X 3, (10)

where

(k)

X 1 = −
(0)

F 1 − (2λ+ 3µ)
∂

(k−1)
u 3

∂x1
+ µ

(k−2)
u 1,

(k)

X 2 = −
(0)

F 2 − (2λ+ 3µ)
∂

(k−1)
u 3

∂x2
+ µ

(k−2)
u 2,
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(k)

X 3 = −
(0)

F 3 + (2λ+ 3µ)
(k−1)

Θ +4(λ+ µ)
(k−2)
u 3.

For each fixed k equations (9) and (10) coincide with equations of plane
theory of elasticity and Poisson. The right parts of equations (9-10) are

well-known quantities, defined by functions
(0)
u i,

(1)
u i,...

(k−1)
u i.

The complex form of the system (9-10) is:

µ∆
(k)
u + + 2(λ+ µ)∂z̄

(k)

Θ ∂x1 =
(k)

X+,

µ∆
(k)
u 3 =

(k)

X 3,

(11)

where
(k)
u + =

(k)
u 1 + i

(k)
u 2,

(k)

X+ =
(k)

X 1 + i
(k)

X 2,

∂z =
∂

∂z
, ∂z̄ =

∂

∂z̄
, ∆ = 4

∂2

∂z∂z̄
,[

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)]
.

The general solutions of this system are written as follow:

(k)
u + = κ

(k)

f (z)− z
(k)

f ′(z)−
(k)
g ′(z) +

(k)
u +p,

(k)
u 3 =

(k)

ψ (z) +
(k)

ψ (z) +
(k)
u 3p,

where κ =
λ+ 3µ

λ+ µ
,

(k)

f (z),
(k)
g (z) and

(k)

ψ (z) are any analytic functions of

complex variable z,
(k)
u +p and

(k)
u +3 are particular solutions of the system

(11):
(k)
u +p =

1

π

λ+ 3µ

4µ(λ+ 2µ)

∫ ∫
S

(k)

X+(ξ, η) ln |ζ − z|dξdη

− 1

π

λ+ µ

8µ(λ+ 2µ)

∫ ∫
S

(k)

X+(ξ, η)
ζ − z

ζ̄ − z̄
dξdη,

(k)
u +3 =

1

4µπ

∫ ∫
S

(k)

X 3(ξ, η) ln |ζ − z|dξdη,

where ζ = ξ + iη.
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