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Abstract

In this article the unsteady flow of a viscous incompressible electrically conducting

fluid in annular pipe under external radial magnetic field is considered. An exact

solution of the problem in general and specific forms is obtained.
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1 Introduction

The developed flows of conducting fluid in an annular pipe are recently
rather detailed studied [1-9], and the possibility of obtain of new exact
analytical exact solutions seems quite limited. However, such opportunities
do exist and it is possible, as will be shown below, to find even simple new
solutions that however, have a rather interesting qualitative features.

2 Basic Part

Let’s consider the axial flow of an viscous incompressible conducting fluid
in a pipe, whose cross-section is limited by circumferences r = a and r =

b (a < b) under the impact of external radial magnetic field Hr = H0
a

r
.

If we assume that along the axis of cylinder (oz) longitudinal differential
of pressure P = const is applied, the equations of magnets hydrodynamics
would be reduced to the following system

ρ
∂ν

∂t
= η∆ν +

Hr

4π

∂H

∂r
+ P,

∂H

∂t
=

c2

4πσ
∆H +Hr

∂ν

∂r
,

 (1)

where as the unknown functions are the velocity ν ≡ νz(r, t) and the in-
duced magnetic field H ≡ Hz(r, t), ρ is the density, η is the viscosity, σ is
the conductivity, c is the speed of light.
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Herewith electric field has only one component on the axis φ

E ≡ Eφ = −
[ν
c
Hr +

c

4πσ

∂H

∂r

]
(2)

and is a transverse pressure drop −∂p

∂r
=

H

4π

∂H

∂r
.

Due to the subject of system (1) to the Laplace transform [9] with the
parameter p at initial conditions

ν|t=0 = ν0(r), H|t=0 = 0 (3)

and introducing the notation (ν∗ is the characteristic velocity)

f = µ · p ν̄

ν∗
, φ = λp

H̄

H0
, λ2 =

H2
0a

4πην∗
, µ2 =

4πσaν∗
c2

,

α2 =
ap

ν∗
R, β2 =

ap

ν∗
Rm, R =

ρaν∗
η

, Rm =
4πσaν∗

c2
,

M = λµ =
H0σ

c

√
σ

η
, N = −µa2

ην∗
(P + ρpν0),


(4)

we obtain the following simultaneous equations

f ′′ +
1

x
(f ′ +Mφ′)− α2f = N, φ′′ +

1

x
(φ′ +Mf ′)− β2φ = 0, (5)

where the dimensionless independent variable x =
r

a
is introduced.

For the solvability of task to the system (5) is necessary to add the four
boundary conditions, two of which are defined by specifying the velocities
νa(t) and νb(t) and boundaries r = a and r = b

ν̄|r=a = ν̄a(p), ν̄|r=b = ν̄b(p). (6)

The other two conditions associated with continuity of tangent compo-
nents of electric and magnetic fields would be obtained by considering the
Maxwell equations in the conductors r < a and r < b (with conductivities
σa and σb accordingly)

c

4πσ
H̄ ′(a)−

√
p

2
√
πσa

I1

(
2a

c

√
πpσa

)
I0

(
2a

c

√
πpσa

)H̄(a) = −H0

c
ν̄a,

c

4πσ
H̄ ′(b) +

√
p

2
√
πσb

K1

(
2b

c

√
πpσb

)
K0

(
2b

c

√
πpσb

)H̄(b) = −H0

c

a

b
ν̄b(b).


(7)
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Further the particular case is investigated when the Reynolds viscous
(R) and magnetic (Rm) numbers are equal to each other. At this β = α
and the system (5) would be accurately integrated in cylindrical functions.
In the case of P = ν0 = 0 the general integral has the form

f = ξ−m[AI−m(ξ) +BKm(ξ)] + ξm[CIm(ξ) +DKm(ξ)],

φ = ξ−m[AI−m(ξ) +BKm(ξ)]− ξm[CIm(ξ) +DKm(ξ)].

 (8)

At that it is designated ξ = ax, m =
M

2
.

The solution of problem would be obtained when you find the values
A,B,C,D from the boundary conditions (6)-(7) and apply the inversion
formula of Riemann-Mellin.

Let’s carry out the calculations for the case of liquid flow of one cylinder
of radius a(b → ∞) that is considered as perfectly conducting (σa → ∞).
In this case, from the conditions of infinity it would be assumed A = C = 0,
and B and D would be found from condition (ν∗ = νa = cost)

ν̄(a) =
νa
P
,

dH̄

dξ

∣∣∣∣z=1
= −H0µ

2

pa
, (9)

after that the transformed solution has the following form

ν̄ =
νa
p

chm ln
a

r
Km(a)

− m

a

shm ln
a

r
K ′

m(a)

Km(ξ),

H̄ =
ν

λ

H0

p

shm ln
a

r
Km(a)

− m

a

chm ln
a

r
K ′

m(a)

Km(ξ).


(10)

Due to the calculations carried out with the Riemann-Mellin by way of
integrating on section along the negative part of real line of the complex
variable p plane, would be obtained the final solution of problem in the
following form

ν = νst +
2ν0
π

[
Φ1 chm · ln a

r
−mΦ2 shm · ln a

r

]
,

H = Hst +
2µH0

πλ

[
Φ1 shm · ln a

r
−mΦ2 chm · ln a

r

]
,

 (11)

where the corresponding steady mode is expressed by the formulae

νst = ν0

(a
r

)M
, Hst =

µH0

λ

(a
r

)M
(12)
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and the designations are introduced

(
τ =

ηt

a2ρ

)
,

Φ1 =

∞∫
0

Jm(ux)Ym(u)− Ym(ux)Jm(u)

I2m(u) + Y 2
m(u)

e−m2 du

u
,

Φ2 =

∞∫
0

Jm(ux)Y ′
m(u)− Ym(ux)J ′

m(u)

I ′2
m(u) + Y ′2

m (u)
e−m2 du

u2
.


(13)

Thus, the exact solution of problem in this case is presented by well
convergent quadratures.

Let’s mention one particular case where the solution is expressed through
a cylindrical function.

Let’s suppose that a moving fluid would be considered as ideal, i.e.
in the original equations (1) would be assumed η = 0. In this case, the
converted velocity is expressed due to terms of transferred induced magnetic
field by the formula.

ν̄ =
1

ρ

[
H0a

4πρr
H̄ ′ + ν0

]
, (14)

and the unknown function H̄(r) satisfies the certain second order equa-

tion. If introduce a dimensionless quantity z(x) =
pH̄

H0
, then the mentioned

equation in case P = 0 would make the following form(
1 +

1

pTx2

)
z′′ +

1

x

(
1− 1

pTx2

)
z′ − 4γpTz = 0, (15)

where γ =
πa2σ2H2

0

c4ρ
, T =

c2ρ

H2
0σ

.

The substitution x2 =
1

ρT

(
u

γ
− 1

)
leads to the equation

d2z

du2
+

1

u

dz

du
− z

u
= 0, (16)

integrable in the Bessel functions [9]

z = AI0(2
√
u) +BK0(2

√
u). (17)

To determine the values A and B in the right parts of boundary condi-
tions (7) would be introduced values of velocities at r = a and r = b taken
from (14). As for the conditions (6), for the case of ideal fluid, they make
no sense at all.
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If we turn, as above, to the case σa → ∞, b → ∞, from the requirements
boundedness of field at infinity, we have A = 0, and B would be found from
the condition (ν0 = const)

dz

du

∣∣∣∣z=1
= − 2ν0T

(1 + pT )a
, (18)

after that the solution of problem takes the following form

H

H0
=

2ν0Tγ

a

1

2πi

σ0+i∞∫
σ0−i∞

K0(2
√
u)

√
u0K1(2

√
ua)

ept
dp

p
, (19)

where

u = γ

(
1 + pT

r2

a2

)
, ua = U |r=a. (20)

3 Conclusion

Thus, through bypassing the branching points p1 = − a2

r2T
and p2 = − 1

T
the solution in terms of the real integrals can de expressed. The formula
for velocity on the surface of flowed cylinder has a particularly simple form:

ν|r=a = ν0e
− 1

T . (21)
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