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Abstract

The Crank-Nicolson semidiscrete scheme is considered for a quasilinear evolution-

ary equation with a Lipschitz continuous operator in the Banach space. Let’s note

that in the scheme value of the nonlinear member we take in the average point. If the

main operator A meets conditions: (a) the spectrum of the operator A is contained in

a symmetrical open sector with an angle opening less than π, lying in the right-hand

half-plane; (b) for any point z (z ̸= 0) not belonging to this sector, the resolvent norm

is not greater than c/|z|. The assessment for the error of the approximate
solution is received.

Key words and phrases: Crank-Nicolson semidiscrete scheme, quasilinear evo-
lutionary equation, error estimate.
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1 Introduction

Questions connected with the construction and investigation of approxi-
mate solution algorithms of evolutionary problems are considered for ex-
ample in the well-known books by S. K. Godunov and V. S. Ryabenki [2],
G. I. Marchuk [4], R. Richtmayer and K. Morton [6], A. A. Samarski [8],
N. N. Yanenko [11]. We also refer to the works by H. A. Alibekov and P. E.
Sobolevski [1], A. E. Polichka and P. E. Sobolevski [5], M.Crouzeix [12],
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M. Crouzeix and P.-A. Raviart [13] and M.-N. Le Rouxe [16] dedicated to
the approximate solution of the Cauchy problem for an abstract parabolic
equation. The results obtained in these papers embrace a sufficiently wide
class of evolutionary problems.

let’s note papers of S. Serdyukova [9] and P. Sobolevski [10]. In paper
[9] the stability of linear difference schemes with constant coefficients is in-
vestigated in a concrete Banach space, in particular, in the space C. That
paper was one of the pioneer works on the study of difference schemes in
the Banach space. In paper [10], a logarithmic estimate is given (without
proving it) for the resolvent operators of the Crank-Nicolson scheme. It is
pointed out that this estimate is proved by the Cauchy-Riesz formula if the
initial operator is strongly positive. We further refer to [14], where an ex-
plicit estimate of the error of the Crank-Nicolson scheme is obtained in the
Hilbert space under the assumption that the initial operator is self-adjoint
and positively defined. In the same paper, under the same assumptions for
the operator, a lemma is proved, by means of which the obtained results
are easily extended to the Banach space.

In the present paper, our investigation relies essentially on the methods
developed in the above-mentioned works and in the monograph [7] of one
of the authors.

We consider here the Cauchy problem for a quasilinear evolutionary
equation with a Lipschitz continuous operator in the Banach space. An Ap-
proximate solution of this task is looked for by the Crank-Nicolson scheme.
Let’s note that in the scheme value of the nonlinear member we take in the
average point. If the main operator A meets conditions: (a) the spectrum
of the operator A is contained in a symmetrical open sector with an angle
opening less than π, lying in the right-hand half-plane; (b) for any point z
(z ̸= 0) not belonging to this sector, the resolvent norm is not greater than
c/|z|. The assessment for the error of the approximate solution is received

1 Statement of the Problem and Formulation
of the Basic Theorem

In the Banach space X, we consider the nonlinear evolutionary problem

du(t)

dt
+Au (t) +M(u) = f(t), t ∈ ]0, T ] , (1.1)

u (0) = u0, (1.2)

where (−A) is the generating operator of a strongly continuous semigroup
exp (−tA), t ≥ 0; the nonlinear operator M(·) is Lipschitz continuous; f(t)
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is a continuously differentiable abstract function with values from X; u0 is
a given vector from X, u(t) is the sought function.

Let us introduce [0, T ] the grid tk = kτ , k = 0, 1, . . . , n, with step
τ = T/n. For problem (1.1)–(1.2) we consider the Crank-Nikolson scheme

uk+1 − uk−1

2τ
+A

uk+1 + uk−1

2
+M(uk) = fk, k = 1, . . . , n. (1.3)

where fk ≈ f (tk).

The following theorem is true.

Theorem 1.1. Assume that the following conditions are fulfilled:

(a) The solution u(t) of problem (1.1)–(1.2) is twice continuously dif-
ferentiable and u′′(t) satisfies the Lifshitz condition ;

(b) u′(t) ∈ D(A) for every t from [0, T ] and function Au′(t) satisfies
Lipshitz condition;

(c) A is a linear, densely defined closed operator in the Banach space
X, whose spectrum is wholly contained in the sector |arg(z)| < φ0, 0 <
φ0 < π/2 and the condition∥∥(zI −A)−1

∥∥ ≤ c0
|z|

, c0 = const > 0.

is fulfilled for any z, (z ̸= 0) not belonging to this sector;

(d) The nonlinear operator M(·) satisfies Lipshitz condition.

Then the estimate

∥zk+1∥ ≤ c

(
ln

etk
τ

(∥z0∥+ ∥z1∥) + tk max
1≤i≤k

∥f (ti)− fi∥+ tkτ
2

)
,

k = 1, . . . , n− 1,

is valid, where zk = u(tk)− uk, c = const > 0.

To prove this theorem, we need some auxiliary statements, which, in
our opinion, are of independent interest.

2 Auxiliary statements

Lemma 2.1. Let us assume that the operator A satisfies the conditions of
Theorem 1.1. Then the following estimate is valid:∥∥∥τ A (I − τ A)k (I + τ A)−(k+1) (I + 2τA)−j

∥∥∥ ≤ c1(λ)

k + j
, (2.1)
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where k and j are natural numbers, τ > 0,

c1(λ) =

(
1

λ
+

1√
λ
+

1

λλ1

)
c0
2π

,

λ1 = min

(
16λ2,

(
ln

9

4λ3

)−1
)
,

λ = cos(φ), φ0 ≤ φ <
π

2
.

Proof. Applying the Danford–Taylor integral (see e.g. [3]), we have

τ A (I − τ A)k (I + τ A)−(k+1) (I + 2τA)−j

=
1

2πi

∫
Γ

z(1− z)k

(1 + z)k+1(1 + 2z)j
(zI − τ A)−1 dz, (2.2)

where Γ is the boundary of a sector |arg(z)| < φ (the integral is taken
along the positive direction).

By virtue of Theorem 1.1 we have∥∥∥(zI − τ A)−1
∥∥∥ =

1

τ

∥∥∥∥(zτ I −A
)−1

∥∥∥∥ ≤ c0
|z|

. (2.3)

Passing in (2.2) to the norm and taking (2.3) into account, we obtain∥∥∥τ A (I − τ A)k (I + τ A)−(k+1) (I + 2τA)−j
∥∥∥

≤ c0
2π

+∞∫
0

|1− z|k

|1 + z|k+1|1 + 2z|j
dρ, (2.4)

where z = ρ(cosφ+ i sinφ).
Let us estimate the improper integral contained in the right-hand part

of (2.4). It is obvious that

+∞∫
0

|1− z|k

|1 + z|k+1|1 + 2z|j
dρ

=

+∞∫
0

(
1− 2λρ+ ρ2

) k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ. (2.5)

We represent integral (2.5) as a sum of three integrals

+∞∫
0

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ =

2λ∫
0

+

k+1∫
2λ

+

+∞∫
k+1

. (2.6)
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The validity of the following inequalities is obvious:

1 + 2λρ+ ρ2 ≥ (1 + λρ)2,

1 + 4λρ+ 4ρ2 ≥ (1 + λρ)2,

1− 2λρ+ ρ2 ≤ 1, 0 ≤ ρ ≤ 2λ.

Taking these inequalities into account, for the first integral from the right-
hand part of equality (2.6) we obtain the estimate

2λ∫
0

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤
2λ∫
0

1

(1 + λρ)k+j+1
dρ ≤

+∞∫
0

dρ

(1 + λρ)k+j+1

= − 1

λ(k + j)(1 + λρ)k+j

∣∣∣∣+∞

0

=
1

λ(k + j)
. (2.7)

Let us estimate the second integral in the right-hand part of equality
(2.6).

For any j ≥ 1 the following inequality is valid

k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤
k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+2
2

dρ =

k+1∫
2λ

χ(ρ)(1− χ(ρ))m

2λρ(1 + χ(ρ))m+1
dρ, (2.8)

where

m =
k

2
, χ(ρ) =

2λρ

(1 + ρ2)
.

Since 0 ≤ χ(ρ) < 1 for 2λ ≤ ρ < +∞, we have the estimate

χ(ρ) (1− χ(ρ))m ≤ 1

m+ 1

(
1− 1

m+ 1

)m

≤ 1

2(m+ 1)
. (2.9)

The inequality

ρ(1 + χ(ρ))m+1 ≥ ρ(1 + (m+ 1)χ(ρ)) = ρ+ 2λ(m+ 1)
ρ2

1 + ρ2

≥ ρ+ λ(k + 2)
4λ2

1 + 4λ2
= ρ+ λλ0(k + 2), λ0 =

4λ2

1 + 4λ2
(2.10)
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is also valid by virtue of the Bernoulli inequality.

Taking (2.9) and (2.10) into account, from (2.8) we obtain

k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤ 1

λ(k + 2)

k+1∫
2λ

dρ

ρ+ λλ0(k + 2)
=

1

λ(k + 2)
ln

k + 1 + λλ0(k + 2)

2λ+ λλ0(k + 2)

≤ 1

λ(k + 2)
ln

1 + λλ0

λλ0
=

1

λ(k + 2)
ln

(
1

4λ3
+

1

λ
+ 1

)
≤ 1

λ(k + 2)
ln

9

4λ3
. (2.11)

Let us show that the inequality

k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤ 1

16λ3(k + j + 2)
(2.12)

is fulfilled for any j > 2.

By virtue of the Bernoulli inequality, the inequality

(1 + 4λρ+ 4ρ2)
j−1
2 ≥ (1 + 4ρ2)

j−1
2 ≥ 1 + 2(j − 1)ρ2

holds for j > 2.
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Taking this inequality into account, we obtain

k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤
k+1∫
2λ

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+2
2 (1 + 2(j − 1)ρ2)

dρ

=
1

2λ

k+1∫
2λ

χ(ρ)(1− χ(ρ))m

ρ(1 + χ(ρ))m+1(1 + 2(j − 1)ρ2)
dρ

≤ 1

λ(k + 2)

k+1∫
2λ

dρ

ρ(1 + 2(j − 1)ρ2)
≤ 1

λ(k + 2)

+∞∫
2λ

dρ

ρ(1 + 2(j − 1)ρ2)

=
1

λ(k + 2)

+∞∫
2λ

(
1

ρ
− 2(j − 1)ρ

1 + 2(j − 1)ρ2

)
dρ

=
1

λ(k + 2)
ln

ρ√
1 + 2(j − 1)ρ2

∣∣∣∣∣
+∞

2λ

=
1

λ(k + 2)
ln

√
1 + 8λ2(j − 1)

2λ
√

2(j − 1)

=
1

2λ(k + 2)
ln

(
1 +

1

8λ2(j − 1)

)
≤ 1

16λ3(k + 2)(j − 1)

=
1

16λ3(k(j − 1) + 2j − 2)
≤ 1

16λ3(2k + j + (j − 2))

≤ 1

16λ3(2k + j + 1)
≤ 1

16λ3(k + k + j + 1)
≤ 1

16λ3(k + j + 2)
.

We have thus proved inequality (2.12).

Let us now estimate the third integral in the right-hand part of equality
(2.6). Like in the case of the second integral of (2.6), we have

+∞∫
k+1

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ

≤
+∞∫

k+1

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+2
2 (1 + 4λρ+ 4ρ2)

j−1
2

dρ

≤
+∞∫

k+1

(
χ(ϱ)(1− χ(ϱ))k

2λρ(1 + ρ2)(1 + χ(ϱ))k+2

) 1
2 1

(1 + ρ2)
j−1
2

dρ
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≤ 1

2
√

λ(k + 1)

+∞∫
k+1

1

ρ
2j+1

2

dρ =
1√

λ(2j − 1)(k + 1)
≤ 1√

λ(k + j)
. (2.13)

With estimates (2.7), (2.11), (2.12) and (2.13) taken into account, equal-
ity (2.6) implies the estimate

+∞∫
0

(1− 2λρ+ ρ2)
k
2

(1 + 2λρ+ ρ2)
k+1
2 (1 + 4λρ+ 4ρ2)

j
2

dρ ≤ c2(λ)

k + j
, (2.14)

where

c2(λ) =

(
1

λ
+

1√
λ
+

1

λλ1

)
.

Taking (2.5) and (2.14) into account, from (2.4) we obtain estimate
(2.1). Lemma 2.1 is proved. ⊓⊔

Remark 2.2. It is not difficult to observe that estimate (2.1) remains
valid if the operator (I + 2τA)−1 is replaced by the operator (I + τ A)−1,
i.e. the following estimate is fulfilled∥∥∥τ A (I − τ A)k (I + τ A)−(k+j+1)

∥∥∥ ≤ c1(λ)

k + j
. (2.15)

Remark 2.3.Using the Danford-Taylor integral, it is easy to prove the
estimate ∥∥(τA)(I + τA)−k

∥∥ ≤ c

k
, c = const > 0.

Theorem 2.4. Assume that the operator A satisfies the conditions of
Theorem 1.1. Then for the transition operator L = (I − τA) (I + τA)−1 of
the Crank-Nicolson scheme the estimate∥∥∥Lk

∥∥∥ ≤ c ln
etk
τ

, k = 2, . . . , n, (2.16)

is valid, where τ = T/n and the constant c > 0 does not depend on τ .

Proof. It is obvious that

L+ I = 2S0, L− I = −2τAS0, (2.17)

where S0 = (I + τA)−1.

From equalities (2.17) it follows that

L2 = −4τAS2
0 + I. (2.18)
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Multiplying both parts of equality (2.18) by L2, we obtain

L4 = −4τAS2
0L

2+L2 = −4τAS2
0L

2+
(
−4τAS2

0 + I
)
= −4τAS2

0

(
L2 + I

)
+I.

Further, by induction, we have

L2m = −4τAS2
0

(
L2m−2 + L2m−4 + · · ·+ I

)
+ I. (2.19)

Hence it follows that

L2m+1 = −4τAS2
0

(
L2m−1 + L2m−3 + · · ·+ L

)
+ L. (2.20)

If in equality (2.19) we take the norms, use estimate (2.15) and Remark 2,
then we obtain

∥∥L2m
∥∥ ≤ 4

(∥∥τAL2m−2S2
0

∥∥+ ∥∥τAL2m−4S2
0

∥∥+ · · ·+
∥∥τAS2

0

∥∥)+ 1

≤ c

(
1

2m− 1
+

1

2m− 3
+ · · ·+ 1

2

)
+ 1 ≤ c ln (2m) + 1. (2.21)

Analogously, from (2.20) we obtain∥∥L2m+1
∥∥ ≤ c (ln ((2m+ 1)) + 1) . (2.22)

(2.21) and (2.22) yield estimate (2.16).
Lemma 2.5 (see e.g. [15, ch. I]). Let the operator A satisfy the con-

ditions of Theorem 1.1. Then for any τ > 0 and natural k we have the
inequality ∥∥ (I + τA)−k

∥∥ ≤ c, c = const > 0.

Remark 2.6. For any natural k the estimate∥∥(Lk − Sk)u0
∥∥ ≤ c1(λ)τ ∥Au0∥ , u0 ∈ D(A),

is valid, where

L = (I − τ A) (I + τ A)−1 , S = (I + 2τA)−1 .

Indeed, by Lemma 2.1 the representation

Lk − Sk = (L− S)
(
Lk−1 + Lk−2S + · · ·+ LSk−2 + Sk−1

)
= −2 τ2A2S0S

(
Lk−1 + Lk−2S + · · ·+ LSk−2 + Sk−1

)
,
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implies the estimate

∥∥(Lk − Sk)u0
∥∥ ≤ 2τ ∥Au0∥

k∑
i=1

∥∥∥τ ALk−iS0S
i
∥∥∥

≤ τ ∥Au0∥
k∑

i=1

c1(λ)

k

= c1(λ)τ ∥Au0∥ .

Here we have used the representation

L− S = (I − τ A) (I + τ A)−1 − (I + 2τA)−1

= [(I − τ A) (I + 2τA)− (I + τ A)] (I + τ A)−1 (I + 2τA)−1

= −2 (τA)2 (I + τ A)−1 S.

Lemma 2.7. For any τ > 0 and natural k (k ≤ n, τ = T/n), the
following estimate is valid∥∥∥S0L

k
∥∥∥ ≤ c, c = const > 0. (2.23)

Proof. By virtue of Lemma 2 and Remark 2 we have∥∥∥Lku
∥∥∥ =

∥∥∥(Lk − Sk)u+ Sku
∥∥∥ ≤

∥∥∥(Lk − Sk)u
∥∥∥+ ∥∥∥Sku

∥∥∥
≤ cτ∥Au∥+ ∥Sk∥∥u∥ ≤ c (τ∥Au∥+ ∥u∥) .

Taking this inequality into account, we obtain∥∥∥S0L
ku
∥∥∥ =

∥∥∥LkS0u
∥∥∥ =

∥∥∥Lk(I + τA)−1u
∥∥∥ ≤ c

(
τ
∥∥A(I + τA)−1u

∥∥+ ∥∥(I + τA)−1u
∥∥)

≤ c
(∥∥(τA)(I + τA)−1

∥∥ ∥u∥+ ∥∥(I + τA)−1
∥∥ ∥u∥) ≤ c ∥u∥ .

Clearly, this implies (2.23).

3 Proof of the Basic Theorem

Let us proceed to proving the basic Theorem 1.1 (in what follows, c always
denotes a positive constant).

Equation (1.1) at the point t = tk = kτ is written in the form

u(tk+1)− u(tk−1)

2τ
+A

u(tk+1) + u(tk−1)

2
+M(u(tk))
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= f(tk) +
1

2τ
φ
(1)
k +

1

2
Aφ

(2)
k , (3.1)

where

φ
(1)
k =

tk+1∫
tk

t∫
tk

(
u

′′
(s)− u

′′
(tk)

)
ds dt+

tk∫
tk−1

tk∫
t

(
u

′′
(tk)− u

′′
(s)
)
ds dt,

φ
(2)
k =

tk+1∫
tk

(
u

′
(t)− u

′
(tk)

)
dt+

tk∫
tk−1

(
u

′
(tk)− u

′
(t)
)
dt.

From (1.3) and (3.1) we have

zk+1 − zk−1

2τ
+A

zk+1 + zk−1

2
+ (M(u(tk))−M(uk)) = φk, (3.2)

where

zk = u(tk)− uk, φk =
1

2τ
φ
(1)
k +

1

2
Aφ

(2)
k + (f (tk)− fk) .

From (3.2) it follows that

zk+1 = Lzk−1 + 2τS0φ̃k, (3.3)

where

L = (I − τ A) (I + τ A)−1 , S0 = (I + τ A)−1 ,

φ̃k = φk − (M(u(tk))−M(uk)).

From the recurrent relation (3.3) we obtain

z2k+m = Lkzm + 2τS0

k∑
i=1

Lk−iφ̃2i+m−1, m = 0, 1. (3.4)

It is obvious that for φ̃i the following estimate is true

∥φ̃i∥ ≤ αi, αi = cτ2 + ∥f (ti)− fi∥+ c ∥zi∥ . (3.5)

If in equality (3.4) we take the norms and substituting (3.5), then we
obtain

∥z2k+m∥ ≤
∥∥∥Lk

∥∥∥ ∥zm∥+ 2τ

k∑
i=1

∥∥∥S0L
k−i
∥∥∥α2i+m−1, m = 0, 1.
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Hence, by Lemma 2.7 and Theorem 2.4, it follows that

∥zk+1∥ ≤ cδk + cτ

k∑
i=1

∥zi∥ , (3.6)

where

δk = ln
etk
τ

(∥z0∥+ ∥z1∥) + tkτ
2 + tk max

1≤i≤k
∥f (ti)− fi∥.

From (3.6), according to the discrete analog of Gronwall’s lemma, we obtain

∥zk+1∥ ≤ cectk−1 (τ ∥z1∥+ δk) .

This completes the proof of Theorem 1.1.

.

Acknowledgment. The work was supported by Shota Rustaveli Na-
tional Science Foundation Grant no.30/28 and by Marie Curie IRSES Grant
FP7-PEOPLE-2012-IRSES, no.317721.

References

1. Alibekov H. A., Sobolevski P. E., The stability of difference schemes
for parabolic equations (Russian). Dokl. Akad. Nauk SSSR 232
(1977), no. 4, 737-740.

2. Godunov S. K., Ryabenki V. S. Difference schemes. (Russian) Nauka,
Moscow, 1973.

3. Danford N., Shvartz J. Linear operators. Part I: General theory .
(Russian) Izdat. Inostran. Lit., Moscow, 1962.

4. Marchuk G. I. Methods of computational mathematics. (Russian)
Nauka, Moscow, 1977.

5. Polichka A. E., Sobolevski P. E. On the Rothe method of approxi-
mate solution of the Cauchy problem for a differential equation in the
Banach space with a variable unbounded operator . (Russian) Differ.
Uravn. 12 , pp. 1693-1704 (1976).

6. Richtmayer R., Morton K. Difference methods of solution of initial-
value problems. (Russian) Mir, Moscow, 1972.

7. Rogava J. L. Semidiscrete schemes for operator differential equations.
(Russian) Technical University Press, Tbilisi, 1995.

28



+ Error Estimate of a Solution ... AMIM Vol.19 No.1, 2014

8. Samarski A. A. Theory of difference schemes. (Russian) Nauka,
Moskow, 1977.

9. Serdyukova S. I. Stability in C of linear difference schemes with con-
stant real coefficient (Russian). Vich. Mat. i Mat. Phyz., 6 (1966),
no. 13, 477-486.

10. Sobolevski P. E. The stability and convergence of a difference Crank-
Nicholson scheme. (Russian), Variacionno-Raznostnie Met. v Mat.
Phyz., pp. 146-151 (1973).

11. Ianenko N. N.A method of fractinal steps of solution of multi-dimensional
problems of mathematical physics. (Russian) Nauka, Novosibirsk ,
1967.

12. Crouzeix M. Une methode multipas implicite-explicite pour l’approximation
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