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Abstract

In a Hilbert space the stochastic differential equation of Ornstein-Uhlenbeck type

is considered. Statistical estimation problem of the drift parameter is solved using max-

imum likelihood method. On the basis of this result estimation of volatility parameter

has been obtained using least-squares method.
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The Ornstein-Uhlenbeck type stochastic differential equation is one of
the most popular model to describe a variety of phenomena in financial
mathematics, biology, chemical reactions, etc. (see [1]). The mathematical
theory of such equations is studied by a number of researchers. Many of the
questions associated with the Ornstein -Uhlenbeck processes are very well
studied (see [2]). But there are problems, particularly related to the statis-
tical evaluation, which require development. Many papers dedicated to pa-
rameter estimation of Ornstein-Uhlenbeck process in the finite-dimensional
case. In this case, there are a number of methods to obtain such esti-
mations. Maximum likelihood method, method of transition to difference
equations, method based on the ergodic theorem and others are especially
popular (see [3-7]). Ornsheyna-Uhlenbeck equation generated by Levy pro-
cess has been studied intensively recently (eg [8-10]). Relatively smaller
number of works is dedicated to the infinite-dimensional variant. In [11]
Ornstein-Uhlenbeck process in the Hilbert space with bounded linear drift
operator is investigated and the parameters estimation problem is solved
using maximum likelihood method.

In this paper, we study the Ornstein-Uhlenbeck process in a Hilbert
space, in which the drift operator can be unbounded. We obtain estimates
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of the parameters of this operator, using maximum likelihood method. In
this case, we use the method developed in [12]. Based on these estimates the
estimation for the volatility is obtained. Here are the asymptotic properties
of these estimates.

Let {Ω,F , P} be a fixed probability space. H+ ⊂ H ⊂ H− is a rigged
Hilbert space with quasi-kernel inclosures. Scalar products and norms will
be provided with the indices of the corresponding spaces. The embedding
operator i : H → H−, is the Hilbert-Schmidt operator. The pairing of
elements H+ and H− will be expressed in the scalar product of space H.
All spaces are assumed to be separable and real. So that i∗ : H+ → H.

Let A be a linear, possibly unbounded, operator with the tight in H
domain D(A) ⊂ H and let A be the generating operator of strongly con-
tinuous semigroup S(t) = eAt. B : H− → H is a linear Hilbert-Schmidt
operator, wt, t ≥ 0 is a Wiener process in space H−.

Consider Ornstein-Uhlenbeck type stochastic differential equation in the
triple of spaces H+ ⊂ H ⊂ H−:

dXt = −AXtdt+ σBdwt, X0 = x0, t ≥ 0, (1)

where σ > 0 is an unknown parameter (i.e. volatility parameter), which
should be estimated by the observations at points 0 ≤ t1 ≤ t2 ≤ ... ≤ tn:

X(n) = (X1, X2, ..., Xn) where Xk = Xtk , k = 1, ..., n.

Equation (1) is understood as an equivalent record of

Xt = e−Atx0 − σ

∫ t

0
e−A(t−s)Bdws (2)

Certainly, Xt is the Gaussian random process in H. Suppose that operator
A in (1) is of the form

A =

m∑
k=1

akAk, (3)

where Ak, k = 1, ...,m are known linear operators, maybe some of them are
unbounded, but each of these operators is defined at least on D(A), ak, k =
1, ...,m, are unknown real parameters which should be estimated by ob-
servations X(n). For the estimation we use maximum likelihood method.
As usual (see. [6]), this method doesn’t suit the volatility coefficient, but
firstly we construct estimations for the parameters ak, k = 1, ...,m, and
then using properties of Wiener process we obtain the so called ”plug in
estimator” for σ.
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Denote by θ = (a1, ..., am)T the vector of unknown parameters. Here
and below mark T defines transposition operation. We estimate this param-
eter θ by maximum likelihood method. Solution of equation (1) generates
a measure (probability distribution) in the space of continuous functions
C[0, T ]. In this space as an σ-algebra we take Borel-σ algebra B[0, T ]}.
On the measurable space {C[0, T ],B[0, T ]} distribution of the random pro-
cess X = Xt generates distribution by equality Pθ(A) = P{X−1(A)}, A ∈
B[0, T ]. According to the general principle of maximum likelihood, it is
necessary to calculate the logarithmic derivative with respect to the fam-
ily of measures Pθ, which is denoted by ρ(x, ϑ), where ϑ is the direction
vector and the derivative is calculated along this vector. In our case the
parameter space is finite dimensional. Therefore calculating logarithmic
derivative along some vector isn’t essential and denote logarithmic deriva-
tive by r(x; θ). After calculating r(x; θ) we must find with respect to θ
solution of the following equation

m∑
k=1

r(xk; θ) = 0, (4)

where xk is the observed value of Xk. Moreover, we have to check that
dr(x; θ)

dθ
is a negatively determined matrix. For calculating r(x; θ) we use

this simple fact

Lemma. Let the family {Pθ, θ ∈ Θ,Θ is open in Rl, l ∈ N} be abso-
lutely continuous with respect to some σ-finite measure µ and the Radon-

Nycodym derivative
dPθ(x)

dµ(x)
= π(θ, x) is continuously differentiable by θ.

Then this family has the logarithmic derivative r(x; θ) by parameter and

r(x; θ) =
gradπ(θ, x)

π(θ, x)
(here assumed that

0

0
= 0) (5)

The proof follows from relationship

dPθ(x)

dµ(x)
= π(θ, x) ⇒ ddθPθ(x)

dµ(x)
= gradπ(θ, x).

For equation (1) ([13]) conditions are well known under which the mea-
sure Pθ (it is distribution of process Xt) is equivalent to Gaussian measure
µσBw. We apply this theorem and obtain the Radon-Nikodym density.
Transformation in the space H is

ξt − x0 = Xt +

∫ t

0
AXsds,

5
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where ξt = σBξ0t , ξ
0
t -”white noise” in H−. The correlation operator of the

process ξt is σ2BB∗ and is a kernel operator. For this transformation, if
the linear operator AB is bounded then measures Pθ and µ generated by
Xt and ξt − x0 respectively, are equivalent and

π(X; θ) = dPθ
dµ (X) =

exp

{
− 1

σ2

∫ T

0
(B∗AXs, dXs)H − 1

2σ2

∫ T

0
∥B∗AXs∥2Hds

} (6)

We now apply Lemma and compute vector logarithmic derivative. De-
note b = (b1, ..., bm)T , C = (Cij)

m
i,j=1, a = (a1, ..., am)T , where

bi =

∫ T

0
⟨B∗AiXs, dXs⟩H , i = 1, ...,m.

Cij =

∫ T

0
⟨B∗AiXs, B

∗AjXs⟩Hds, i, j = 1, ...,m.

Then

r(X; θ) = − 1

σ2
b− 1

σ2
Ca.

It is easy to check that the matrix

d

dθ
r(X; θ) = − 1

σ2


C11 0 · · · 0
0 C22 · · · 0
· · · · · · · · · · · ·
0 0 · · · Cmm


is negatively defined. Therefore, it remains only to solve the equation

E

{
− 1

σ2
b− 1

σ2
Cân|X(n)

}
= 0. (7)

Solution of the equation (7) is

ân = −{E{C|X(n)}}−1E{b|X(n)}. (8)

It is clear that we have bult a consistent estimation for the operator A:

Ân =
m∑
k=1

âkAk.

For instance if H = R,m = 1, σB = 1, A1 = 1, x0 = 0, a1 = θ then we
obtain classic formula ([14])
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θ̂n =
E(

∫ T
0 XsdXs|X(n))

E(
∫ T
0 X2

sds|X(n))
.

It remains to construct estimate of the volatility σ. To do this, we
substitute in (1) an estimation Ân instead of A and rewrite the equation
in an integral form at t = T :

XT + x0 +

∫ T

0
ÂnXsds = σBwT .

Hence we write

σ̂2
n =

E∥{XT + x0 +
∫ T
0 ÂnXsds|X(n)}∥2H

E∥{BwT |X(n)}∥2H
.

Because of the consistency Ân, when n → ∞ we shall have σ̂2
n → σ0, where

σ0 is the true value of volatility.
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