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Abstract
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strengthened by the orthotropic elliptic kernel is investigated.
Key words and phrases: Saint-Venant’s problem, Faber’s polynomials, confocal
ellipses, orthotropic kernel, torsion, bending

AMS subject classification: 5393.

1 Basic Equations

Some questions connected with Saint-Venant’s problem are considered in
the monographs of Love [2] and Muskhlishvili [3].

In the articles [4, 5] Saint-Venant’s problem for two-layered elliptic tube
and the problem of torsion are considered. The solution and the coefficients
of the Faber’s polynomials are found completely.

In this paper the torsion problem of three-layered isotropic confocal
elliptic tube strengthened by the solid orthotropic elliptic kernel is studied.

Let us consider a cartesian coordinate system Oxqixox3 and the elliptic
tube composed of three-layered confocal elliptic tubes of different elastic
materials, occupying the domains 21, (22 and 23, and bounded by the planes
z3 =0 and x3=1,(l > 0). We denote the lateral confocal elliptic surfaces
by I'o — I'1,I'y — I'y and I'y — I's respectively. The equations of lateral
surfaces I'j(j = 0,1, 2, 3) are written in the following form

Jo(x1,22) =0, fi(w1,22) =0, fo(z1,22) =0, f3(x1,22)=0. (L.1)

It is obvious that the normal cross-section of composed body occupying
the domain Q = Q1 + Qo + Q3 will be the confocal elliptic domain w =
w1 + w2 + w3. Each domain w; will be a confocal elliptic ring bounded by
confocal ellipses 7; and ;41 with major and minor axis a;, b; and a;j41,bj41
(j=0,1,2), ai — bz = c?, (k=0,1,2,3), where c is a focal length.
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Hence, indicated composed elliptic tube has an elliptic hole bounded
by elliptic surface I'g with the exterior border I's. For this body we will
consider all Saint-Venant’s problems, and also a torsion problem when the
composed tube is strengthened by the solid elliptic domain €, occupied
by the orthotropic material.

Thus, in our case we have a three-layered composed elliptic beam with
the elliptic orthotropic kernel. It is proposed that the domains g, 21, Q9
and €23 are glued to each other without of split along the surfaces I'g,I';
and I'y respectively.

According to Hooke’s law the components of stress,strains and displace-
ments Tlg), e,(jl) , ul(j) (k,1=1,2,3;j=0,1,2,3 ), in isotropic domains £, s and
Q3 will be given by the formula

Fein =11 —v(m33 + 122), Feas = T2 — v(m33 + 711),

(1.2)
Fess = 133 — v(T11 + T2),
where the components of strain have the following form
€jk = Djuk + Dkuj, €jj = Djuj, (], k=1,2, 3), (13)

where D; = 0/0z;.
For the orthotropic material, occupying the domain €2y, the Hooke’s law
may be written in the form [4]

Tj; = Arjenn + Agjesn + Azjess (j =1,2,3), 712 = Agsei2, (1.4)
To3 = Ayge23, T13 = Asseis,

where Aj;, are the elasticity constants. The strain components ei1, ea2 and
e33 may be written in the form

Eejj = oj1T1140jom2—1;T33, (j =1,2), Eess = m33—v1T11—vaTe2, (1.5)

where F is the modulus of elasticity v, o are the Poisson’s ratios in the
directions Oz, Oxs.
Besides, in each domain €2; the equations of equilibrium are satisfied

D171j+D2T2j+D3T3j =0, (]: 1,2,3). (1.6)
By P(P1, P2, P3) and M (M, My, M3) we denote the projections on axis

Oz; (j =1,2,3) of the resultant forces acting on the end x3 = h and the
resultant moments respectively.
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Components of the stresses 7;; in each normal cross-section w of the
composed three-layered elliptic tube satisfy the following equations

//Tjgdw— 7 //1'27'33—$37’23d0.)—M1, (] —1 2 3)
//1‘37'13IEnggdW—MQ,//l’nggSUQTlgdW—Mg (17)

For the composed elliptic tube with the cross-section w = wy 4+ wo + w3,
bounded by interior ellipse 79 and exterior ellipse 3 with interfaces ~; and
7o it is well-known the following formula

//(Tj;;)dw:% l‘j’l’ngd’y—l-% ijngd’y—i-//ijnggdw
w Yo Y3 w

+ Z j{ i{[Tn3lk — [Tnslks1tdy, (kK =1,2), (1.8)

k=1,2

where
Tnj = Tijn1 + Tojne + 13503, (j =1,2,3),

In this case ng = 0,7nj are projections on the axis Ox; of the stresses vector
Tn(Tn1+Tn2+7n3). The symbols [...],, and [...];n+1 denote the limiting values
of the expressions included in the brackets taken from the domains w,, and
Wm+1 respectively, where n(ny,ng, ng) is an outward normal to the domain
w]'.

It will be remarked that when the composed elliptic tube is strengthened
by the solid orthotropic kernel, the expression f Tngd"}/ in the formula

(1.8) will be substituted by expression f% {[mn3)o — [Tng]l}d’y. Besides the
2j

lateral surfaces I'g and I's of three-layered elliptic tube must be free from
acting of the exterior forces and also it is necessary to fulfill the conditions
of the continuity of the vectors of the displacement and stresses, which cross
the interfaces I'y and I's from the adjoint domains. Since the equations of
the indicated surfaces I'; are given by the equalities (1.1), these conditions
take the following form 7,,; = 0, (j = 1,2, 3), on the first and last surfaces

[Uj]e = [uj]eJrla [Tnj]e = [Tnj]eJrl, (] =1,2,3; e= 172)

on the second and third surfaces at the interface between the domains €2;
and 1.

It is proposed that the different isotropic elastic materials composed of
the three-layered tube and occupying the domains €21, 22 and €23 have the
identical Poisson’s ratios, i.e. vy, vo, v3 = v, but modulus of the elasticity £
in the different domains €2; has the different values E;. These restrictions
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do not spread on the torsion problem of composed beam with orthotropic
kernel.

At last it will be remarked that it is proposed that the origin and axis
Oz and Oxs coincide with the generalized center of inertia and of principal
axis of inertia, i.e. the following equalities are true

le =0 (J = 17273)7

inz//Ex(j)x(i)dw,

W =x,;2®) =2y, 2® =1

Jjj > 0, (j,l = 1,2,3).

where

2 Extension by the Longitudinal Force and
Bending Due to Couples of Forces

Let us consider the case when the force is applied on an upper base 3 =1
of the three-layered isotropic elliptic tube which occupies the composed
domain 2 = Q1 + Qo 4+ Q3. It is proposed that a system of the forces is
statically equivalent to one force P3 producing the extension acting parallel
to the axis Ozs and two couples of forces producing the flexures of the tube
in the planes Oxsxs and Ozizs, by the moments M7 and Mo, respectively.
Thus, in the conditions (1.7) we will take P; = P, = M3 = 0. We seek the
solution of the problem, as well as for the homogenous body, in components
of the stresses and displacements in each domain ;. in the form

3
T =Tj2="T3=0, (T33)r = E} Z Cea'®,
e=1

3 3
e 1 e
b= 30— 0 =Y 0, )
e=1 e=1
where
i=1,2 aW =21, 2@ =2y, 2® =1, 297 = (-1 (2} — 2?}),
3 2 1 .
oV =vaj, ¢ =) =varms, (j=1,2). (2.2)

It is known that the components of the outward normal n(ni, ng) to the
boundary v of domain w, satisfy the following equalities

Ny (n1 +in2)y = (04) 7 (bycoso + +iay sin ), (2.3)
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where 0 < 9 < 27.

It is obvious that the expressions (2.1) satisfy the equations (1.7). After
substitution of three first conditions from (2.1) into conditions (1.7) we get,
that the first, second and sixth equations are satisfied identically. From the
other equations of (1.7) the system of algebraic equations is obtained for
the determination of coefficients C.,

CLIY + Cody) + C3 i) = Nj, (5 =1,2,3), (2.4)

where
Ny =—My, No=M;, N3= P;s. (2.5)

Taking into the account (2.5) we get J((;lz) =0 (j # k) and after simple

calculations, the equalities (2.3) and (2.4) take the form

Cj = [JJ(]D]_IN]" (J=1,2,3),

where
471} = 7[B1(aiby — adbo) + Ea(adby — a3br) + Es(adbs — adbs)],
17}, = wEr(arbd — aobf) + Ea(azhi — arbi) + Es(azhi — azbid)],
J(33) = W[El(albl — aobo) + +E2(G2b2 — albl) + Eg(agbg — a2b2)].

Thus, our problem is solved completely.

3 Bending of a Cantilever Under
a Transverse Force

Let us consider the three-layered isotropic confocal elliptic tube, when ex-
ternal forces applied to the "upper” base x3 = [ statically are equivalent
to two bending forces P; and P, parallel to the axis Oz; and Oxo respec-
tively and applied at the point 29(0,0,1). Therefore, for the equilibrium
of the part of the tube enclosed between the planes x3 = :Eg and x3 = 0,
where 0 < xg < [, it will be sufficient to require that the components of the
stresses Tji in each cross-section of the tube satisfy the conditions (1.7),
where

Ps=My=My=M3=0, PL#0, P, #0. (3.1)

The solution of this problems are similar to the homogenous case, the
components of the displacements u; and stresses 7;;, in each domain €2, are
found in the form

1 1
Ue = [(l—azg)Gegge)—i—EGemg—i—GQg,(f)—§G6x§+(—l)eG0m3,ea@3}, (e=1,2),
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1 1
ug = —[x3(l— §$3)(G1$1+G29€2) -G Fy —G2F2+§(G1x:{’+G2x§’) —GoFy,

Tes = p[De(G1FL + G2 Fy + GoFy) — Gex? — G1glV — Gag® + (—1)°Gozs_c],

&
T33 = E(l‘3 — l)(Glxl + GQZEQ), (3.2)
where e = 1,2. The expressions glg,a) are given by the equalities (3.2).

In each domain €2; the functions F} and the constants G}, will be de-
termined. Putting the expressions (3.2) into the equations of equilibrium
(1.6) and boundary-contact conditions, we get that the functions Fj must
be the solutions to the following boundary-contact equations

AFD =0, (k=0,1,2 j=0,1,2), (3.3)
in each domain wg(Q%), (k=1,2,3),
D, FP). = [HD,, j=1,2,3; k=0,1,2, (3.4)
on the interfaces v1(I'1) and 3(I'3),
1DW e — (1D F s = [wH e — nHesn,
e = o1 (e=1.2)
on the interfaces v.(I'c), (e = 1,2), where
0

A =D} + D3, D, = Dini+ Dany, Dj = ——,
83:j

1
Hy = xzon1 — x1n9, Hp = 5[(2 + l/)l‘i — l/sc%_k]nk +vrixong—g. (3.6)

It must be remarked that, since in each domain Qx(wy) (kK = 1,2,3) the
Poisson’s ratios are identical (11 = v9 = v3 = v), the following equalities
hold [1]

(91 = [0 1ot (e = [ )er (=12, (37)

on interfaces v (I'1) andye(I'2), where p = E[2(1 4 v)]~! is modulus of the
rigidity, v is the Poisson’s ratio and F is the modulus of elasticity.

In each domain w;(£2;)we seek the solution of (3.3),(3.4),(3.5),(3.6) in
the following form

By = Red’ () = Relm#} + +m{’, 1),
B = Re{=i)* im0+ m§8 + mOt - m?), (38)
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where
t = 24w, z=a1+ize, w= (2=, aF-b7=c (j=1,2,3) i*=-1
(

(W)y, = becosV + aesind, (t1)y, = pe exp(iv),
Pe=0ac+be, 0<¥ <21 (€=0,1,2,

and a real constants m],z(j ) will be determined.

Also, the following equalities hold

Dltl = tlw_l, D2t1 = itlw_l,

D, FY = Re[(ny + ing)y (¢'),.], (e=0,1,2,3), (3.9)

where
1(5) 9 : ) :
{0} = {;gb(z)}% = [b,, cos ¥ + a, sin ) (m;" pexp i

—m(_‘q exp —id + méj)pg exp 3id — 3m(_j%pe_3 exp —3id].

After some simple transformations on the base of equalities (3.8)-(3.9), in
each domain w; and on elliptic boundary . for the functions (F,g] ))%,

(D, F; ,gj )),Ye and expressions(Hy)-,, we obtain

(F)s. = pe Relptmi (5) exp(i9) +m) exp(=id) + plm{ exp(3i0)

+m_3 exp(—3i9)],
[DnF,gj)]% = p,3(a?sin® ¥ + b? cos? 19)*0’5%[1937719) exp i + Smg)pg exp 311

—pzm(ﬁ exp —i) — 3m_z exp —3id],
on 7,

(H) = Re[Agk) exp 19 + Agk) exp 310 — A(_kl) exp —it — A(_kg) exp —3id],,,
(3.10)
where 7 =1,2,3; k=1,2; e=0,1,2,3; On v, we have

AP =AY = 6a2b, + vb.?, ALY = A" = (2 + 3v)aZb, + vb7; AP

= A®) = 6acb? + vacc®;, AP = A% = (24 3v)acb? + v A3,

Taking into the account the equalities (3.3)-(3.6),(3.9),(3.10), we can write
the boundary conditions on the exterior boundaries v3 and g in the form

(DnFr(3))s = pg?’@glRe[pg(mgg))k exp i + 3p§(m§f’))k exp 3iv
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—pg(m(_i?)k exp —i) — 3m(_3?)) exp(—3i)] = Re[A?) exp (i)

+AP) exp(3i9) + A&? exp(—i0) + AP exp(—3i0)]3
(D ) =Py 39 '
Re[po( )k exp i + 3p§(m gl))k exp 3id) — pa (m(j%)k exp —i1
—3(m£%)k exp —3it = Re[(AgO))]€ exp 1 + (Ago))k exp 3iv
— (A exp —iv) — 3(A)), exp —3i0o. (3.11)
Taking into the account the boundary-contact conditions we obtain
pi I = (5712} = Rellpt] mS") exp v + p(m) exp i

p?(mél))exp?)i'ﬁ + (m @ )) exp —3id]; — Re[p] (mg )) exp i

+p2(mP)) exp —i9 + pb(mP) exp 3i0) + (m'%) exp —309i), = O/
ps {7 — 7]} = Relpy(m{?) exp i) + p(m ) exp —id]
+pS(mS”) exp(3i)][+(m'%) exp —3idlx — Relps(mi”) exp i + p3(m'*)
exp —i + p§(m @ ))exp3m9+ (m @ ))exp =3id), =0,
p[DnFV T — 2D F o = py° 07y Rel(pim!V) exp it

+3pS(m&") exp 3it) — p2 (m")) exp —iv) — 3(m"")) exp —3itl], — pa Re[pt(m

expi'ﬁ—l—Bp(f(mg))epr%zﬁ pl(mZ)eXp —i — 3(m ())exp =31}
= [(11) = (u2)]((H))1, (3.12a)

12[DnF7 )2 — ps([Dn )]s = (05 Y(05*) {2 Relps(m”)) exp v

())

[
+3p8(mP) exp 3t — pi(m'2)) exp i — 3(m%) ) exp —3i0

_3)
—p3Re[p3(m (3 )) exp i + 3p2(m§ )) exp 3it) — pQ(m(_%) exp —i)

~3(m")) exp —3i0]} = (2 — 1) (), (3.120)

where the functions (Hy),, are given by the equalities (3.10).
Equating multipliers at the same powers of exp £ in the equalities

(12a),(12b) for the determination of coefficients (m l(j )) i and (m G l)) L We get
the following linear algebraic equations

1
(mipt =m0 = (4] )onf,
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3 3 3
(03— m %), = (AP )sph, (k= 13)

(1) 2k (1)]

pilmy, pt —mi] — MZ[ml(f)(Pl)Zk - m(—zl)c]

1
= i3 (Ae)ip} = (A7), (k=1,3),

(m{M) 2k + (m1)) = (M) o2k +m®)) = o;

o [m® oy m= k@) = usfm® p2F — m®)]

1
= g7 (A0 = (A )25,

mp(2)pS (2k) + m(2) m](j)p%k _ m(_3’)g —0, (k=1,3). (3.13)

From the first four equations of these expressions we obtain

m') = my(1)p2F — (A1), o, m®)

= m](€3)p§k (A(3))’}’3p3a (k =1, 3)7

Substituting these meanings into other corresponding equations from (3.13)
we get

(1)

pmy,” (p3F —p (2) g3k

Y — pa(my” ptt —m_y)
=M [A,(f)pl A;(f)p'él — 2 A,ﬁ ok,

(7 + )~ ma )t — Pt —m® = (AR (3.14)

1
pa(m? p3 —m®)) — pgm (3 — p3F == ﬁuz(A;(f))Wp’S—
1
crsl A o3 = AP 3
m 3+ mP) —mP (3 + p3F) = kAABU (3.15)

In (3.14) multiply for k=1 the first equation by p? + pg and from obtained
one subtract the third equation multiplied by pu1(p? — p2), then multiply
for k=3 the second equation by p$ + p§ and from obtained one subtract the
fourth equation multiplied by 1 (p§ — p§), we get

Ly = (03 — o) {(mPp2 +mP) = pa (03 + p2) (ma (2)p3 — m)3,

Lo = 1 (08 = p){(m$? o8 +m)) — o (08 + p§) (mS? p8 — (mP) _3)}, (3.16)
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where .
1
Ly = (02 + p2) (i [A (o1 — po)] — 11 (p% — p2) AW,

1
Lz = (o + ) { (i 5457 (0} — )] — pa(A5 1}

1 «a
—pa(pf — ,08)514& s

Analogously for the equations (3.15). In (3.15) multiply for k=1 the first
equation by p3 + p3 and from obtained one subtract the third equation
multiplied by p3(p3 — p3), then multiply for k=3 the second equation by
pS + p$ and from obtained one subtract the fourth equation multiplied by

13(p§ — p§), we get

2 2 2
p2(p3 + p2)(mP s = m®) — iz (03 — P2 (P p3 +m—1? = Ly,

p2(p3+ p§)(ms? p§ —m—3@)) — ug(p§ — p) (m§? p§ +m—33)) = Ly, (3.17)

where

Lz = (P% —+ P:%,){M(A?))Pz — U3 [A(13) (P2 - ,03)] - M3(P% - P%)Agg)%)},
1 1
Ly = (py + p5) 3 {n2A3(2)0” — [ A3(3)(p3 — p3)] — a5 (P2 — p3) A3 (3)p5),
ol = (ar + be).
From (3.16),(3.17) we get

(2))

2
Plua(p? + 03)) — 1 (03 — p)ImP) — [ (p? + o) + 1 (93 — pAIm) = — Ly,

2 2
313 (3 — p3) — na(pd + p2Im'” + [us(p3 — p3) + p2(p} + p3Im®)

— L (3.18)

P32 (03 +p0) — 11 (P§ = p§) 1 (2) = [ (pf — p3) + pa(pF +p5)Jm—3(2) = — Lo,
—p5lp2(p§ + p3) + p3(p§ — p3)Ima(2) + [p2(pS + p3) — pa(p§ — p5)Im—32

= L. (3.19)
It is easy to show ,that the determinants of the system (3.18), (3.19) V1 > 0
and V3 > 0 are given by the equalities
Vi = pa(p+03) (0T —p3) (p3+ 1) ++ma s (pf —rhog) (03— p3) (p5 — p3) +

Vo = mpa(p§ + p3)(p% — ) (05 — )+
iz (pF = p8) (05 + ) (P3 + pS)+
+3 (05 + p0) (95 + p3)(P5 + ) + mus(p? + p5) (p3 — p5)(p3 — pY)-

Thus, the problem is solved completely.
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4 On the Torsion of Three Layered Isotropic
Elliptic Beam Strengthened by the
Orthotropic Solid Elliptic Beam

We consider a composed isotropic three-layered confocal elliptic cylindrical
beam (see paragraph 1). In the problem of torsion we must carry out the
following ”end” conditions on cross-section x3 = const

// Tjsdw =0, (j =1,2,3),
//({L'27'33—w37'23)dw—//T33dw—0,

//(9017'23 — xaT13)dw = M3, (4.1)

where M is the given twisting moment, w = wy + w1 + w3, wi, we and w3
are domains occupied by the isotropic materials and wg is domain occupied
by the orthotropic material. We seek the solution of the torsion problem
in isotropic and orthotropic domains in the form

ugj) = —Gxars,

ugj)) = Gr23,

uf) = Gfi(x1,19),

where the constant G and the functions f; will be determined. By the
formula (1.3)-(1.7)the components of the stress for the displacement in
different isotropic domains w; (j=1,2,3) are

71%) = Gui(D1fj — x2),; 72(? = Gui(Dafj +x1);(j = 1,2,3), (4.2)
in the orthotropic domain wy
Tf?;) = GAs5(D1 fo — x2), Té?;) = GAp(Daf O 4 21); AyAss >0, (4.3)

where 115 is the shear modulus and A4y and Ass are modulus of the or-
thotropic material.

Substituting expressions (4.3) and (4.4) in the equations of elastic equi-
librium (1.7) we obtain, that the functions fi, fo and f3 will be solutions
of the Laplace equation in domains wy,ws and w3 respectively

Afj=0,(=1,2,3). (4.4)
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In the domain wy the function fj satisfies the equation
AssDi fo + AuD3fo = 0, (4.5)

where Ay and Asjs are the elastic constants (shear modulus) of orthotropic
material and A = D? + D3. The characteristic root of the equation (4.6) is

v, =i/ Ass ALY, (% = —1). (4.6)

Let us introduce the complex variables
2= a b imy 2 = @y v, t= 2w, b = 0k e+ w;

teg = 77((*_)1)[2* - w*}n* = (a() + bo A(55)AEZ41)));

w =122 - w, =1/22 — a} — v2b3, (4.7)

where aj2- b =c%; (j=0,1,2,3) and v, are given by the equality (4.7).
We seek the functions f; in the form

fi =27 Refi(mt* + mt™2)),; (= 1,2,3) (4.8)

fo= 2_102Re[imo(til + t32)]. (4.9)

It will be noted that all functions are single-valued.
After simple transformations from (4.9) we obtain

Dy(#?) = 262w 5 Dy(t?) = 20w V5 Di(t2)) = 2(w(,) Ve

Ds(121) = 2iy | As5) Al )

(w(*))(il)tzv —kDy (t32) = _2(“}(*))(71)75%*)7 Dy (t?*Q))

= -2 A(55)AEZ41)) (w(*))(_l)tzg. (410)

At the elliptic boundary e (z1 = ae cos¥,; x2 = besin) of the domain w,
the following formulas are true

[te1]~yo = exp(iD)),
[t 0) = Ao exp(=i¥),
(wo)y == tagsind + bO\/A55AElZI) cosV, (w)y, = iaesind + b cos .
()y. = pe exp(id),
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(n1 +ing)y, = (©Yig,sin ),

(©)+. \/ag sin? ¥ + b2 cos? ¥,

Ao = (ap — bpV/ Ags A(=Das),
1
(ao + bo A55A(44) , (4.11)

where
Pe = e + be, (0 <V < 27).

After simple calculations we obtain
D1 fj = Re[i(w); ' (mjt* —m—jt~?)],

D fj = —Re[(w); Hmyt? —m_;t™7),
D1 fo = Relimowy ' (t2, — t2,)],

Dgf[) = -V A55A—144Re[m0w0_ (tzl) - t,2(2]. (4.12)
Taking into the account equalities (4.11)-(4.12) we get

(Dnfj)y = (niD1fj +naDafj)y, =

= Re[-c*(Okpi) — 1)(m)p* + mlj) _1)x] sin 20;
(fi)y = —Rel?2pr) " (mPp* = m{7))] sin 20,
(D*) 0= [A55n1D1f0 + A44n2D2f0]70 =

\/ A44A55@ 1+ )\0 mo sin 219 (fO)Wo = —02m0(1 — )\0) sin 2.
(4.13)

Substituting expressions (4.12) in the boundary-contact conditions for the
determination of the real coefficients m; the following linear algebraic equa-

tions are obtained

PV AasAzs (1 + Ao)mo — pa (mapg) +m1) =
= (27 P2 — (Assb? — Agsad)],
mopg(l — o) — (mlpé —m-1) =0,
pr(mupi +moy) — p2(mapi +m_a) = 27'pi (u2 — ),
mipt —m_y —mop] +m_g =0,
pa(mapy +m_2) — p3(mapy +m-3) = 27"p (2 — ),

4 4
Mmapy —m_g —mzp- +m_3z =0,
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maps +m-3 = 27"'p3. (4.14)

From (4.14) we have
m_3 = m3p§ - 2_1p§.

Using the following formula @jik = (p?pmpﬁ) in the fifth and sixth equations

of (4.14) one obtains

pa(mapy + m_a) — p3msO = 27 [p3(u2 — p3) — pap3),
map3 — m_g +m3O3 = 271 p3. (15%)
From the last equation of (15%) we have
m_g = m2p4 + m3@52 — 2_1p§.

Taking into the account this formula in (4.13), (4.14) we can write

POV AaaAss(1+ Xo)mo — i (map§ +m—1) = 27" p§[un — (Assbp — Aaad)],
P (1 — No)mo — mapg +m_1 =0,
pr(map] +m1) — pa[ma©3; — maOz = 27 [uapd + pi (1 — p2)],
mip*l —m_1 +m3Oz, + MmOy, = 27 1p3,
2popamy + pama©gy — uzmaOiy = 27 (g — p13)Os,. (4.15)

Now we must eliminate coefficient m_; from equations (4.15). After some
transformations we obtain

mopa[i1(1—Xo) + v/ AsaAss (14 X0)] +2u1pemy = 21 [p1 — (AssbE — Aggal)],

g (1= Ao) — pam1 Oy + pama©3; + pamsOs, = 27 [pT(uz — 1) — pops),
m107, + pgmo(l — Xo) + ma©y, + 3Oz, = 27 1p3,

2p9pama + pam3Ogy — tam3O3,03 = 27 (g — p3)(p3 +p5).  (4.16)

Now we will eliminate coefficient mg from (4.16). From the third equation
of (4.16) the following relations are obtained

m3 = (@51)_1[2_1p§ —mopa(1 — Xo) — m10;, — mo©2L.
Substituting this expression in other equations of (4.16) we obtain
mopg (i1 (1=X0)+(1+X0) v/ A Ass)] —2mpgma = 27 p [ — (Assb5 — Asaai],

(12©70 + 111070)m1 — 2papima + pg(p2 — p1) (1 — Ao)mo = 27 ' p3(u2 + p3),
—muzma©3,[2p1 + O3 + (13031120 3,][m1©7) + mopg (1 — Ao)]
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=27 (g — p13)OHO% + +27 P35 (u3OF, — 1203;,). (4.17)

Now we will eliminate mg from (4.17). From the second equation of (4.17)
we obtain

my = (2p1p1) " [ma (12O 79+ Og++p5 (2 — ) (1=Aymo—2""p3 (ua+p3)].-
Taking into the account this expression the system (4.17) takes the form
mop2py(1 = Xo) 201 (1303, — 1207 32)] — (2 — 11)O5,03;] + ma
201291070 (13035 — 1203,) — 11205,0 21 (207 Thetarfy)
= 27105, (2 — 1) (P3 + P3) + P3 (13O +32 —p2Thetaz,),

mo[u1 (1 = Xo) + (14 Xo) v/ AaaAss] — 2ppgrm
=27 (1 — Assb§ + Asaaf). (4.18)
The determinant of the system (4.18) will be

V = [ (1 = Ao) + (1 + o)/ AsaAss) [202p1 O (11303, — 112035)

—1205,0%; (1207, + 1107y] + 2 popa(l — Xo)[2p1 (1303, — 11203,)
_@§29§r1(/v62 — 1))

It is obvious that V # 0. Thus, the problem is solved completely.
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