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Abstract

In this paper Saint-Venant’s problem for composed confocal elliptic tube by means

of the Faber’s polynomial’s is studied. Also a torsion problem when the tube is

strengthened by the orthotropic elliptic kernel is investigated.
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1 Basic Equations

Some questions connected with Saint-Venant’s problem are considered in
the monographs of Love [2] and Muskhlishvili [3].

In the articles [4, 5] Saint-Venant’s problem for two-layered elliptic tube
and the problem of torsion are considered. The solution and the coefficients
of the Faber’s polynomials are found completely.

In this paper the torsion problem of three-layered isotropic confocal
elliptic tube strengthened by the solid orthotropic elliptic kernel is studied.

Let us consider a cartesian coordinate system Ox1x2x3 and the elliptic
tube composed of three-layered confocal elliptic tubes of different elastic
materials, occupying the domains Ω1,Ω2 and Ω3, and bounded by the planes
x3 = 0 and x3 = l, (l > 0). We denote the lateral confocal elliptic surfaces
by Γ0 − Γ1,Γ1 − Γ2 and Γ2 − Γ3 respectively. The equations of lateral
surfaces Γj(j = 0, 1, 2, 3) are written in the following form

f0(x1, x2) = 0, f1(x1, x2) = 0, f2(x1, x2) = 0, f3(x1, x2) = 0. (1.1)

It is obvious that the normal cross-section of composed body occupying
the domain Ω = Ω1 + Ω2 + Ω3 will be the confocal elliptic domain ω =
ω1 + ω2 + ω3. Each domain ωj will be a confocal elliptic ring bounded by
confocal ellipses γj and γj+1 with major and minor axis aj , bj and aj+1, bj+1

(j=0,1,2), a2k − b2k = c2, (k=0,1,2,3), where c is a focal length.
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Hence, indicated composed elliptic tube has an elliptic hole bounded
by elliptic surface Γ0 with the exterior border Γ3. For this body we will
consider all Saint-Venant’s problems, and also a torsion problem when the
composed tube is strengthened by the solid elliptic domain Ω0, occupied
by the orthotropic material.

Thus, in our case we have a three-layered composed elliptic beam with
the elliptic orthotropic kernel. It is proposed that the domains Ω0,Ω1,Ω2

and Ω3 are glued to each other without of split along the surfaces Γ0,Γ1

and Γ2 respectively.

According to Hooke’s law the components of stress,strains and displace-

ments τ
(j)
kl , e

(j)
kl , u

(j)
k (k,l=1,2,3;j=0,1,2,3 ), in isotropic domains Ω1,Ω2 and

Ω3 will be given by the formula

Ee11 = τ11 − ν(τ33 + τ22), Ee22 = τ22 − ν(τ33 + τ11),

Ee33 = τ33 − ν(τ11 + τ22),
(1.2)

where the components of strain have the following form

ejk = Djuk +Dkuj , ejj = Djuj , (j, k = 1, 2, 3), (1.3)

where Dj = ∂/∂xj .

For the orthotropic material, occupying the domain Ω0, the Hooke’s law
may be written in the form [4]

τjj = A1je11 +A2je22 +A3je33 (j = 1, 2, 3), τ12 = A66e12,

τ23 = A44e23, τ13 = A55e13,
(1.4)

where Ajk are the elasticity constants. The strain components e11, e22 and
e33 may be written in the form

Eejj = σj1τ11+σj2τ22−νjτ33, (j = 1, 2), Ee33 = τ33−ν1τ11−ν2τ22, (1.5)

where E is the modulus of elasticity ν1, ν2 are the Poisson’s ratios in the
directions Ox1, Ox2.

Besides, in each domain Ωj the equations of equilibrium are satisfied

D1τ1j +D2τ2j +D3τ3j = 0, (j = 1, 2, 3). (1.6)

By P (P1, P2, P3) and M(M1,M2,M3) we denote the projections on axis
Oxj (j = 1, 2, 3) of the resultant forces acting on the end x3 = h and the
resultant moments respectively.
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Components of the stresses τjk in each normal cross-section ω of the
composed three-layered elliptic tube satisfy the following equations∫ ∫

ω
τj3dω = Pj ,

∫ ∫
ω
x2τ33 − x3τ23dω = M1, (j = 1, 2, 3)

∫ ∫
ω
x3τ13 − x1τ33dω = M2,

∫ ∫
ω
x1τ23 − x2τ13dω = M3. (1.7)

For the composed elliptic tube with the cross-section ω = ω1+ω2+ω3,
bounded by interior ellipse γ0 and exterior ellipse γ3 with interfaces γ1 and
γ2 it is well-known the following formula∫ ∫

ω
(τj3)dω =

∮
γ0

xjτn3dγ +

∮
γ3

xjτn3dγ +

∫ ∫
ω
xjD3τ33dω

+
∑
k=1,2

∮
γk

xj{[τn3]k − [τn3]k+1}dγ, (k = 1, 2), (1.8)

where
τnj = τ1jn1 + τ2jn2 + τ3jn3, (j = 1, 2, 3),

In this case n3 = 0,τnj are projections on the axis Oxj of the stresses vector
τn(τn1+τn2+τn3). The symbols [...]m and [...]m+1 denote the limiting values
of the expressions included in the brackets taken from the domains ωm and
ωm+1 respectively, where n(n1, n2, n3) is an outward normal to the domain
ωj .

It will be remarked that when the composed elliptic tube is strengthened
by the solid orthotropic kernel, the expression

∮
γ0xj

τn3dγ in the formula

(1.8) will be substituted by expression
∮
γ0xj

{[τn3]0 − [τn3]1}dγ. Besides the
lateral surfaces Γ0 and Γ3 of three-layered elliptic tube must be free from
acting of the exterior forces and also it is necessary to fulfill the conditions
of the continuity of the vectors of the displacement and stresses, which cross
the interfaces Γ1 and Γ2 from the adjoint domains. Since the equations of
the indicated surfaces Γj are given by the equalities (1.1), these conditions
take the following form τnj = 0, (j = 1, 2, 3), on the first and last surfaces

[uj ]e = [uj ]e+1, [τnj ]e = [τnj ]e+1, (j = 1, 2, 3; e = 1, 2)

on the second and third surfaces at the interface between the domains Ωl

and Ωl+1.
It is proposed that the different isotropic elastic materials composed of

the three-layered tube and occupying the domains Ω1,Ω2 and Ω3 have the
identical Poisson’s ratios, i.e. ν1, ν2, ν3 = ν, but modulus of the elasticity E
in the different domains Ωj has the different values Ej . These restrictions
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do not spread on the torsion problem of composed beam with orthotropic
kernel.

At last it will be remarked that it is proposed that the origin and axis
Ox1 and Ox2 coincide with the generalized center of inertia and of principal
axis of inertia, i.e. the following equalities are true

Jjl = 0 (j = 1, 2, 3),

where

Jji =

∫ ∫
ω
Ex(j)x(i)dω,

x(1) = x1, ;x
(2) = x2, x(3) = 1;

Jjj > 0, (j, l = 1, 2, 3).

2 Extension by the Longitudinal Force and
Bending Due to Couples of Forces

Let us consider the case when the force is applied on an upper base x3 = l
of the three-layered isotropic elliptic tube which occupies the composed
domain Ω = Ω1 + Ω2 + Ω3. It is proposed that a system of the forces is
statically equivalent to one force P3 producing the extension acting parallel
to the axis Ox3 and two couples of forces producing the flexures of the tube
in the planes Ox2x3 and Ox1x3, by the moments M1 and M2, respectively.
Thus, in the conditions (1.7) we will take P1 = P2 = M3 = 0. We seek the
solution of the problem, as well as for the homogenous body, in components
of the stresses and displacements in each domain Ωk in the form

τj1 = τj2 = τj3 = 0, (τ33)k = Ek

3∑
e=1

Cex
(e),

uj =

3∑
e=1

Ceg
(e)
j − 1

2
Cjx

2
3, u3 = x3

3∑
e=1

Cex
(e), (2.1)

where

j = 1, 2; x(1) = x1, x(2) = x2, x(3) = 1, 2g
(j)
J = (−1)jν(x22 − x21),

g
(3)
j = νxj , g

(2)
1 = g

(1)
2 = νx1x2, (j = 1, 2). (2.2)

It is known that the components of the outward normal n(n1, n2) to the
boundary γ of domain ωγ satisfy the following equalities

nγ(n1 + in2)γ = (Θγ)
−1(bγ cosϑ ++iaγ sinϑ)

0,5, (2.3)
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where 0 ≤ ϑ ≤ 2π.
It is obvious that the expressions (2.1) satisfy the equations (1.7). After

substitution of three first conditions from (2.1) into conditions (1.7) we get,
that the first, second and sixth equations are satisfied identically. From the
other equations of (1.7) the system of algebraic equations is obtained for
the determination of coefficients Ce

C1J
(1)
1j + C2J

(1)
2j + C3J

(1)
3j = Nj , (j = 1, 2, 3), (2.4)

where
N1 = −M2, N2 = M1, N3 = P3. (2.5)

Taking into the account (2.5) we get J
(1)
(jk) = 0 (j ̸= k) and after simple

calculations, the equalities (2.3) and (2.4) take the form

Cj = [J
(1)
jj ]−1Nj , (j = 1, 2, 3),

where

4J
(1)
11 = π[E1(a

3
1b1 − a30b0) + E2(a

3
2b2 − a31b1) + E3(a

3
3b3 − a32b2)],

4J
(1)
(22) = π[E1(a1b

3
1 − a0b

3
0) + E2(a2b

3
2 − a1b

3
1) + E3(a3b

3
3 − a2b

3
2)],

J(33) = π[E1(a1b1 − a0b0) + +E2(a2b2 − a1b1) + E3(a3b3 − a2b2)].

Thus, our problem is solved completely.

3 Bending of a Cantilever Under
a Transverse Force

Let us consider the three-layered isotropic confocal elliptic tube, when ex-
ternal forces applied to the ”upper” base x3 = l statically are equivalent
to two bending forces P1 and P2 parallel to the axis Ox1 and Ox2 respec-
tively and applied at the point x03(0, 0, l). Therefore, for the equilibrium
of the part of the tube enclosed between the planes x3 = x03 and x3 = 0,
where 0 ≤ x03 < l, it will be sufficient to require that the components of the
stresses τjk in each cross-section of the tube satisfy the conditions (1.7),
where

P3 = M1 = M2 = M3 = 0, P1 ̸= 0, P2 ̸= 0. (3.1)

The solution of this problems are similar to the homogenous case, the
components of the displacements uj and stresses τjk in each domain Ωk are
found in the form

ue = [(l−x3)Geg
(e)
e +

1

2
Gex

2
3+G2g

(2)
e −1

2
Gex

2
3+(−1)eG0x3−ex3], (e = 1, 2),
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u3 = −[x3(l−
1

2
x3)(G1x1+G2x2)−G1F1−G2F2+

1

3
(G1x

3
1+G2x

3
2)−G0F0],

τe3 = µ[De(G1F1+G2F2+G0F0)−Gex
2
e−G1g

(1)
e −G2g

(2)
e +(−1)eG0x3−e],

τ33 = E(x3 − l)(G1x1 +G2x2), (3.2)

where e = 1, 2. The expressions g
(α)
k are given by the equalities (3.2).

In each domain Ωj the functions Fk and the constants Gk will be de-
termined. Putting the expressions (3.2) into the equations of equilibrium
(1.6) and boundary-contact conditions, we get that the functions Fk must
be the solutions to the following boundary-contact equations

△F
(j)
k = 0, (k = 0, 1, 2; j = 0, 1, 2), (3.3)

in each domain ωk(Ωk), (k=1,2,3),

[DnF
(j)
k ]e = [H

(j)
k ]e, j = 1, 2, 3; k = 0, 1, 2, (3.4)

on the interfaces γ1(Γ1) and γ3(Γ3),

[µDnF
(j)
k ]e − [µDnF

(j)
k ]e+1 = [µH

(j)
k ]e − [µH

(j)
k ]e+1,

[F
(j)
k ]e = [F

(j)
k ]e+1 (e = 1, 2)

(3.5)

on the interfaces γe(Γe), (e = 1, 2), where

△ = D2
1 +D2

2, Dn = D1n1 +D2n2, Dj =
∂

∂xj
,

H0 = x2n1 − x1n2, Hk =
1

2
[(2 + ν)x2k − νx23−k]nk + νx1x2n3−k. (3.6)

It must be remarked that, since in each domain Ωk(ωk) (k = 1, 2, 3) the
Poisson’s ratios are identical (ν1 = ν2 = ν3 = ν), the following equalities
hold [1]

[g
(j)
k ]e = [g

(j)
k ]e+1, [H

(j)
k ]e = [H

(j)
k ]e+1 (e = 1, 2), (3.7)

on interfaces γ1(Γ1) andγ2(Γ2), where µ = E[2(1 + ν)]−1 is modulus of the
rigidity, ν is the Poisson’s ratio and E is the modulus of elasticity.

In each domain ωj(Ωj)we seek the solution of (3.3),(3.4),(3.5),(3.6) in
the following form

F
(j)
0 = ReΦ

(j)
0 (z) = Re[m

(j)
2 t21 ++m

(j)
(−2)t

−2
1 ]0,

F
(j)
k = Re{−i)k−1[m

(j)
1 t1 +m

(j)
3 t31 +m

(j)
−1t

−1
1 +m

(j)
−3t

−3
1 ]k}, (3.8)
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where

t1 = z+w, z = x1+ix2, w = (z2−c2)0,5, a2j−b2j = c2 (j = 1, 2, 3) i2 = −1

(w)γe = be cosϑ+ ae sinϑ, (t1)γe = pe exp(iϑ),

pe = ae + be, 0 < ϑ ≤ 2π (e = 0, 1, 2, 3)

and a real constants m
k(j)
k will be determined.

Also, the following equalities hold

D1t1 = t1w
−1, D2t1 = it1w

−1,

DnF
(j)
k = Re[(n1 + in2)γe(ϕ

′(j)
k )γe ], (e = 0, 1, 2, 3), (3.9)

where

{ϕ′(j)
k }γe = {∂

z
ϕ(z)}γe = [bγe cosϑ+ aγ sinϑ)(m

(j)
1 p exp iϑ

−m
(j)
−1 exp−iϑ+m

(j)
3 p3e exp 3iϑ− 3m

(j)
−3p

−3
e exp−3iϑ].

After some simple transformations on the base of equalities (3.8)-(3.9), in

each domain ωj and on elliptic boundary γe for the functions (F
(j)
k )γe ,

(DnF
(j)
k )γe and expressions(Hk)γe , we obtain

(F
(j)
k ))γe = p−3

e Re[p4em1(j) exp(iϑ) +m
(j)
−1 exp(−iϑ) + p6em

(j)
3 exp(3iϑ)

+m−3 exp(−3iϑ)]k,

[DnF
(j)
k ]γe = p−3

e (a2e sin
2 ϑ+ b2e cos

2 ϑ)−0,5ℜ[p4em
(j)
1 exp iϑ+ 3m

(j)
3 p6e exp 3iϑ

−p2em
(j)
−1 exp−iϑ− 3m−3 exp−3iϑ]k,

on γe

(Hk) = Re[A
(k)
1 exp iϑ+A

(k)
3 exp 3iϑ−A

(k)
−1 exp−iϑ−A

(k)
−3 exp−3iϑ]γe ,

(3.10)
where j = 1, 2, 3; k = 1, 2; e = 0, 1, 2, 3; On γe we have

A
(1)
1 = A

(1)
−1 = 6a2ebe + νbec

2, A
(1)
3 = A

(1)
−3 = (2 + 3ν)a2ebe + νb3e; A

(2)
1

= A
(2)
−1 = 6aeb

2
e + νaec

2; A
(2)
3 = A

(2)
−3 = (2 + 3ν)aeb

2
e + νA3

e.

Taking into the account the equalities (3.3)-(3.6),(3.9),(3.10), we can write
the boundary conditions on the exterior boundaries γ3 and γ0 in the form

(DnFk(3))3 ≡ p−3
3 Θ−1

3 Re[p43(m
(3)
1 )k exp iϑ+ 3p63(m

(3)
3 )k exp 3iϑ
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−p23(m
(3)
−1)k exp−iϑ− 3m

(3)
−3 exp(−3iϑ)] = Re[A

(3)
1 exp(iϑ)

+A
(3)
3 exp(3iϑ) +A

(3)
−1 exp(−iϑ) +A

(3)
−3 exp(−3iϑ)]3

(DnF
(1)
k )0 ≡ p−3

0 Θ−1
0

Re[p40(m
(1)
1 )k exp iϑ+ 3p60(m

(1)
3 )k exp 3iϑ− p20(m

(1)
−1)k exp−iϑ

−3(m
(1)
−3)k exp−3iϑ = Re[(A

(0)
1 )k exp iϑ+ (A

(0)
3 )k exp 3iϑ

−(A
(0)
−1)k exp−iϑ− 3(A

(0)
−3)k exp−3iϑ]0. (3.11)

Taking into the account the boundary-contact conditions we obtain

p
(−3)
1 {[F (1)

k ]1 − [F
(2)
k ]2} ≡ Re[|p41|(m

(1)
1 ) exp iϑ+ p21(m

(1)
−1) exp−iϑ

p61(m
(1)
3 )exp3iϑ+ (m

(1)
−3) exp−3iϑ]k −Re[p41(m

(2)
1 ) exp iϑ

+p21(m
(2)
−1) exp−iϑ+ p61(m

(2)
3 ) exp 3iϑ+ (m

(2)
−3) exp−3ϑi]k = 0′

p
(−3)
2 {[F (2)

k ]2 − [F
(3)
k ]3} ≡ Re[p42(m

(2)
1 ) exp iϑ+ p22(m

(2)
−1) exp−iϑ]

+[p62(m
(2)
3 ) exp(3iϑ)][+(m

(2)
−3) exp−3iϑ]k −Re[p42(m

(3)
1 ) exp iϑ+ p22(m

(3)
−1)

exp−iϑ+ p62(m
(3)
3 ) exp 3iϑ+ (m

(3)
−3) exp−3iϑ]k = 0,

µ1[DnF
(1)
k ]1 − µ2[DnF

(2)
k ]2 = p−3

1 Θ−1
1 {µ1Re[(p41m

(1)
1 ) exp iϑ

+3p61(m
(1)
3 ) exp 3iϑ−p21(m

(1)
−1) exp−iϑ−3(m

(1)
−3) exp−3iϑ]k−µ2Re[p41(m

(2)
1 )

exp iϑ+ 3p61(m
(2)
3 ) exp 3iϑ− p21(m

(2)
−1) exp−iϑ− 3(m

(2)
−3) exp−3iϑ]k}

= [(µ1)− (µ2)]((Hk))1, (3.12a)

µ2[DnF
(2)
k ]2 − µ3[[DnF

(3)
k ]3 = [Θ−1

2 ](p−3
2 ){µ2Re[p42(m

(2)
1 ) exp iϑ

+3p62(m
(2)
3 ) exp 3iϑ− p22(m

(2)
−1) exp−iϑ− 3(m

(2)
−3)) exp−3iϑ

−µ3Re[p42(m
(3)
1 ) exp iϑ+ 3p62(m

(3)
3 ) exp 3iϑ− p22(m

(3)
−1) exp−iϑ

−3(m
(3)
−3) exp−3iϑ]} = (µ2 − µ3)(Hk)2, (3.12b)

where the functions (Hk)γe are given by the equalities (3.10).
Equating multipliers at the same powers of exp±ϑ in the equalities

(12a),(12b) for the determination of coefficients (m
(j)
l )k and (m

(j)
−l )k we get

the following linear algebraic equations

(m
(1)
k ρ2k0 −m

(1)
−k)0 =

1

k1
(A

(1)
k )0ρ

k
0,

38



+ Saint-Venant’s problems for... AMIM Vol.18 No.2, 2013

(m
(3)
k ρ2k3 −m

(3)
−k)γ3 =

1

k1
(A

(3)
k )3ρ

k
3, (k = 1.3)

µ1[m
(1)
k ρ2k1 −m

(1)
−k]− µ2[m

(2)
k (ρ1)

2k −m
(2)
−k]

= µ1
1

k1
(Ak(1))1ρ

k
1 − µ2(A

(2)
k )1, (k = 1, 3),

(m
(1)
k )ρ2k1 + (m

(1)
−k)− ((m

(2)
k )ρ2k1 +m

(2)
−k) = 0;

µ2[m
(2)
k ρ−2 m= k(2)]− µ3[m

(3)
k ρ2k2 −m

(3)
−k]

= µ2
1

k1
(A

(2)
k )2ρ

k
2 − µ3(A

(3)
k )2ρ

k
2,

mk(2)ρ
(2k)
2 +m

(2)
−k −m

(3)
k ρ2k2 −m

(3)
−k = 0, (k = 1, 3). (3.13)

From the first four equations of these expressions we obtain

m
(1)
−k = mk(1)ρ

2k
0 − (A

(1)
k )γ0ρ

k
0,m

(3)
−k

= m
(3)
k ρ2k3 − (A

(3)
k )γ3ρ

k
3, (k = 1, 3),

Substituting these meanings into other corresponding equations from (3.13)
we get

µ1m
(1)
k (ρ2k1 − ρ2k0 )− µ2(m

(2)
k ρ2k1 −m−k)

= µ1
1

k1
[A

(1)
k ρk1 −A

(1)
k ρk0]− µ2A

(2)
k ρk1,

m
(1)
k (ρ2k1 + ρ2k0 )−mk(2)ρ

2k
1 −m

(2)
k ρ2k1 −m

(2)
−k =

1

k1
(A

(1)
k )γ0ρ

2k
0 , (3.14)

µ2(m
(2)
k ρ2k2 −m

(2)
−k)− µ3m

(3)
k (ρ2k2 − ρ2k3 ==

1

k1
µ2(A

(2)
k )γ2ρ

k
2−

1

k1
µ3[A

(3)
k ρ2k2 −A

(3)
k ρ2k3 ],

m
(2)
k ρ2k2 +m

(2)
−k −m

(3)
k (ρ2k2 + ρ2k3 ) =

1

k1
(A

(3)
k )ρk3. (3.15)

In (3.14) multiply for k=1 the first equation by ρ21 + ρ20 and from obtained
one subtract the third equation multiplied by µ1(ρ

2
1 − ρ20), then multiply

for k=3 the second equation by ρ61+ρ60 and from obtained one subtract the
fourth equation multiplied by µ1(ρ

6
1 − ρ60), we get

L1 = µ1(ρ
2
1 − ρ20){(m

(2)
1 ρ21 +m

(2)
−1)− µ2(ρ

2
1 + ρ20)(m1(2)ρ

2
1 −m

(2)
−1)},

L2 = µ1(ρ
6
1−ρ60){(m

(2)
3 ρ61+m

(2)
−3)−µ2(ρ

6
1+ρ60)(m

(2)
3 ρ61−(m(2))−3)}, (3.16)
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where
L1 = (ρ21 + ρ20){µ1[A

(1)
1 (ρ1 − ρ0)]− µ1(ρ

2
1 − ρ20)A

(1)
1 ,

L2 = (ρ61 + ρ60){(µ1
1

3
[A

(1)
3 (ρ31 − ρ30)]− µ2(A

(2)
3 ρ31}

−µ1(ρ
6
1 − ρ60)

1

3
A

(1)
3 ρ30;

Analogously for the equations (3.15). In (3.15) multiply for k=1 the first
equation by ρ22 + ρ23 and from obtained one subtract the third equation
multiplied by µ3(ρ

2
2 − ρ23), then multiply for k=3 the second equation by

ρ62 + ρ63 and from obtained one subtract the fourth equation multiplied by
µ3(ρ

6
2 − ρ63), we get

µ2(ρ
2
2 + ρ23)(m

(2)
1 ρ22 −m

(2)
−1)− µ3(ρ

2
2 − ρ23)(m

(2)
1 ρ22 +m−1(2) = L3,

µ2(ρ
6
2+ρ63)(m

(2)
3 ρ62−m−3(2))−µ3(ρ

6
2−ρ63)(m

(2)
3 ρ62+m−3(2)) = L4, (3.17)

where

L3 = (ρ22 + ρ23){µ2(A
(2)
1 )ρ2 − µ3[A

(3)
1 (ρ2 − ρ3)]− µ3(ρ

2
2 − ρ23)A

(3)
1 ρ3)},

L4 = (ρ62 + ρ63)
1

3
{µ2A3(2)ρ

3 − µ3[A3(3)(ρ
3
2 − ρ33)]− µ3

1

3
(ρ62 − ρ63)A3(3)ρ

3
3),

ρjk = (ak + bk)
j .

From (3.16),(3.17) we get

ρ21[µ2(ρ
2
1 + ρ20))−µ1(ρ

2
1 − ρ20)]m

(2))
1 − [µ2(ρ

2
1 + ρ20) +µ1(ρ

2
1 − ρ20]m

(2)
−1 = −L1,

ρ22[µ3(ρ
2
2 − ρ23)− µ2(ρ

2
2 + ρ23)]m

(2)
1 + [µ3(ρ

2
2 − ρ23) + µ2(ρ

2
2 + ρ23]m

(2)
−1

= −L3; (3.18)

ρ61[µ2(ρ
6
1+ρ60)−µ1(ρ

6
1−ρ60)]m3(2)−[µ1(ρ

6
1−ρ60)+µ2(ρ

6
1+ρ60)]m−3(2) = −L2,

−ρ62[µ2(ρ
6
3 + ρ62) + µ3(ρ

6
3 − ρ62)]m3(2) + [µ2(ρ

6
2 + ρ63)− µ3(ρ

6
3 − ρ62)]m−32

= −L4. (3.19)

It is easy to show ,that the determinants of the system (3.18), (3.19) ∇1 > 0
and ∇2 > 0 are given by the equalities

∇1 = µ1µ2(ρ
2
2+ρ23)(ρ

2
1−ρ20)(ρ

2
2+ρ21)++mu1µ3(ρ

2
1−rho20)(ρ

2
2−ρ21)(ρ

2
3−ρ22)+

∇2 = µ1µ2(ρ
6
2 + ρ63)(ρ

6
1 − ρ60)(ρ

6
2 − ρ61)+

+µ1µ3(ρ
6
1 − ρ60)(ρ

6
2 + ρ61)(ρ

6
3 + ρ62)+

+µ2
2(ρ

6
1 + ρ60)(ρ

6
2 + ρ63)(ρ

6
2 + ρ61) +mu3(ρ

6
1 + ρ60)(ρ

6
3 − ρ62)(ρ

6
2 − ρ61).

Thus, the problem is solved completely.
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4 On the Torsion of Three Layered Isotropic
Elliptic Beam Strengthened by the
Orthotropic Solid Elliptic Beam

We consider a composed isotropic three-layered confocal elliptic cylindrical
beam (see paragraph 1). In the problem of torsion we must carry out the
following ”end” conditions on cross-section x3 = const∫ ∫

ω
τj3dω = 0, (j = 1, 2, 3),

∫ ∫
ω
(x2τ33 − x3τ23)dω =

∫ ∫
ω
τ33dω = 0,∫ ∫

ω
(x1τ23 − x2τ13)dω = M3, (4.1)

where M1 is the given twisting moment, ω = ω0 + ω1 + ω3, ω1, ω2 and ω3

are domains occupied by the isotropic materials and ω0 is domain occupied
by the orthotropic material. We seek the solution of the torsion problem
in isotropic and orthotropic domains in the form

u
(j)
1 = −Gx2x3,

u
(j))
2 = Gx1x3,

u
(j)
3 = Gfj(x1, x2),

where the constant G and the functions fj will be determined. By the
formula (1.3)-(1.7)the components of the stress for the displacement in
different isotropic domains ωj (j=1,2,3) are

τ
(j)
13 = Gµj(D1fj − x2), ; τ

(j)
23 = Gµj(D2fj + x1); (j = 1, 2, 3), (4.2)

in the orthotropic domain ω0

τ
(j)
13 = GA55(D1f0 − x2), τ

(j)
23 = GA44(D2f

(0) + x1); A44A55 > 0, (4.3)

where µj is the shear modulus and A44 and A55 are modulus of the or-
thotropic material.

Substituting expressions (4.3) and (4.4) in the equations of elastic equi-
librium (1.7) we obtain, that the functions f1, f2 and f3 will be solutions
of the Laplace equation in domains ω1, ω2 and ω3 respectively

△fj = 0, (j = 1, 2, 3). (4.4)
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In the domain ω0 the function f0 satisfies the equation

A55D
2
1f0 +A44D

2
2f0 = 0, (4.5)

where A44 and A55 are the elastic constants (shear modulus) of orthotropic
material and △ = D2

1 +D2
2. The characteristic root of the equation (4.6) is

v⋆ = i

√
A55A

(−1)
44 , (i2 = −1). (4.6)

Let us introduce the complex variables

z = x1 + ix2; z⋆ = x1 + v⋆x2, ; t = z + w, ; t⋆1 = η
(−1)
⋆ [z⋆ + w⋆];

t⋆2 = η
(−1)
(⋆) [z∗ − w⋆]η⋆ = (a0 + b0

√
A(55)A

(−1)
(44) );

w =
√

z2 − c2, w⋆ =
√

z2⋆ − a20 − v2⋆b
2
0, (4.7)

where a2j − b2 = c2, ; (j = 0, 1, 2, 3) and v⋆ are given by the equality (4.7).
We seek the functions fj in the form

fj = 2−1c2Re[i(mjt
2 +mjt

−2)], ; (j = 1, 2, 3) (4.8)

f0 = 2−1c2Re[im0(t
2
⋆1 + t2⋆2)]. (4.9)

It will be noted that all functions are single-valued.
After simple transformations from (4.9) we obtain

D1(t
2) = 2t2w(−1), ; D2(t

2) = 2it2w(−1); ; D1(t
2
⋆1) = 2(w(⋆))

(−1)t2⋆

D2(t
2
⋆1) = 2i

√
A(55)A

(−1)
(44)

(w(⋆))
(−1)t2⋆,−kD1(t

2
⋆2) = −2(w(⋆))

(−1)t2(⋆), D2(t
2
(⋆2))

= −2i

√
A(55)A

(−1)
(44) (w(⋆))

(−1)t2⋆2. (4.10)

At the elliptic boundary γe(x1 = ae cosϑ, ; x2 = be sinϑ) of the domain ωe

the following formulas are true

[t⋆1]γ0 = exp(iϑ),

[t(⋆2)](γ0) = λ0 exp(−iϑ),

(w0)γ == ia0 sinϑ+ b0
√
A55A

(−1)
44 cosϑ, (w)γe = iae sinϑ+ be cosϑ.

(t)γe = pe exp(iϑ),
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(n1 + in2)γe = (Θ(−1)iae sinϑ),

(Θ)γe

√
a2e sin

2 ϑ+ b2e cos
2 ϑ,

λ0 = (a0 − b0
√
A55A(−1)44),

(a0 + b0

√
A55A

−1
(44)

−1

, (4.11)

where
pe = ae + be, (0 < ϑ ≤ 2π).

After simple calculations we obtain

D1fj = Re[i(w)−1
j (mjt

2 −m−jt−2)],

D2fj = −Re[(w)−1
j (mjt

2 −m−jt
−2],

D1f0 = Re[im0w
−1
0 (t2⋆1 − t2⋆2)],

D2f0 = −
√

A55A−1
44Re[m0w

−1
0 (t2⋆1)− t2⋆2]. (4.12)

Taking into the account equalities (4.11)-(4.12) we get

(Dnfj)γk ≡ (n1D1fj + n2D2fj)γk =

= Re[−c2(Θkpk)
( − 1)(m(j)p4 +m(j)−1)k] sin 2ϑ;

(fj)γk = −Re[c2(2pk)
−1(m

(j)
1 p4 −m

(j)
k )] sin 2ϑ,

(D⋆
n)γ0 ≡ [A55n1D1f0 +A44n2D2f0]γ0 =

= −c2
√

A44A55Θ
−1
0 (1 + λ0)m0 sin 2ϑ, (f0)γ0 = −c2m0(1− λ0) sin 2ϑ.

(4.13)
Substituting expressions (4.12) in the boundary-contact conditions for the
determination of the real coefficients mj the following linear algebraic equa-
tions are obtained

p20
√

A44A55(1 + λ0)m0 − µ1(m1p
4
0) +m−1) =

= (2−1p20[µ1 − (A55b
2
0 −A44a

2
0)],

m0p
2
0(1− λ0)− (m1p

4
0 −m−1) = 0,

µ1(m1p
4
1 +m−1)− µ2(m2p

4
1 +m−2) = 2−1p21(µ2 − µ1),

m1p
4
1 −m−1 −m2p

4
1 +m−2 = 0,

µ2(m2p
4
2 +m−2)− µ3(m3p

4
2 +m−3) = 2−1p22(µ2 − µ3),

m2p
4
2 −m−2 −m3p

4 +m−3 = 0,
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m3p
4
3 +m−3 = 2−1p23. (4.14)

From (4.14) we have
m−3 = m3p

4
3 − 2−1p23.

Using the following formula Θ±
jk ≡ (p4jpmp4k) in the fifth and sixth equations

of (4.14) one obtains

µ2(m2p
4
2 +m−2)− µ3m3Θ

+
32 = 2−1[p22(µ2 − µ3)− µ3p

2
3],

m2p
4
2 −m−2 +m3Θ

−
32 = 2−1p23. (15∗)

From the last equation of (15∗) we have

m−2 = m2p
4 +m3Θ

−
32 − 2−1p23.

Taking into the account this formula in (4.13), (4.14) we can write

p20
√

A44A55(1 + λ0)m0 − µ1(m1p
2
0 +m−1) = 2−1p20[µ1 − (A55b

2
0 −A44a

2
0)],

p20(1− λ0)m0 −m1p
4
0 +m−1 = 0,

µ1(m1p
4
1 +m−1)− µ2[m2Θ

+
21 −m3Θ

−
32 = 2−1[µ2p

2
3 + p21(µ1 − µ2)],

m1p
41−m−1 +m3Θ

−
32 +m2Θ

−
21 = 2−1p23,

2p42µ2m2 + µ2m3Θ
−
32 − µ3m3Θ

+
32 = 2−1(µ2 − µ3)Θ

−
32. (4.15)

Now we must eliminate coefficient m−1 from equations (4.15). After some
transformations we obtain

m0p
2
0[µ1(1−λ0)+

√
A44A55(1+λ0)]+2µ1p

4
0m1 = 2−1[µ1−(A55b

2
0−A44a

2
0)],

µ1p
2
0(1− λ0)− µ1m1Θ

+
10 + µ2m2Θ

+
21 + µ2m3Θ

−
32 = 2−1[p21(µ2 − µ1)− µ2p

2
3],

m1Θ
−
10 + p20m0(1− λ0) +m2Θ

−
21 + µ3Θ

−
32 = 2−1p23,

2µ2p
4
2m2 + µ2m3Θ

−
32 − µ3m3Θ

+
32Θ

+
32 = 2−1(µ2 − µ3)(p

2
3 + p22). (4.16)

Now we will eliminate coefficient m3 from (4.16). From the third equation
of (4.16) the following relations are obtained

m3 = (Θ−
21)

−1[2−1p23 −m0p
2
0(1− λ0)−m1Θ

−
10 −m2Θ

21.

Substituting this expression in other equations of (4.16) we obtain

m0p
2
0[µ1(1−λ0)+(1+λ0)

√
A44A55)]−2µ1p

2
0m1 = 2−1p20[µ1−(A55b

2
0−A44a

2
) ],

(µ2Θ
−
10 + µ1Θ

+
10)m1 − 2µ2p

4
1m2 + p20(µ2 − µ1)(1− λ0)m0 = 2−1p23(µ2 + µ3),

−mu2m2Θ
−
32[2p

4
1 +Θ−

21 + [µ3Θ
+
32µ2Θ

−
32][m1Θ

−
10 +m0p

2
0(1− λ0)]
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= 2−1(µ2 − µ3)Θ
+
32Θ

−
32 ++2−p23(µ3Θ

+
32 − µ2Θ

−
32). (4.17)

Now we will eliminate m2 from (4.17). From the second equation of (4.17)
we obtain

m2 = (2µ1p
4
1)

−1[m1(µ2Θ
−
10+µ1Θ

+
10++p20(µ2−µ1)(1−λ)m0−2−1p23(µ2+µ3)].

Taking into the account this expression the system (4.17) takes the form

m0µ2p
2
0(1− λ0)[2p

4
1(µ3Θ

+
32 − µ2Θ

−32)]− (µ2 − µ1)Θ
−
32Θ

+
21] +m1

[2µ2p
4
1Θ

−
10(µ3Θ

+
32 − µ2Θ

−
32)− µ2Θ

−
32Θ

+21(µ2Θ
−
10µ1Theta

+
10]

= 2−1[Θ−
32(µ2 − µ1)(p

2
3 + p22) + p23(µ3Θ+32 −µ2Theta

−
32],

m0[µ1(1− λ0) + (1 + λ0)
√

A44A55]− 2µ1p
2
0m1

= 2−1(µ1 −A55b
2
0 +A44a

2
0). (4.18)

The determinant of the system (4.18) will be

∇ = [µ1(1− λ0) + (1 + λ0)
√

A44A55][2µ2p
4
1Θ

−
10(µ3Θ

+
32 − µ2Θ

−
32)

−µ2Θ
−
32Θ

+
21(µ2Θ

−
10 + µ1Θ

+
10] + 2µ1p

4
0µ2(1− λ0)[2p

4
1(µ3Θ

+
32 − µ2Θ

−
32)

−Θ−
32Θ

+
21(µ2 − µ1)].

It is obvious that ∇ ̸= 0. Thus, the problem is solved completely.
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