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Abstract

One nonlinear integro-differential system with source terms is considered. The

model arises at describing penetration of a magnetic field into a substance. Large

time behavior of solution of the initial-boundary value problem is given. Corresponding

semi-discrete finite difference scheme is studied as well.
Key words and phrases: Nonlinear integro-differential system, asymptotic be-
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1 Introduction

One system of nonlinear integro-differential equations is considered. Large
time behavior of solution and semi-discrete finite difference scheme for the
initial-boundary value problem is studied. The investigated system arises in
mathematical modeling of the process of a magnetic field penetration into a
substance. If the coefficient of thermal heat capacity and electroconductiv-
ity of the substance highly dependent on temperature, then the Maxwell’s
system [1], that describes above-mentioned process, can be rewritten in the
following form [2]:

∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH

 , (1.1)
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where H = (H1,H2,H3) is a vector of the magnetic field and the function
a = a(S) is defined for S ∈ [0,∞).

Note that (1.1) is complex. Special cases of such type models were
investigated (see, for example, [2]-[12] and references therein). Investiga-
tions mainly are carried out for one-component magnetic field cases. The
existence of global solutions for initial-boundary value problems of such
models have been proven in [2]-[5],[11] by using the Galerkin and compact-
ness methods [13],[14]. The asymptotic behavior of the solutions have been
the subject of intensive research as well (see, for example, [11],[15],[16] and
references therein).

The following one-dimensional system with two-component magnetic
field is considered in many works as well (see, for example, [17]-[22]):

∂U

∂t
=

∂

∂x

a
 t∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dτ

 ∂U

∂x

 ,

∂V

∂t
=

∂

∂x

a
 t∫

0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dτ

 ∂V

∂x

 ,

(1.2)

where a = a(S) is a given function.
For the system (1.2) the convergence of the semi-discrete and full finite

difference approximations of the initial-boundary value problem for the case
a(S) = 1 + S with first kind boundary conditions were studied in [22].

The aim of this note is to study asymptotic behavior of solution as
t → ∞ and to construct semi-discrete approximate solutions for one gen-
eralization of the system type (1.2) by adding monotonic nonlinear source
terms.

2 Statement of Problem and Main Results

In the [0, 1]×[0,∞) let us consider following initial-boundary value problem:

∂U

∂t
=

∂

∂x


1 +

t∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dτ

p

∂U

∂x

− |U |q−2 U,

∂V

∂t
=

∂

∂x


1 +

t∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dτ

p

∂V

∂x

− |V |q−2 V,

(2.1)

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, (2.2)
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U(x, 0) = U0(x), V (x, 0) = V0(x), (2.3)

where 0 < p ≤ 1, q ≥ 2; U0 = U0(x) and V0 = V0(x) are given functions.

The following statement is true.
Theorem 1. If 0 < p ≤ 1, q ≥ 2 and U0, V0 ∈ H1

0 (0, 1), then problem
(2.1) - (2.3) has not more than one solution and the following asymptotic
property takes place

∥U∥+
∥∥∥∥∂U∂x

∥∥∥∥+ ∥V ∥+
∥∥∥∥∂V∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Here ∥·∥ is the usual norm of the space L2(0, 1) and C denotes positive
constant independent of t.

On [0,1] let us introduce a net with mesh points denoted by xi = ih,
i = 0, 1, . . . ,M , with h = 1/M . The boundaries are specified by i = 0
and i = M . The semi-discrete approximation at (xi, t) is designed by
ui = ui(t) and vi = vi(t). The exact solution to the problem at (xi, t)
is denoted by Ui = Ui(t) and Vi = Vi(t). At points i = 1, 2, . . . ,M − 1,
the integro-differential equation will be replaced by approximation of the
space derivatives by a forward and backward differences. We will use the
following known notations:

rx,i(t) =
ri+1(t)− ri(t)

h
, rx̄,i(t) =

ri(t)− ri−1(t)

h
.

Using usual methods of construction of discrete analogs (see, for exam-
ple, [26]) let us construct the following semi-discrete finite difference scheme
for problem (2.1) - (2.3):

dui
dt

=


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

ux̄,i


x

− |ui|q−2 ui,

dvi
dt

=


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

vx̄,i


x

− |vi|q−2 vi,

i = 1, 2, . . . ,M − 1,

(2.4)

u0(t) = uM (t) = v0(t) = vM (t) = 0, (2.5)

ui(0) = U0,i, vi(0) = U0,i, i = 0, 1, . . . ,M. (2.6)

The following statement takes place.
Theorem 2. If 0 < p ≤ 1, q ≥ 2 and the initial-boundary value problem

(2.1) - (2.3) has the sufficiently smooth solution U = U(x, t), V = V (x, t),
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then the semi-discrete scheme (2.4) - (2.6) converges and the following
estimate is true

∥u(t)− U(t)∥h + ∥v(t)− V (t)∥h ≤ Ch.

Here ∥·∥h is a discrete analog of the norm of the space L2(0, 1) and C
is a positive constant independent of h.

3 Convergence of the Semi-discrete Scheme

In section 2 we constructed Cauchy problem for nonlinear system of ordi-
nary integro-differential equations (2.4) - (2.6) as semi-discrete analog for
problem (2.1) - (2.3). The aim of the present section is the proof of the
Theorem 2.

Introduce inner products and norms:

(r, g)h = h
M−1∑
i=1

rigi, (r, g]h = h
M∑
i=1

rigi,

∥r∥h = (r, r)
1/2
h , ∥r]|h = (r, r]

1/2
h , ∥r∥qq,h = h

M−1∑
i=1

|ri|q.

After multiplying scalarly corresponding equations in system (2.4) by
u(t) = (u1(t), u2(t), . . . , uM−1(t)) and v(t) = (v1(t), v2(t), . . . , vM−1(t)) and
using discrete analog of integrating by part we get:

d

dt
∥u(t)∥2h + h

M∑
i=1

1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

(ux̄,i)
2 + ∥u(t)∥qq,h = 0,

d

dt
∥v(t)∥2h + h

M∑
i=1

1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

(vx̄,i)
2 + ∥v(t)∥qq,h = 0.

From these relations we obtain the following inequalities:

∥u(t)∥2h +
t∫

0

∥ux̄]|2hdτ +
t∫

0

∥u(t)∥qq,hdτ ≤ C,

∥v(t)∥2h +
t∫

0

∥vx̄]|2hdτ +
t∫

0

∥v(t)∥qq,hdτ ≤ C.

(3.7)

The a priori estimates (3.7) guarantee the global solvability of the prob-
lem (2.4) - (2.6).
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Proof of Theorem 2. For U = U(x, t) and V = V (x, t) we have:

dUi

dt
−


1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Ux̄,i


x

+ |Ui|q−2 Ui

= ψ1,i(t),

dVi
dt

−


1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Vx̄,i


x

+ |Vi|q−2 Vi

= ψ2,i(t),

i = 1, 2, . . . ,M − 1,

(3.8)

U0(t) = UM (t) = V0(t) = VM (t) = 0, (3.9)

Ui(0) = U0,i, Vi(0) = V0,i, i = 0, 1, . . . ,M, (3.10)

where
ψk,i(t) = O(h), k = 1, 2.

Let zi(t) = ui(t) − Ui(t) and wi(t) = vi(t) − Vi(t). From (2.4) - (2.6)
and (3.8) - (3.10) we have:

dzi
dt

−


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

ux̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Ux̄,i


x

+ |ui|q−2 ui − |Ui|q−2 Ui = −ψ1,i(t),

dwi

dt
−


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

vx̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Vx̄,i


x

+ |vi|q−2 vi − |Vi|q−2 Vi = −ψ2,i(t),

(3.11)

z0(t) = zM (t) = w0(t) = wM (t) = 0,
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zi(0) = wi(0) = 0.

Multiplying scalarly on z(t) = (z1(t), z2(t), . . . , zM−1(t)) the first equa-
tion of system (3.11), using the discrete analogue of the formula of integra-
tion by parts we get

1

2

d

dt
∥z∥2 + h

M∑
i=1


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

ux̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Ux̄,i

 zx̄,i

+h
M−1∑
i=1

(
|ui|q−2 ui − |Ui|q−2 Ui

)
(ui − Ui) = −h

M−1∑
i=1

ψ1,izi.

Analogously,

1

2

d

dt
∥w∥2 + h

M∑
i=1


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

vx̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Vx̄,i

wx̄,i

+h

M−1∑
i=1

(
|vi|q−2 vi − |Vi|q−2 Vi

)
(vi − Vi) = −h

M−1∑
i=1

ψ2,iwi.

Using monotonicity of the function f(r) = |r|q−2r, from these two equal-
ities we have

1

2

d

dt

(
∥z∥2 + ∥w∥2

)
+ h

M∑
i=1


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

ux̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Ux̄,i

 zx̄,i

+h

M∑
i=1


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

vx̄,i

(3.12)
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−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Vx̄,i

wx̄,i

≤ −h
M−1∑
i=1

(ψ1,izi + ψ2,iwi) .

Note that, 
1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

ux̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Ux̄,i

 (ux̄,i − Ux̄,i)

+


1 +

t∫
0

[
(ux̄,i)

2 + (vx̄,i)
2
]
dτ

p

vx̄,i

−

1 +

t∫
0

[
(Ux̄,i)

2 + (Vx̄,i)
2
]
dτ

p

Vx̄,i

 (vx̄,i − Vx̄,i)

=

1∫
0

d

dξ

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p

× [Ux̄,i + ξ(ux̄,i − Ux̄,i)] dξ (ux̄,i − Ux̄,i)

+

1∫
0

d

dξ

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p

× [Vx̄,i + ξ(vx̄,i − Vx̄,i)] dξ (vx̄,i − Vx̄,i)

= 2p

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p−1

×
t∫

0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i) + [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ

× [Ux̄,i + ξ(ux̄,i − Ux̄,i)] dξ (ux̄,i − Ux̄,i)

+

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p

25
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× (ux̄,i − Ux̄,i) dξ (ux̄,i − Ux̄,i)

+2p

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p−1

×
t∫

0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i) + [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ

× [Vx̄,i + ξ(vx̄,i − Vx̄,i)] dξ (vx̄,i − Vx̄,i)

+

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p

× (vx̄,i − Vx̄,i) dξ (vx̄,i − Vx̄,i)

= 2p

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p−1

×
t∫

0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i) + [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ

×{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i) + [Vx̄,i + ξ(vx̄,i − Vx̄,i)] dξ (vx̄,i − Vx̄,i)} dξ

+

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p

×
[
(ux̄,i − Ux̄,i)

2 + (vx̄,i − Vx̄,i)
2
]
dξ

= p

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p−1

× d

dt

 t∫
0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)

+ [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ)2 dξ

+

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p
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×
[
(ux̄,i − Ux̄,i)

2 + (vx̄,i − Vx̄,i)
2
]
dξ.

After substituting this equality in (3.12), integrating received equality
on (0, t) and using formula of integrating by parts we get

∥z∥2 + ∥w∥2 + 2h

M∑
i=1

t∫
0

1∫
0

1 +

t
′∫

0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2

+ [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

′
)p [

(ux̄,i − Ux̄,i)
2 + (vx̄,i − Vx̄,i)

2
]
dξdτ

+2ph
M∑
i=1

1∫
0

1 +

t∫
0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

p−1

×

 t∫
0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)

+ [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ)2 dξ

−2p(p− 1)h

M∑
i=1

1∫
0

t∫
0

1 +

t
′∫

0

{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2

+ [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}
dτ

′
)p−2

×
{
[Ux̄,i + ξ(ux̄,i − Ux̄,i)]

2 + [Vx̄,i + ξ(vx̄,i − Vx̄,i)]
2
}

×

 t
′∫

0

{[Ux̄,i + ξ(ux̄,i − Ux̄,i)] (ux̄,i − Ux̄,i)

+ [Vx̄,i + ξ(vx̄,i − Vx̄,i)] (vx̄,i − Vx̄,i)} dτ
′
)2
dξdτ

= −2h

M−1∑
i=1

t∫
0

(ψ1,izi + ψ2,iwi) dτ.
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Taking into account relation 0 < p ≤ 1 from last equality we have

∥z(t)∥2h + ∥w(t)∥2h ≤
t∫

0

(
∥z(τ)∥2h + ∥w(τ)∥2h

)
dτ

+

t∫
0

(
∥ψ1∥2h + ∥ψ2∥2h

)
dτ.

(3.13)

From (3.13) using Gronwall’s inequality we get validity of the Theorem
2.

Note that investigated semi-discrete scheme (2.4) - (2.6) is using for
numerical solution of the problem (2.1) - (2.3) by natural discretisation
of time derivative and integral as it are given for example in [23], [24] for
the case p = 1. Solving the obtaining finite difference scheme we use a
algorithm analogical to [25]. So, it is necessary to use Newton iterative
process [27]. According to this method the great numbers of numerical
experiments are carried out. These experiments agree with the theoretical
results given in the Theorems 1 and 2.
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