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Abstract

In the present paper by means of the I. Vekua method the system of differential

equations for the nonlinear theory of non-shallow spherical shells is obtained. Using

the method of the small parameter approximate solutions of I. Vekua’s equations for

approximations N = 0 is constructed. The small parameter ε = h/R, where 2h is the

thickness of the shell, R is the radius of the sphere. Concrete problem is solved.
Key words and phrases: Non-shallow shells, geometrically nonlinear theory,

small parameter, spherical shells.
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1 Equations of Equilibrium of an Elastic Medium

Making use of tensor notation, we can write the equilibrium equation of the
continuous medium and stress-strain relations (Hooke’s law) in the form [1]

∇̂iσ
i +Φ = 0, (1)

σi = Eijpqepq (Rj + ∂ju) , (2)

where ∇̂i are covariant derivatives with respect to the space coordinates xi,
Φ is the volume force, σi are the contravariant constituents of the stress
vectors, Eijpq is the contravariant tensor of rank four:

Eijpq = λgijgpq + µ
(
gipgjq + giqgip

) (
gij = RiRj

)
,

λ and µ are Lamé’s constants, epq are covariant components of the strain
tensor:

epq =
1

2

(
Rp∂qu+Rq∂pu+ ∂pu∂qu

)
, (3)
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u is the displacement vector, Ri and Ri are covariant and contravariant
base vectors of the space, gij are contravariant components of the discrim-
inant g of the metric quadratic form of the space.

2 Non-shallow spherical shells

Let Ω denote a shall and the domain of the space occupied by this shell.
Inside the shell, we consider a smooth surface S with respect to which the
shell Ω lies symmetrically. The surface S is called the midsurface of the shell
Ω. To construct the theory of shells, we use the more convenient coordinate
system which is normally connected with the midsurface S. This means
that the radius-vector R of any point of the domain Ω can be represented
in the form

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2),

where r and n are the radius-vector and the unit vector of the normal of
the surface S (x3 = 0), respectively, (x1, x2) are the Gaussian parameters
of the midsurfaces.

For the non-shallow spherical shell of radius R, Ri and Ri are con-
nected with the covariant and contravariant base vectors ri and ri of the
midsurface S (x3 = 0) by the following relations:

Rα =

(
1 +

x3

R

)
rα, Rα =

1

1 +
x3

R

rα, R3 = R3 = n. (4)

The relation (1) can be written as:

∇α(ϑσ
α) + ∂3(ϑσ

3) + ϑΦ = 0, (5)

where∇α are covariant derivatives on the midsurface S (x3 = 0) of spherical

shell and ϑ =

(
1 +

x3

R

)2

.

The Hooke’s law (2) can be written as:

σα = λ

 rβ∂βu

1 +
x3

R

+ n∂3u+
∂βu∂βu

2

(
1 +

x3

R

)2 +
1

2
∂3u∂3u



×

 rα

1 +
x3

R

+
∂αu(

1 +
x3

R

)2


(6)
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+µ

rα∂βu+ rβ∂αu(
1 +

x3

R

)3 +
∂αu∂βu(
1 +

x3

R

)4


((

1 +
x3

R

)
rβ + ∂βu

)

+µ

 rα∂3u

1 +
x3

R

+
(n+ ∂3u)∂αu(

1 +
x3

R

)2

 (n+ ∂3u) ,

σ3 = λ

 rβ∂βu

1 +
x3

R

+ n∂3u+
∂βu∂βu

2

(
1 +

x3

R

)2 +
1

2
∂3u∂3u

 (n+ ∂3u)

+µ

(n+ ∂3u)∂βu(
1 +

x3

R

)2 +
rβ∂3u

1 +
x3

R


((

1 +
x3

R

)
rβ + ∂βu

)

+µ
[
2n∂3u+ ∂3u∂3u

]
(n+ ∂3u) .

(7)

3 I. Vekua’s reduction method

In the present paper we use I. Vekua’s reduction method for the nonlinear
theory of non-shallow shells (I. Vekua used the method for linear theory of
shallow shells) the essence of which consists, without going into detals, in
the following: since the system of Legendre polynomials Pm(x3

h ) is complete
in the interval [−h, h], for equation (5) the equivalent infinite system of 2-D
equations is obtained [2-3]

∇α
(m)
σ α − 2m+ 1

h

(
(m−1)
σ 3 +

(m−3)
σ 3 + ...

)
+

(m)

F = 0, (8)

where (
(m)
σ i,

(m)

Φ

)
=
2m+ 1

2h

h∫
−h

(
ϑσi, ϑΦ

)
Pm

(
x3

h̄

)
dx3,

(m)

F =
(m)

Φ+
2m+ 1

2h

(
(+)

ϑ
(+)
σ 3−(−1)m

(−)

ϑ
(−)
σ 3

)
.
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Thus we have obtained the infinite system of 2-D equations (8), for
which the boundary conditions of the face surfaces (x3 = ±h) are satisfied,

i.e.
(±)
σ 3 = σ3(x1, x2,±h) is the preassigned vector field and is entered in

the equilibrium equations.
The equations of the state (6) may be write as:

(m)
σ α= λ

(
rβ∂β

(m)
u
)
rα + µ

(
rα∂β

(m)
u
)
rβ + µ∂α

(m)
u

+

∞∑
m1=0

{
Bm

m1

[
λ

(m1)
u ′3rα + µ

(m1)
u ′αn

]

+

∞∑
m2=0

{
Am

m1m2

[
λ

2

(
∂β

(m1)
u ∂β

(m2)
u
)
rα + λ

(
rβ∂β

(m1)
u
)
∂α

(m2)
u

+µ
(
∂α

(m1)
u ∂β

(m2)
u
)
rβ + µ

(
rα∂β

(m1)
u +rβ∂α

(m1)
u
)
∂β

(m2)
u

]
+Bm

m1m2

[
λ

2

(
(m1)
u ′ (m2)

u ′
)
rα + µ

(m1)
u ′α (m2)

u ′
]

(9)

+Cm
m1m2

[
λ

(m1)
u ′3∂α

(m2)
u +µ

(
∂α

(m1)
u

(m2)
u ′
)
n+ µ

(
n∂α

(m1)
u
)

(m2)
u ′
]

+

∞∑
m3=0

{
Āmm3

m1m2

[
λ

2

(
∂β

(m1)
u ∂β

(m2)
u +

(m1)
u ′ (m2)

u ′
)
∂α

(m3)
u

+µ
(
∂α

(m1)
u ∂α

(m2)
u
)
∂β

(m3)
u

]
+ µCmm3

m1m2
(∂α

(m1)
u

(m2)
u ′
)

(m3)
u ′
}}}

where

(m)
u =

2m+ 1

2h

h∫
−h

uPm

(x3
h

)
dx3,

(m)
u ′ =

2m+ 1

h

(
(m+1)
u +

(m+3)
u +...

)
,

Bm
m1

=
2m+ 1

2h

h∫
−h

(
1 +

x3
R

)
Pm1

(x3
h

)
Pm

(x3
h

)
dx3

= δmm1
+
h

R

[
m+ 1

2m+ 3
δm+1
m1

+
m

2m− 1
δm−1
m1

]
,

Bm
m1m2

=
2m+ 1

2h

h∫
−h

(
1 +

x3
R

)
Pm1

(x3
h

)
Pm2

(x3
h

)
Pm

(x3
h

)
dx3

=

min(m1,m2)∑
s=0

αm1m2sB
m
m1+m2−2s,

12
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Am
m1m2

=
2m+ 1

2h

h∫
−h

Pm1

(
x3
h

)
Pm2

(
x3
h

)
Pm

(x3
h

)
1 + x3

R

dx3

=



− R(2m+ 1)

h

∂

∂y

min(m1,m2)∑
r=0

αm1m2rPm1+m2−2r

(
−R
h

)
×Qm

(
−R
h

)
, m1 +m2 − 2r ≤ m

− R(2m+ 1)

h

∂

∂y

min(m1,m2)∑
r=0

αm1m2rPm

(
−R
h

)
×Qm1+m2−2r

(
−R
h

)
, m1 +m2 − 2r > m

Āmm3
m1m2

=
2m+ 1

2h

h∫
−h

Pm1

(
x3
h

)
Pm2

(
x3
h

)
Pm3

(
x3
h

)
Pm

(x3
h

)
(
1 + x3

R

)2 dx3

=



− R2(2m+ 1)

h2
∂

∂y

min(m1,m2)∑
r=0

αm1m2r

min(m3,m)∑
s=0

αm3msPm1+m2−2r

(
−R
h

)
×Qm3+m−2s

(
−R
h

)
, m1 +m2 − 2r ≤ m3 +m− 2s

− R2(2m+ 1)

h2
∂

∂y

min(m1,m2)∑
r=0

αm1m2r

min(m3,m)∑
s=0

αm3msPm3+m−2s

(
−R
h

)
×Qm1+m2−2r

(
−R
h

)
, m1 +m2 − 2r > m3 +m− 2s

Cm
m1m2

=
2m+ 1

2h

h∫
−h

Pm1

(x3
h

)
Pm2

(x3
h

)
Pm

(x3
h

)
dx3

=

min(m1,m2)∑
r=0

αm1m2rδ
r
m1+m2−2r,

Cmm3
m1m2

=
2m+ 1

2h

h∫
−h

Pm1

(x3
h

)
Pm2

(x3
h

)
Pm3

(x3
h

)
Pm

(x3
h

)
dx3

=

min(m1,m2)∑
r=0

αm1m2r

min(m3,m)∑
s=0

αm3msδ
m3+m−2s
m1+m2−2r,

13
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The equations of the state (7) may be write as:

(m)
σ 3=

∞∑
m1=0

{
Bm

m1

[
λ(rβ∂β

(m1)
u )n+ µ(n∂β

(m1)
u )rβ

]

+B̄m
m1

[
(λ+ µ)

(m1)
u ′
3n+ µ

(m1)
u ′
]
+

∞∑
m2=0

{
Bm

m1m2

[
λ(rβ∂β

(m1)
u )

(m2)
u ′

+µ(rβ
(m1)
u ′)∂β

(m2)
u +µ(

(m1)
u ′∂β

(m2)
u )rβ

]
+B̄m

m1m2

[
(λ+ µ)(

(m1)
u ′ (m2)

u ′)n+ (λ+ 2µ)(n
(m1)
u ′)

(m2)
u ′
]

(10)

+Cm
m1m2

[
λ

2
(∂β

(m1)
u ∂β

(m2)
u )n+ µ(n∂β

(m1)
u )∂β

(m2)
u

]
+

∞∑
m3=0

{(
λ

2
+ µ

)
B̄mm3

m1m2
(
(m1)
u ′ (m2)

u ′)
(m3)
u ′

+Cmm3
m1m2

[
λ

2
(∂β

(m1)
u ∂β

(m2)
u )

(m3)
u ′ + µ(∂β

(m1)
u

(m2)
u ′)∂β

(m3)
u

]}}}
where

B̄m
m1

=
2m+ 1

2h

h∫
−h

(
1 +

x3
R

)2
Pm1

(x3
h

)
Pm

(x3
h

)
dx3 = δmm1

+
2h

R

[
m+ 1

2m+ 3
δm+1
m1

+
m

2m− 1
δm−1
m1

]
+
h2

R2

[
m(m+ 1)δm−2

m1

(2m− 1)(2m− 3)

+
2m2 + 2m− 1

(2m− 1)(2m+ 3)
δmm1

+
(m+ 1)(m+ 2)

(2m+ 3)(2m+ 5)
δm+2
m1

]
,

B̄m
m1m2

=
2m+ 1

2h

h∫
−h

(
1 +

x3
R

)2
Pm1

(x3
h

)
Pm2

(x3
h

)
Pm

(x3
h

)
dx3

=

min(m1,m2)∑
s=0

αm1m2sB̄
m
m1+m2−2s,

B̄m3m
m1m2

=
2m+ 1

2h

h∫
−h

(
1 +

x3
R

)2
Pm1

(x3
h

)
Pm2

(x3
h

)
Pm3

(x3
h

)
Pm

(x3
h

)
dx3

=

min(m1,m2)∑
s=0

αm1m2s

min(m3,m)∑
r=0

αm3mrB̄
m3+m−2r
m1+m2−2s.

14



+ On Construction Of Approximate ... AMIM Vol.18 No.2, 2013

Here we have used the formulas of F. Neumann and J. Adams:

1∫
−1

Pm(t)dt

x− t
= 2Qm(x), (|x| > 1),

Pm(x)Pn(x) =

min(m,n)∑
r=0

αmnrPm+n−2r(x).

respectively, where Qm(x) is the Legender function of second order, and

αmnr =
Am−rArAn−r

Am+n−r

2m+ 2n− 4r + 1

2m+ 2n− 2r + 1
, Am =

1 · 3 · · · (2m− 1)

m!
.

4 Approximation of Order N = 0

Introduce the notations

(0)
σi = T i,

(0)

F = X.

To find components of the displacements vector and stress tensor, we
take the following series of expansions with respect to the small parameter
ε [4-5]:

(ui, T i, Xi) =
∞∑
k=1

(
(k)
u i,

(k)

T i i,
(k)

Xi )ε
k. (11)

Substituting the above expansions into relations (8), (9), (10) and than
equalizing the coefficients of expansions for εn, we obtain the following
system of equations:

4µ∂z̄

(
1

Λ
∂z

(k)
u +

)
+ 2(λ+ µ)∂z̄

(k)

θ =
(k)

X +

(
(0)
u i, ...,

(k−1)
u i

)
,

µ∇2
(k)
u 3 =

(k)

X 3

(
(0)
u i, ...,

(k−1)
u i

)
,

(12)

where

x1 = tan
θ

2
cosφ, x2 = tan

θ

2
sinφ,(

z = x1 + ix2,Λ =
4ρ2

(1 + zz̄)2
,∇2 =

4

Λ
∂2zz̄

)
, are the isometric coordinates

on the shell midsurface of spherical shell,

(k)
u + =

(k)
u 1 + i

(k)
u 2,

15
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(k)

θ =
1

Λ

(
∂z

(k)
u + + ∂z̄

(k)

u +

)
.

Introducing the well-known differential operators

∂z =
1

2

(
∂x1 − i∂x2

)
, ∂z̄ =

1

2

(
∂x1 + i∂x2

)
.

(k)

X+ and
(k)

X3 are expressed by
(0)
u+,

(0)
u3, ...,

(k−1)
u +,

(k−1)
u 3 and it is assumed

that they are already found.
Simple calculations show that general solutions of the system (12) can

be represented by means of three analytic functions of z in the form

(k)
u + = −κ

π

∫ ∫
D

Λ(ζ, ζ)φ′(ζ)dξdη

ζ − z
+

 1

π

∫ ∫
D

Λ(ζ, ζ)dξdη

ζ − z

φ′(z) (13)

−ψ(z) + 1

8µh2
λ+ µ

λ+ 2µ

1

π

∫ ∫
D

(k)

F +(ζ, ζ)dξdη

ζ − z

(k)
u 3 = f(z) + f(z)− 2

π

∫ ∫
D

(k)

X 3 ln |ζ − z|dξdη. (14)

where φ′(z), f(z) and ψ(z) are analytic functions of z = x1 + ix2 ∈ D, and
ζ = ξ + iη.

Further,

(k)

F +(z, z) = − 1

π

∫ ∫
D

 (k)

X

ζ − z
− κ

(k)

X

ζ − z

 dξdη,

(
κ =

λ+ 3µ

λ+ µ

)
.

D is the domain of the plane Ox1x2 onto which the midsurface S of the
shell Ω is mapped topologically.

Here we present a general scheme of solution of boundary problems
when the domain D is the circular ring with radius R1 and R2.

The second boundary problem (in displacements) for any k takes the
form

(k)
u+ = −κ

π

∫∫
D

Λ(ζ, ζ)φ′(ζ)dξdη

ζ − z
+

 1

π

∫∫
D

Λ(ζ, ζ)dξdη

ζ − z

φ′(z)

−ψ(z) =


(k)

G
′
+, |z| = R1,

(k)

G
′′
+, |z| = R2.

(15)

16
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(k)
u 3 = f(z) + f(z)|r0 =


(k)

G
′
3, |z| = R1,

(k)

G
′′
3, |z| = R2.

(16)

where
(k)

G+ and
(k)

G3 are the known values containing solutions
(0)
u i,

(1)
u i, ...,

(k−1)
u i, (i = 1, 2, 3) of the previous approximations.
Next φ′(z), ψ(z) and f(z) are expanded in power series of the type

φ′(z) =
∞∑
−∞

anz
n, ψ(z) =

∞∑
−∞

bnz
n, f(z) = γ ln z +

∞∑
−∞

cnz
n, (17)

and the expression
(k)

G+ and
(k)

G3 in the form of a complex Fourier series

(k)

G+ =
∞∑
−∞

Ake
ikθ,

(k)

G3 =
∞∑
−∞

Bke
ikθ.

By substituting (17) into (15) we obtain the system of algebraic equa-
tions

κα−n+1a−n − 2ān − b̄n−1 =
A′

−n+1

Rn−1
1

, n ≥ 1,

καnan − 2ā−n − b̄−n−1 = Rn+1
2 A′′

n+1, n ≥ 0,

−2ān − b̄n−1 =
A′′

−n+1

Rn−1
2

, n ≥ 1,

−2ā−n − b̄−n−1 = Rn+1
1 A′

n+1, n ≥ 0,

where αn = 8R2

R2∫
R1

ρ2n+1

(1 + ρ2)2
dρ.

For coefficients an and bn we have:

a−n =
Rn−1

2 A′
−n+1 −Rn−1

1 A′′
−n+1

κRn−1
1 Rn−1

2 α−n+1

, n ≥ 1,

an =
Rn+1

2 A′′
n+1 −Rn+1

1 A′
n+1

καn
, n ≥ 0,

bn−1 = −2an −
Ā′′

−n+1

Rn−1
2

, n ≥ 1,

b−n−1 = −2a−n −Rn+1
1 Ā′

n+1, n ≥ 0.

17
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For coefficients cn and γ we have:

γ =
B′

0 −B′′
0

lnR1/R2
, c0 + c̄0 =

B′
0 lnR2 −B′′

0 lnR1

lnR2 − lnR1
,

cn =
Rn

2B
′′
n −Rn

1B
′
n

R2n
2 −R2n

1

.

Acknowledgment

The designated project has been fulfilled by financial support of the Shota
Rustaveli National Science Foundation (Grant No 12/14).

References

1. Vekua, I. N., Shell Theory: General Methods of onstruction, Pitman
Advanced Publishing Program, Boston-London-Melbourne (1985).

2. Vekua, I. N., On construction of approximate solutions of equations
of shallow spherical shell, Intern. J. Solid Structures, 5, 991-1003
(1969).

3. Meunargia T.V. On one method of construction of geometrically and
physically nonlinear theory of non-shallow shells. Proc. A. Razmadze
Math. Inst., 119 (1999), 133-154.

4. Ciarlet P.G. Mathematical Elasticity, I ; Nort-Holland, Amsterdam,
New-York, Tokyo, 1998.

5. Gulua B., On construction of approximate solutions of equations of
the non-linear and non-shallow cylindrical shells, Bulletin of TICMI ,
13, (2009), 30-37.

18


