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Abstract

In the paper the turbulent diffusion equation in the axi-symmetric case with the

appropriate initial condition is considered.The approximate solution is obtained by

means of the stable finite-difference schemes.The numerical example is given.
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1 Introduction

The problem connected with the transport of some substance by the vortex
in the infinite area is described by the turbulent diffusion equation with the
appropriate initial condition [1]
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= (D +D1)∆u, (1.1)

u(x, y, z, 0) = ψ(x, y, z) (1.2)

where u is substance concentration, ψ(x, y, z) is the given continues func-
tion, D1 is the molecular diffusion coefficient, D is the turbulent diffusion
coefficient depending on time t and given by

D(t) = γν∗(t), ν∗(t) = λ|V |R,

ν∗(t) is a turbulence viscosity, γ and λ are some constants, V is the velocity
of the vortex and R is a radii. ν∗(t) and D(t) could be calculated from the
experiments.



AMIM Vol.18 No.1, 2013 N. Khatiashvili +

2 The finite difference schemes for
the axy-symmetric turbulent diffusion equation

We now consider the axi-symmetric case of the equation (1.1) (the axis of
symmetry is 0x) and suppose that V is known, D is the constant and is also
known. From the experimental results is also known, that at the beginning
of the turbulent process D1 is negligible and far from the initial point the
substance disappears very fast. Hence, instead of the infinite area we can
consider some cylinder, at the surface of which the substance concentration
is zero. The meridian cross-section of this cylinder will be denoted by
G = {−l/2 < x < l/2,−h < r < h } , where y = rcosϕ; z = rsinϕ.

We also suppose that the vortex is axi-symmetric, at the initial time is
located at the point (0, 0, 0) and the substance concentration is given by
the formula

ψ(x, y, z) = R0 sin exp(−α|x| − βr −N),

where α, β,N are definite positive constants, and exp(−5N) is negligible.
Let us consider the following problem
Problem 1. In the area QT = G× (0 ≤ t ≤ T ) to find the solution u

of the parabolic equation
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satisfying the following initial- boundary conditions

u(x, r, 0) = ψ(x, r); u(x,−h, t) = u(x, h, t) = 0;

u(−l/2, r, t) = u(l/2, r, t) = 0; (2.2)

where Vx, Vr are the velocity components, V = (Vx, Vr) .
A numerical treatment of the parabolic type equations by different finite

difference schemes was considered by numerous authors [2-10]. We will
construct the new type of finite difference schemes. Let us rewrite (2.1)
and (2.2) in the form
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(x, r, t) ∈ QT = G× (0 ≤ t ≤ T ), u(x, r, 0) = u0(x, r),

u(x, r, t) |Γ = φ, (x, r) ∈ G,G = G+ Γ,−l/2 ≤ x ≤ l/2, −h ≤ y ≤ h,

a, b1, b2, φ are definite functions, Γ is the contour of the rectangle.
In the non-dimensional variables x = x1, r = x2h, (−1 ≤ x1, x2 ≤ 1),

the equation (2.3) becomes
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where

b′2 =
h2(x2 + 1)2 − a

h(x2 + 1)
.

Let us construct a finite difference scheme. We divide the area of inte-
gration QT = G× [0, T ] by the planes x1i = −1 + ih1, x2j = jh2, tn = nτ ,
h1, h2, τ > 0 into cells, where i = 1, 2, . . . , (N−1), j = 1, 2, . . . , (N−1), n =
0, 1, 2, . . . L; h1 = 2

M , h2 = h
N , τ = 1

L . wk = {xk = (k1h1, k2h2) ∈ G} is a
squared net with the steps h1 and h2. wτ = {tn = nτ} is the net with the
step τ = 1

L ; 0 ≤ t ≤ 1.

For the equation (2.4) we introduce following alternating direction finite
difference schemes
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where

∆iy = y 0
xi

= (yxi + yx̄i); ∆iiy = yxix̄i ; y[
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p
n ;
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1
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[u(x1 + h1, x2)− u(x1, x2)];

yx2 =
1

h2
[u(x1, x2 + h2)− u(x1, x2)];
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yx̄1 =
1

h1
[u(x1, x2)− u(x1 − h1, x2)];

yx̄2 =
1

h2
[u(x1, x2)− u(x1, x2 − h2)];

The parameter σ is chosen from the condition [9]

σ ≥ c2n
2

ν(n− 1)
.

The stability and complete approximation of this schemes were proved
in [9, 10].

In our case

a = D; b1 = Vx; b2 = Vr −D/r.

Below the numerical example is given in non-dimensional variables in
a simple case, when the velocity V is a constant V = (0, 1), ψ(x, y, z) =
sin exp(−|x| − r − 3), and D = 10−3 (Fig.1; Fig.2). The graphs are con-
structed by using ”Maple”.

Note. In more general case,for low Reynolds number for the definition
of velocity components the Stokes linear axi-symmetric system is valid [1,
11]. In this case the velocity components are given by the formulas [11]
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5
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5
2

,

where q, c, C1, A are definite constants.

For this case the numerical results are in preparation.
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Fig. 1. Initial distribution of substance

Fig. 2. Distribution of substance at the moment t = 1
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