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Abstract

We consider the interior Neumann type boundary value problem (BVP) of ther-

moelastostatics for anisotropic bodies. We construct the general solution to the cor-

responding homogeneous BVP explicitly and by the potential method we investigate

the existence results. The problem is reduced to the equivalent system of singular

integral equations. The Fredholm properties of the corresponding matrix singular inte-

gral operator and its adjoint one are established and their null spaces are constructed

efficiently. Finally, on the basis of the results obtained we derive the necessary and

sufficient conditions in explicit form for the interior Neumann type nonhomogeneous

boundary value problem to be solvable.
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1 Introduction

Boundary-value problems of thermoelasticity, including mixed and crack
type boundary value problems, for the so called pseudo-oscillation and
steady state oscillation equations are well studied in the scientific litera-
ture for isotropic and anisotropic solids (for details see [6], [3], [4], [5], [1]
and the references therein).

The purpose of the present paper is a detailed analysis of the interior
Neumann type boundary value problem (BVP) of thermoelastostatics for
anisotropic bodies. We apply the potential method to this BVP and reduce
it to equivalent system of singular integral equations. We prove that the
corresponding matrix singular integral operator and its adjoint one are
normally solvable and show that their indices equal to zero. We construct
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explicitly the general solution of the BVP under consideration as well as
the seven dimensional null spaces of the mutually adjoint singular integral
operators associated with the BVP under consideration. On the basis of
these results we formulate the necessary and sufficient conditions explicitly
for the nonhomogeneous interior Neumann type BVP to be solvable.

2 Problem setting and Green’s formulas

Let Ω+ ∈ R3 be a bounded domain with smooth boundary S = ∂Ω+.
For simplicity, we assume that S is a C1,α-smooth surface with 0 < α 6 1.
We set Ω+ = Ω+ ∪ S and Ω− = R3 \ Ω+. By n(x) = (n1(x), n2(x), n3(x))
we denote the outward unit normal vector to S at the point x ∈ S. We
assume that the domains Ω± are occupied by anisotropic elastic media.

The basic governing homogeneous equations of the linear thermoelas-
tostatics read as (see, e.g., [6], [4], [10], [11]):

ckjpq∂j∂qup(x)− βkj∂jϑ(x) = 0, k = 1, 2, 3, (2.1)

λpq∂p∂qϑ(x) = 0, (2.2)

where x ∈ Ω±, u = (u1, u2, u3)
⊤ is the displacement vector, ϑ is the tem-

perature distribution function, ckjpq = cpqkj = cjkpq are elastic constants,
λpq = λqp are heat conduction coefficients, βpq = βqp are the material con-
stant describing the coupling of mechanical and thermal fields, ∂j = ∂/∂xj ,
∂ = ∇ = (∂1, ∂2, ∂3). Throughout the paper summation over repeated in-
dices is meant from 1 to 3 if not otherwise stated. The symbol (·)⊤ denotes
transposition.

The matrix [λpq]3×3 is assumed to be positive definite, while the quadratic
form ckjpq ηkj ηpq is assumed to be positive definite in symmetric variables
ηkj = ηjk ∈ R, i.e., there are positive constants δ1 and δ2 such that the
following inequalities hold true (cf., [4], [6], [10])

λpq ξp ξq > δ1 ξp ξp for all ξ = (ξ1, ξ2, ξ3) ∈ R3,
ckjpq ηkj ηpq > δ2 ηkj ηkj for all ηkj = ηjk ∈ R. (2.3)

The system (2.1)-(2.2) can be written in matrix form

A(∂)U(x) = 0, x ∈ Ω±, (2.4)

where U = (u1, u2, u3, ϑ)
⊤ = (u, ϑ)⊤,

A(∂) :=
[
Akj(∂)

]
4×4

=

[
C(∂) [−βkj∂j ]3×1

[0]1×3 Λ(∂)

]
4×4

, (2.5)
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C(∂) =
[
Ckp(∂)

]
3×3

, Ckp(∂) = ckjpq∂j∂q, Λ(∂) = λpq∂p∂q. (2.6)

Further, let us introduce the following boundary operators related to the
thermo-mechanical stress vector and the heat flux vector

P (∂, n) :=
[
Pkp(∂, n)

]
3×4

=
[
[T (∂, n)]3×3, [−βkjnj ]3×1

]
3×4

, (2.7)

B(∂, n) :=
[
Bkp(∂, n)

]
4×4

=

[
T (∂, n) [−βkjnj ]3×1

[0]1×3 λ(∂, n)

]
4×4

, (2.8)

T (∂, n) :=
[
Tkp(∂, n)

]
3×3

= [ckjpqnj∂q]3×3 , λ(∂, n) = λpqnp ∂q . (2.9)

For a given vector-function U = (u, ϑ)⊤ the four dimensional vector

B(∂, n)U =
(
P (∂, n)U, λ(∂, n)ϑ

)
has the following physical sense: the first three components correspond to
the thermo-mechanical stress vector

[
P (∂, n)U

]
k
=

[
T (∂, n)u

]
k
− βkj nj ϑ,

k = 1, 2, 3, while the fourth component corresponds to the normal com-
ponent of the heat flux vector λ(∂, n)ϑ. Note that T (∂, n)u is the usual
mechanical stress vector when the thermal effects are not taken into con-
sideration.

Denote by A∗(∂) the operator adjoint to A(∂):

A∗(∂) :=
[
A⊤(−∂)

]
=

[
C(∂) [0]3×1[

βkj∂j
]
1×3

Λ(∂)

]
4×4

, (2.10)

and introduce a boundary operator Q(∂, n) associated with the operator
A∗(∂),

Q(∂, n) :=
[
Qkp(∂, n)

]
4×4

=

[
T (∂, n) [ 0 ]3×1

[0]1×3 λ(∂, n)

]
4×4

. (2.11)

For vector-functions U = (u, ϑ)⊤ ∈ [C2(Ω+)]4 and U∗ = (u∗, ϑ∗)⊤ ∈
[C2(Ω+)]4 we have the following Green’s formulas (cf., [3], [4])∫
Ω+

Λ(∂)ϑ ϑ∗ dx = −
∫
Ω+

λpq∂qϑ∂pϑ
∗ dx+

∫
∂Ω+

{λ(∂, n)ϑ}+{ϑ∗}+dS, (2.12)

∫
Ω+

C(∂)u · u∗ dx = −
∫
Ω+

Ẽ(u, u∗) dx+

∫
∂Ω+

{T (∂, n)u}+ · {u∗}+ dS, (2.13)

∫
Ω+

A(∂)U · U∗ dx = −
∫
Ω+

E(U,U∗) dx+

∫
∂Ω+

{B(∂, n)U}+ · {U∗}+dS,

(2.14)
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Ω+

{
A(∂)U · U∗ − U ·A∗(∂)U∗} dx =

∫
∂Ω+

{
{B(∂, n)U}+ · {U∗}+

− {U}+ · {Q(∂, n)U∗}+
}
dS, (2.15)

where

E(U,U∗) = ckjpq ∂puq ∂ku
∗
j − βkj ϑ∂ju

∗
k + λpq ∂qϑ∂pϑ

∗,

Ẽ(u, u∗) = ckjpq ∂puq ∂ku
∗
j .

Here and in what follows the symbols {·}+ and {·}− denote one sided limits
on S from Ω+ and Ω− respectively, while the central dot denotes the scalar
product in R3.

Now let us formulate the interior Neumann type boundary value prob-
lem (N)+:

Find a regular vector-function U ∈
[
C2(Ω+)

]4 ∩ [
C1(Ω+)

]4
in the domain

Ω+ satisfying the differential equation

A(∂)U(x) = 0, x ∈ Ω+, (2.16)

and the Neumann type boundary condition{
B(∂, n)U(x)

}+
= F (x), x ∈ S, (2.17)

where F =
(
F1, F2, F3, F4

)⊤ ∈ [C(S)]4 is a given vector-function.
If F = 0 we have the homogeneous Neumann type BVP.

3 Uniqueness theorem

Here we prove the following uniqueness theorem.

Theorem 3.1 The general solution U0 to the homogeneous Neumann type
boundary value problem (N)+ is representable as

U0(x) =
(
χ(x) + ϑ0v

(0)(x), ϑ0
)⊤

=
(
χ(x), 0

)⊤
+ ϑ0

(
v(0)(x), 1

)⊤
,

where ϑ0 is an arbitrary constant, χ(x) = a× x+ b is a rigid displacement
vector with a = (a1, a2, a3)

⊤ and b = (b1, b2, b3)
⊤ being arbitrary constant

vectors, while

v
(0)
k (x) = αkl xl, k = 1, 2, 3,

and the constants αkl = αlk are defined by the uniquely solvable system of
linear algebraic equations

ckjpqαpq = βkj , k, j = 1, 2, 3 .
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Proof. It is easy to see that the homogenous BVP under consideration is
decomposed into two boundary value problems:[

C(∂)u(x)
]
k
= βkj∂ju4(x), x ∈ Ω+, (3.1){

P (∂, n)U(x)
}+

k
= 0, x ∈ S, k = 1, 2, 3, (3.2)

and

λpq∂p∂qu4(x) = 0, x ∈ Ω+,{
λ(∂, n)u4(x)

}+
= 0, x ∈ S,

where U = (u1, u2, u3, u4)
⊤ = (u, u4)

⊤, with u = (u1, u2, u3)
⊤ and u4 := ϑ.

By Green’s formula (2.12), with the help of positive definiteness of
the matrix [λpq]3×3 and the first inequality in (2.3), we easily deduce that
u4(x) = ϑ0 = const in Ω+, where ϑ0 is an arbitrary constant. Therefore
(3.1)-(3.2) along with (2.7) lead to the following non-homogenous Neumann
type boundary value problem of elastostatics[

C(∂)u(x)
]
k
= 0, x ∈ Ω+, k = 1, 2, 3, (3.3){

T (∂, n)u(x)
}+

k
= βkjnj(x)ϑ0, x ∈ S, k = 1, 2, 3. (3.4)

It is well known that a non-homogenous Neumann type boundary value
problem of elastostatics is not unconditionally solvable, the total stress vec-
tor and total momentum of the prescribed boundary stress vector should
vanish (see, e.g., [6]). The necessary and sufficient conditions for the non-
homogeneous problem (3.3)-(3.4) to be solvable read as∫

S
βpjnjϑ0dS = 0,

∫
S

(
βpjnjϑ0xq − βqjnjϑ0xp

)
dS = 0, p, q = 1, 2, 3,

which are automatically satisfied for arbitrary constant ϑ0 due to the Gauss
divergence theorem and the symmetry condition βpq = βqp. Therefore the
nonhomogeneous problem (3.3)-(3.4) is solvable and the general solution
can be represented as

u(x) = u(0)(x) + χ(x),

where u(0) = (u
(0)
1 , u

(0)
2 , u

(0)
3 )⊤ is some particular solution of the problem

(3.3)-(3.4) and χ(x) = a × x + b is an arbitrary rigid displacement vector
with a = (a1, a2, a3)

⊤ and b = (b1, b2, b3)
⊤ being arbitrary constant vectors.

Now we construct explicitly the particular solution u(0)(x). It is evident

that if a vector v(0) = (v
(0)
1 , v

(0)
2 , v

(0)
3 )⊤ solves the problem[

C(∂)v(0)(x)
]
k
= 0, x ∈ Ω+, k = 1, 2, 3, (3.5)
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[
T (∂, n)v(0)(x)

]+
k
= βkjnj(x), x ∈ S, k = 1, 2, 3, (3.6)

then u(0)(x) = ϑ0v
(0)(x) is a sought for particular solution. Let us look for

the vector v(0) = (v
(0)
1 , v

(0)
2 , v

(0)
3 )⊤ in the form

v
(0)
k (x) = αkl xl, k = 1, 2, 3, (3.7)

where αkl = αlk are constants to be defined. Clearly the vector-function
v(0) automatically satisfies equation (3.5). Note that[

T (∂, n)v(0)(x)
]
k
= Tkp(∂, n)v

(0)
p (x) = ckjpqnj∂q(αplxl)

= ckjpqnjαplδql = ckjpqnjαpq, k = 1, 2, 3,

where δql is the Kronecker delta. Therefore the boundary conditions (3.6)
lead to the equations

ckjpqnj αpq = βkj nj , k = 1, 2, 3.

Whence, equating the coefficients of nj , we arrive at the system of linear
algebraic equations

ckjpq αpq = βkj , k, j = 1, 2, 3. (3.8)

Since the quadratic form ckjpqγpqγkj in symmetric variables γjk = γkj is
positive definite due to the second inequality in (2.3), we conclude that the
system (3.8) is uniquely solvable and the constants αpq are uniquely defined.
Consequently, a particular solution u(0)(x) is constructed explicitly,

u(0)(x) = ϑ0 v
(0)(x) + χ(x), x ∈ Ω+,

where v(0) is given by (3.7) with coefficients αkl defined by the system (3.8).
2

Remark 3.2 Let us introduce a space of generalized rigid displacement
vectors X which is defined by the basis vectors

Ψ(1) =
(
1, 0, 0, 0

)⊤
, Ψ(2) =

(
0, 1, 0, 0

)⊤
, Ψ(3) =

(
0, 0, 1, 0

)⊤
,

Ψ(4) =
(
0,−x3, x2, 0

)⊤
, Ψ(5) =

(
x3, 0,−x1, 0

)⊤
, (3.9)

Ψ(6) =
(
− x2, x1, 0, 0

)⊤
, Ψ(7) =

(
v
(0)
1 , v

(0)
2 , v

(0)
3 , 1

)⊤
,

where v
(0)
k , k = 1, 2, 3, are the same as above and are given by (3.7).

It is evident that all the vectors-functions Ψ(k), k = 1, 7, represent so-
lutions to the homogenous Neumann type BVP (N)+. Moreover, due to
Theorem 3.1 any solution of the homogenous BVP (N)+ can be represented
as a linear combination of the vector-functions (3.9).
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4 Properties of potential type operators

4.1 Fundamental matrices

Denote by Γ(x) =
[
Γkj(x)

]
4×4

the fundamental matrix of the operator
A(∂x),

A(∂x)Γ(x− y) = I4 δ(x− y),

where δ(·) is Dirac’s distribution. Here and in what follows Ik stands for
the k × k unit matrix.

The fundamental matrix Γ(x) can be constructed explicitly and is writ-
ten in the form

Γ(x) = F −1
ξ→x

[
A−1(−iξ)

]
,

where F−1
ξ→x is the inverse Fourier transform1 and A−1(−iξ) is the matrix

inverse to A(−iξ),

A−1(−iξ) = 1

detA(−iξ)
A(c)(−iξ),

where A(c)(−iξ) is the matrix of co-factors of the matrix A(−iξ).
Note that detA(−iξ) is a homogeneous polynomial of order 8 in vari-

ables ξ = (ξ1, ξ2, ξ3), and, moreover, detA(−iξ) ̸= 0 for ξ ∈ R3 \ {0}. It
is also evident that the entries of the matrix A(c)(−iξ) are also homoge-
neous polynomials and at the origin and at infinity they have the following
asymptotic behaviour:

A
(c)
kj (−iξ) = O(|ξ|6), k, j = 1, 2, 3,

A
(c)
j4 (−iξ) = O(|ξ|5), A

(c)
4j (−iξ) = 0, j = 1, 2, 3,

A
(c)
44 (−iξ) = O(|ξ|6).

The functions A
(c)
j4 (−iξ) for j = 1, 2, 3, are odd polynomials in ξ. Conse-

quently, the entries

Kj(ξ) :=
A

(c)
j4 (−iξ)

detA(−iξ)
, j = 1, 2, 3,

are odd functions in ξ: Kj(−ξ) = −Kj(ξ), j = 1, 3. Therefore for the
homogenous functionsKj(ξ) of order −3 the cancelation Tricomi conditions∫

|ξ|=1

Kj(ξ)dS = 0, j = 1, 2, 3, (4.1)

1For absolutely integrable functions f and g the direct and inverse Fourier trans-
forms are defined as follows Fx→ξ[f(x)] =

∫
R3 f(x) e

i x·ξ dx and F−1
ξ→x[g(ξ)] =

(2π)−3
∫
R3 g(ξ) e

−i x·ξ dξ respectively.
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hold. Whence it follows that the generalized inverse Fourier transforms of
these functions K̂j(x) ≡ F −1

ξ→x[Kj(ξ)], understood in the Cauchy principal
value sense, are homogenous functions of order zero and satisfy the same
type cancelation Tricomi conditions (see [8, Ch. 2, Proposition 2.16])∫

|x|=1

K̂j(x)dS = 0, j = 1, 3. (4.2)

Since the generalized Fourier transform and inverse Fourier transform of a
homogeneous function of order −r < 0 is a homogenous function of order
−3 + r provided 0 < r < 3 (see, e.g., [8, Ch. 2, Proposition 2.13]), the
entries of the fundamental matrix Γ(x) are homogeneous functions in x and
in a neighbourhood of the origin and infinity have the following asymptotic
behaviour

Γ(x) =

[ [
O(|x|−1)

]
3×3

[
O(1)

]
3×1

[0]1×3 O
(
|x|−1

) ]
4×4

,

i.e., the entries Γkj(x) for k, j = 1, 3, or k = j = 4, are homogeneous func-
tion of order −1, while the entries Γk4(x) for 1 6 k 6 3 are homogeneous
functions of zero order. Moreover, form (4.1) and (4.2) it follows that∫

|x|=1

Γk4(x)dS = 0, k = 1, 2, 3. (4.3)

It is evident that the matrix Γ∗(x− y) =
[
Γ(y− x)

]⊤
4×4

is the fundamental
matrix of the adjoint operator A∗(∂) and

Γ∗(x) =

[ [
O(|x|−1)

]
3×3

[0]3×1[
O(1)

]
1×3

O
(
|x|−1

) ]
4×4

. (4.4)

4.2 Classes Z(Ω−) and Z∗(Ω−)

Here we introduce special classes Z(Ω−) and Z∗(Ω−) of vector-functions
needed in our analysis below.

Definition 4.1 A vector-function U = (u1, u2, u3, ϑ)
⊤ is said to belong

to the class Z(Ω−) if it is continuous in a neighbourhood of infinity and
satisfies the following asymptotic conditions

uk(x) = O(1), k = 1, 2, 3, ϑ(x) = O(|x|−1) as |x| → ∞,

lim
R→∞

1

4πR2

∫
Σ(0,R)

uk(x) dΣ(0, R) = 0, k = 1, 2, 3,

where Σ(0, R) is a sphere centered at the origin and radius R.

30



+ Interior Neumann Type BVP ... AMIM Vol.18 No.1, 2013

Definition 4.2 A vector-function U∗ = (u∗1, u
∗
2, u

∗
3, ϑ

∗)⊤ is said to belong
to the class Z∗(Ω−) if it is continuous in a neighbourhood of infinity and
satisfies the following asymptotic conditions

u∗k(x) = O(|x|−1), k = 1, 2, 3, ϑ∗(x) = O(1) as |x| → ∞, (4.5)

lim
R→∞

1

4πR2

∫
Σ(0,R)

ϑ∗(x) dΣ(0, R) = 0, k = 1, 2, 3. (4.6)

These classes play a crucial role in the study of exterior problems (see [2]).

4.3 Layer potentials

The single layer potentials V , V ∗, and double layer potentials W , W ∗,
related to the fundamental solutions Γ(x− y) and Γ∗(x− y) read as follows

V (h)(x) = VS(h)(x) :=

∫
S

Γ(x− y)h(y) dSy, x ∈ R3 \ S, (4.7)

W (h)(x) =WS(h)(x) :=

∫
S

[
Q
(
∂y, n(y)

)
Γ⊤(x− y)

]⊤
h(y) dSy, (4.8)

x ∈ R3 \ S,

V ∗(φ∗)(x) = V ∗
S (φ

∗)(x) :=

∫
S

Γ∗(x− y)φ∗(y) dSy, x ∈ R3 \ S, (4.9)

W ∗(φ∗)(x) =W ∗
S(φ

∗)(x) :=

∫
S

[
B
(
∂y, n(y)

)
[Γ∗(x− y)]⊤

]⊤
φ∗(y) dSy,

x ∈ R3 \ S, (4.10)

where h = (h1, h2, h3, h4)
⊤ and φ∗ = (φ∗

1, φ
∗
2, φ

∗
3, φ

∗
4)

⊤ are the correspond-
ing densities defined on S, while the operators B(∂, n) and Q(∂, n) are
defined in (2.8) and (2.11) respectively.

The properties of these potentials are described by the following asser-
tions.

Theorem 4.3 The single and double layer potentials, V and W , solve the
homogeneous equation A(∂)U(x) = 0 in R3 \ S and belong to the class
Z(Ω−).

Proof. It can be found in [2]. 2

Theorem 4.4 The single and double layer potentials, V ∗ and W ∗, solve
the homogeneous equation A∗(∂)U∗(x) = 0 in R3 \S and belong to the class
Z∗(Ω−).
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Proof. The first part of the theorem follows from the relations[
A∗(∂x)V

∗(φ∗)(x)
]
k
=A∗

kj(∂x)
[
V ∗(φ∗)(x)

]
j

=A∗
kj(∂x)

∫
S

Γ∗
jp(x− y)φ∗

p(y)dSy

=

∫
S

A∗
kj(∂x)Γ

∗
jp(x− y)φ∗

p(y)dSy = 0, k = 1, 4,

since

A∗
kj(∂x)Γ

∗
jp(x− y) =

[
A∗(∂x)Γ

∗(x− y)
]
kp

= 0, k, p = 1, 4, x ̸= y.

Similarly for the double layer potential we have,[
A∗(∂x)W

∗(φ∗)(x)
]
k
=A∗

kj(∂x)
[ ∫
S

[
B
(
∂y, n(y)

)
[Γ∗(x− y)]⊤

]⊤
φ∗(y)dSy

]
j

=A∗
kj(∂x)

∫
S

[
B(∂y, n(y))[Γ

∗(x− y)]⊤
]
pj
φ∗
p(y)dSy

=A∗
kj(∂x)

∫
S

Bpm

(
∂y, n(y)

)
Γ∗
jm(x− y)φ∗

p(y)dSy

=

∫
S

Bpm

(
∂y, n(y)

)
A∗

kj(∂x)Γ
∗
jm(x− y)φ∗

p(y)dSy = 0,

k = 1, 4.

To prove the second part of the theorem, let us use the asymptotic property
of the fundamental matrix Γ∗(x−y) at infinity (see (4.4)). It can be shown
that if y belongs to a compact set, say S, and |x| is sufficiently large, then
the following relation holds

[
Q(∂y, n(y))[Γ

∗(x− y)]⊤
]⊤

=

[ [
O(|x|−2)

]
3×3

[
O(|x|−1)

]
3×1[

0
]
1×3

O(|x|−2)

]
4×4

.

Therefore[
W ∗(φ∗)(x)

]
k
=

{
O(|x|−2), k = 1, 3,
O(|x|−1), k = 4,

as |x| → ∞.

Whence the inclusion W ∗(φ∗) ∈ Z∗(Ω−) follows immediately.
To prove the same type inclusion for the single layer potential we pro-

ceed as follows. First, let us note that Γ∗(x − y) = Γ∗(x) + O(|x|−1) for
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y ∈ S and |x| sufficiently large. Therefore, in accordance with (4.4), we
have

[V ∗(φ∗)(x)]k = O(|x|−1), k = 1, 2, 3,

[V ∗(φ∗)(x)]4 =

4∑
p=1

∫
S

Γ∗
4p(x− y)φ∗

p(y) dSy

=
4∑

p=1

∫
S

[
Γ∗
4p(x) +O(|x|−1)

]
φ∗
p(y) dSy

=
3∑

p=1

Γ∗
4p(x)

∫
S

φ∗
p(y) dSy + Γ∗

44(x)

∫
S

φ∗
4(y) dSy +O(|x|−1)

=Γ∗
4p(x)

∫
S

φ∗
p(y)dS +O(|x|−1).

Whence, due to (4.3) we get

lim
R→∞

1

4πR2

∫
Σ(0,R)

[V ∗(φ∗)(x)]4 dΣ(0, R) =

= lim
R→∞

1

4πR2

∫
Σ(0,R)

{
Γ∗
4p(x)

∫
S

φ∗
p(y)dS +O(|R|−1)

}
dΣ(0, R)

= lim
R→∞

1

4πR2

{ ∫
Σ(0,R)

Γ∗
4p(x)dΣ(0, R)

∫
S

φ∗
4(y)dS +

∫
Σ(0,R)

O(|R|−1)dΣ(0, R)
}

= lim
R→∞

1

4πR2

∫
Σ(0,R)

O(|R|−1)dΣ(0, R) = 0,

which completes the proof. 2

By standard arguments it can be shown that if regular vector-functions
U and U∗ solve the homogeneous equations A(∂)U(x) = 0 and A∗(∂)U∗(x)
= 0 in Ω+, respectively, then the following integral representation formulas,
called also Green’s third formulas, hold

W
(
{U}+

)
(x)− V

(
{BU}+

)
(x) =

{
U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

(4.11)

W ∗({U∗}+
)
(x)− V ∗({QU∗}+

)
(x) =

{
U∗(x) for x ∈ Ω+,
0 for x ∈ Ω−.

(4.12)
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The counterparts of these formulas hold also true for the unbounded
domain Ω− assuming that vector-functions possess appropriate asymptotic
properties at infinity.

For example, if a regular vector-function U solves the homogenous equa-
tion A(∂)U(x) = 0 in Ω− and belongs to the space Z(Ω−) then (see [2])

−W
(
{U}−

)
+ V

(
{BU}−

)
=

{
U(x) for x ∈ Ω−,
0 for x ∈ Ω+.

Now we derive the similar integral representation formula of a regular solu-
tion to the homogeneous equation A∗(∂)U∗(x) = 0 in Ω− provided that the
vector-function U∗ belongs to the class of vector-functions satisfying the
asymptotic properties (4.5)-(4.6), i.e. U∗ ∈ Z∗(Ω−). To this purpose, let
us write the integral representation formula (4.12) for the bounded domain
Ω−
R := Ω− ∩ B(0, R), where R is a sufficiently large positive number and

B(0, R) := {x ∈ R3 : |x| < R} is a ball centered at the origin and radius
R, such that Ω+ ⊂ B(0, R),

W ∗
∂Ω−

R

(
{U∗}+

)
(x)− V ∗

∂Ω−
R

(
{QU∗}+

)
(x) =

{
U∗(x) for x ∈ Ω−

R,

0 for x ∈ R3 \ Ω−
R,

where ∂Ω−
R = S ∪ ΣR with ΣR = ∂ B(0, R). From this relation we have

U∗(x) = −W ∗
S({U∗}−S ) + V ∗

S ({QU∗}−S ) + ΦR(x), x ∈ Ω−
R, (4.13)

0 = −W ∗
S({U∗}−S ) + V ∗

S ({QU∗}−S ) + ΦR(x), x ∈ Ω+ ∪
[
R3 \B(0, R)

]
,

(4.14)

where V ∗
S and W ∗

S with S = ∂Ω+ are the single and double layer potentials
defined by formulas (4.9) and (4.10) respectively, while

ΦR(x) :=W ∗
ΣR

(
{U∗}+ΣR

)
(x)− V ∗

ΣR

(
{QU∗}+ΣR

)
(x) (4.15)

with V ∗
ΣR

and W ∗
ΣR

being again the single and double layer potentials with
the integration surface ΣR. From equality (4.15) it follows that

A∗(∂)ΦR(x) = 0, x ̸∈ ΣR. (4.16)

Moreover, from (4.13) and (4.14) we have

ΦR(x) =U∗(x) +W ∗
S

(
{U∗}−S

)
− V ∗

S

(
{QU∗}−S

)
, x ∈ Ω−

R, (4.17)

ΦR(x) =W ∗
S

(
{U∗}−S

)
− V ∗

S

(
{QU∗}−S

)
, x ∈ Ω+ ∪

[
R3 \B(0, R)

]
.

34



+ Interior Neumann Type BVP ... AMIM Vol.18 No.1, 2013

These relations imply that for sufficiently large numbers R1 < R2,

ΦR1(x) = ΦR2(x) for |x| < R1 < R2. (4.18)

Therefore, for arbitrary x ∈ R3 the following limit exists

Φ(x) := lim
R→∞

ΦR(x) =

{
U∗(x) +W ∗

S

(
{U∗}−S

)
− V ∗

S

(
{QU∗}−S

)
, x ∈ Ω−,

W ∗
S

(
{U∗}−S

)
− V ∗

S

(
{QU∗}−S

)
, x ∈ Ω+.

Consequently,

A∗(∂)Φ(x) = 0, x ∈ Ω+ ∪ Ω−.

On the other hand, from (4.18) we get

Φ(x) = lim
R→∞

ΦR(x) = ΦR1(x)

for arbitrary x ∈ R3 with R1 > |x| and Ω+ ⊂ B(0, R1). From (4.15) and
(4.16) then we conclude

A∗(∂)Φ(x) = 0, x ∈ R3. (4.19)

At the same time from (4.17) we see that

Φ ∈ Z∗(R3), (4.20)

since U ∈ Z∗(Ω−) and W ∗
S , V

∗
S ∈ Z∗(Ω−) due to Theorem 4.4. Further we

show that
Φ(x) = 0, ∀x ∈ R3.

Indeed, from the relations (4.19) by the Fourier transform we have

A∗(−iξ)Φ̂(ξ) = 0, ξ ∈ R3,

where the Fourier transform Φ̂(ξ) is a vector-function from the Schwartz
space of tempered distributions in view of (4.20). Since the determinant
detA(−iξ) is nonsingular for ξ ∈ R3 \ {0} (see Subsection 4.1), it follows
that the support of the distribution Φ̂ is the origin ξ = 0. Consequently, Φ̂
is a linear combination of the Dirac distribution and its derivatives,

Φ̂(ξ) =
∑

|α|6M

Cαδ
(α)(ξ),

where α = (α1, α2, α3) is a multi-index, Cα = (Cα,1, Cα,2, Cα,3, Cα,4)
⊤ is a

constant vector, M is some nonnegative integer, and δ(α) stands for the α-
th order derivative of Dirac’s distribution δ. Therefore the vector-function
Φ(x) is a polynomial in x,

Φ(x) =
∑

|α|6M

Cαx
α, x ∈ R3.
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Since Φ ∈ Z∗(R3), the conditions (4.5) and (4.6) imply that

Φ(x) = 0, x ∈ R3.

Now, passing to the limit in (4.13) as R → ∞, we arrive at the general
integral representation formula of a regular solution satisfying the property
Z∗(Ω−),

−W ∗({U∗}−
)
+ V ∗({QU∗}−

)
=

{
U∗(x) for x ∈ Ω−,
0 for x ∈ Ω+.

(4.21)

The mapping properties of the above introduced layer potentials are
described by the following assertions.

Theorem 4.5 Let S ∈ Ck+1,α with k > 1 and 0 < β < α 6 1. Then the
following operators are continuous

V : [Ck,β(S)]4 → [Ck+1,β(Ω±)]4, W : [Ck,β(S)]4 → [Ck,β(Ω±)]4,

V ∗ : [Ck,β(S)]4 → [Ck+1,β(Ω±)]4, W ∗ : [Ck,β(S)]4 → [Ck,β(Ω±)]4.

Proof. It is word for word of the proof of the corresponding theorems in
[6], [3], [4]. 2

Theorem 4.6 Let S ∈ C2,α with 0 < β < α 6 1, h ∈ [C0,β(S)]4, and
g ∈ [C1,β(S)]4. Then the following relations hold for all x ∈ S:

{V (h)(x)}± = H(h)(x), (4.22)

{B(∂x, n(x))V (h)(x)}± = [∓2−1I4 +K ]h(x), (4.23)

{W (h)(x)}± = [±2−1I4 +N ]h(x), (4.24)

{B(∂x, n(x))W (g)(x)}+ = {B(∂x, n(x))W (g)(x)}− =: Lg(x), (4.25)

{V ∗(φ∗)(x)}± = H∗(φ∗)(x), (4.26)

{Q(∂x, n(x))V
∗(φ∗)(x)}± = [∓2−1I4 +N ∗ ]φ∗(x), (4.27)

{W ∗(φ∗)(x)}± = [±2−1I4 +K∗ ]φ∗(x), (4.28)

{Q(∂x, n(x))W
∗(ψ∗)(x)}+= {Q(∂x, n(x))W

∗(ψ∗)(x)}−=: L∗ψ∗(x), (4.29)

where H and H∗ are weakly singular integral operators, K, N , K∗, and
N ∗ are singular integral operators, while L and L∗ are singular integro-
differential operators,

Hh(x) :=
∫
S

Γ(x− y)h(y)dSy, (4.30)
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Kh(x) :=
∫
S

[B(∂x, n(x))Γ(x− y)]h(y)dSy, (4.31)

Nh(x) :=

∫
S

[Q(∂y, n(y))Γ
⊤(x− y)]⊤h(y)dSy, (4.32)

Lg(x) := lim
Ω±∋z→x∈S

B(∂z, n(x)

∫
S

[Q(∂y, n(y))Γ
⊤(x− y)]⊤g(y)dSy, (4.33)

H∗φ∗(x) :=

∫
S

Γ∗(x− y)φ∗(y)dSy, (4.34)

K∗φ∗(x) :=

∫
S

[
B(∂y, n(y))[Γ

∗(x− y)]⊤
]⊤
φ∗(y)dSy, (4.35)

N ∗φ∗(x) :=

∫
S

[Q(∂x, n(x))Γ
∗(x− y)]φ∗(y)dSy, (4.36)

L∗ψ∗(x) := lim
Ω±∋z→x∈S

Q(∂x, n(x)

×
∫
S

[
B(∂y, n(y))[Γ

∗(x− y)]⊤
]⊤
φ∗(y)dSy. (4.37)

Proof. The jump relations (4.22), (4.23), (4.24), (4.26), (4.27),and (4.28)
can be proved by standard arguments (see [6], [3], [4]). The so called
Liapunov-Tauber type theorem (4.25) for the double layer potential W is
proved in [2]. Here we present a very simple proof of the Liapunov-Tauber
type theorem (4.29) for the adjoint double layer potential W ∗.

Let U∗ := W ∗(h) with h ∈ [C1,α(S)]4. Evidently U∗ ∈ [C1,α(Ω±)]4 ∩
Z∗(Ω−) and it satisfies the homogeneous equation (2.4). Therefore we can
write a general integral representation formulas (4.12) and (4.21) for the
vector-function U∗ in Ω±. By adding these formulas termwise we get

U∗(x) =W ∗([U∗]S)(x)− V ∗([QU∗]S)(x), x ∈ Ω+ ∪ Ω−, (4.38)

where [Ψ]S denotes the jump of a function Ψ across the surface S, [Ψ]S :=
{Ψ}+ − {Ψ}−. Note that due to the jump relations for the double layer
potential we have

[U∗]S = [W ∗(h)]S = {W ∗(h)}+ − {W ∗(h)}− = h.

Therefore from (4.38) it follows that

W ∗(h)(x) =W ∗(h)(x)− V ∗([QW ∗(h)]S)(x), x ∈ Ω+ ∪ Ω−,
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implying V ∗([QW ∗(h)]S)(x) = 0 for x ∈ Ω+ ∪ Ω−. Let us set Φ :=
[QW ∗(h)]S . Then evidently V ∗(Φ)(x) = 0 for all x ∈ Ω+ ∪ Ω− and in
view of (4.27) we deduce

0 = {QV ∗(Φ)}− − {QV ∗(Φ)}+ = Φ

≡ [QW ∗(h)]S = {QW ∗(h)}+ − {QW ∗(h)}−,

and, consequently, {QW ∗(h)(x)}+ = {QW ∗(h)(x)}− for x ∈ S which com-
pletes the proof. 2

Remark 4.7 Note that if S ∈ C2,α with 0 < β < α 6 1, then the operators

H, H∗ : [Ck,β(S)]4 → [Ck+1,β(S)]4,

are invertible (see [4, Remark 12.2]) and the operators

H−1, [H∗]−1 : [Ck+1,β(S)]4 → [Ck,β(S)]4

are continuous.

4.4 Uniqueness theorems for the Dirichlet problems

Here we recall the following uniqueness results for the Dirichlet interior
and exterior boundary value problems.

Theorem 4.8 The homogenous interior and exterior Dirichlet type bound-
ary value problems

A(∂)U(x) = 0 in Ω±, {U(x)}± = 0 on S,

where A(∂) is defined in (2.5)-(2.6), possess only the trivial solution in the

class of regular vector-functions
[
C 2(Ω±)

]4 ∩ [
C1(Ω±)

]4 ∩ Z(Ω−).

proof. It can be found in [2]. 2

Theorem 4.9 The homogenous interior and exterior Dirichlet type ”ad-
joint” boundary value problems

A∗(∂)U∗(x) = 0 in Ω±, {U∗(x)}± = 0 on S,

where A∗(∂) is defined in (2.10), possess only the trivial solution in the

class of regular vector-functions
[
C 2(Ω±)

]4 ∩ [
C1(Ω±)

]4 ∩ Z∗(Ω−).
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Proof. We start with the interior problem. Let U = (u, ϑ)⊤ ∈
[
C 2(Ω+)

]4∩[
C1(Ω+)

]4
be a regular solution of the homogenous interior Dirichlet type

boundary value problem, i.e.,

A∗(∂)U∗(x) = 0 for x ∈ Ω+, {U∗(x)}+ = 0 for x ∈ S.

From (2.10) it then follows that the original problem is decomposed into
two boundary value problems:[

C(∂)u∗(x)
]
k
= 0, x ∈ Ω+,{

u∗k(x)
}+

= 0, x ∈ S, k = 1, 2, 3, (4.39)

and

λpq∂p∂qu
∗
4(x) = βkj∂ju

∗
k(x), x ∈ Ω+, (4.40){

u∗4(x)
}+

= 0, x ∈ S. (4.41)

By Green’s formula (2.13) in view of the boundary condition (4.39) we
easily deduce u∗(x) = 0 for x ∈ Ω+. Therefore equation (4.40) takes the
form λpq∂p∂qu

∗
4(x) = 0 for x ∈ Ω+ and by Green’s formula (2.12) along

with the boundary condition (4.41) we conclude u∗4(x) = 0 in Ω+.

In the case of the exterior problem, we have to apply similar arguments
and take into account that U∗ ∈

[
C 2(Ω−)

]4 ∩ [
C1(Ω−)

]4 ∩ Z∗(Ω−). Evi-
dently, the counterpart of Green’s formula (2.13) for exterior domain Ω−

holds true for vector-function u∗ satisfying the decay condition (4.5) and
we again deduce that u∗(x) = 0 for x ∈ Ω−. Consequently, for the unknown
function u∗4 we arrive at the following exterior boundary value problem

λpq∂p∂qu
∗
4(x) = 0 for x ∈ Ω−,

{
u∗4(x)

}−
= 0 for x ∈ S,

where u∗4 is a regular bounded function at infinity satisfying the condition
(4.6). Therefore, due to Lemma A.1 in [9], we conclude that u∗4(x) =
C +O(|x|−1) with C being a constant summand, which implies u∗4(x) = 0
in Ω−. 2

5 Existence results for the interior Neumann type
problem

Here we investigate the existence of solutions to the nonhomogeneous Neu-
mann type BVP by the potential method and derive the necessary and
sufficient conditions for the problem to be solvable.
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5.1 Reduction to the system of integral equations

We look for a solution to the nonhomogeneous Neumann type BVP (2.16)–
(2.17) in the form of single layer potential

U(x) = V (φ)(x) ≡
∫
S
Γ(x− y)φ(y) dSy, x ∈ Ω+, (5.1)

where φ =
(
φ1, φ2, φ3, φ4

)⊤
is a sought for density, Γ(x− y) is the funda-

mental matrix of the operator A(∂).

Due to the jump relations of the single layer potential (see Theorem
4.6) and in view of the boundary condition (2.17) we arrive at the integral
equation for the unknown density vector φ,

−2−1 φ(x) +Kφ(x) = F (x), x ∈ S, (5.2)

where K is the singular integral operator defined by (4.31).

We start the investigation of the nonhomogeneous equation (5.2) with
the study of the homogeneous integral equation

−2−1 φ(x) +Kφ(x) = 0, x ∈ S, (5.3)

and the corresponding adjoint equation

−2−1 ψ(x) +K∗ψ(x) = 0, x ∈ S, (5.4)

where K∗ is the operator adjoint to K in the sense of L2(S) inner product,
i.e., (

Kφ,ψ
)
L2(S)

=
(
φ,K∗ψ

)
L2(S)

. (5.5)

From (5.5) we easy deduce that

K∗ψ(x) :=

∫
S

[
B(∂y, n(y))[Γ

∗(x− y)]⊤
]⊤
ψ(y)dSy,

where Γ∗(x− y) is the fundamental matrix of the operator A∗(∂).

We recall here that [−2−1 I4 +K] and [−2−1 I4 +K∗] with I4 = [δkj ]4×4

being the unit matrix are the singular integral operators of normal type
with index equal to zero (see [4]).

5.2 Null spaces of the integral operators

First we prove the following assertion.

40



+ Interior Neumann Type BVP ... AMIM Vol.18 No.1, 2013

Theorem 5.1 Let S ∈ C2,α with 0 < α 6 1. Then the operator [−2−1 I4+
K] possesses a seven dimensional null space with the basis{
H−1Ψ

(k)
S

}7

k=1
, where H−1 is the operator inverse to H, while Ψ

(k)
S is the

restriction on S of the vector-function Ψ(k) defined in (3.9),

Ψ
(k)
S (x) := Ψ(k)(x), x ∈ S. (5.6)

Proof. Let φ0 ∈ ker [−2−1 I4 + K] and construct the single layer potential
V (φ0). Since φ0 solves the homogeneous equation (5.3), it follows that the
vector U0 = V (φ0) solves the homogeneous interior Neumann type BVP
(2.16)–(2.17) with F = 0. Therefore by Theorem 3.1 and Remark 3.2 we
get

U0(x) = V (φ0)(x) =

7∑
k=1

CkΨ
(k)(x), x ∈ Ω+,

where Ck are some constants. Due to the continuity property of the single
layer potential across the surface S and using the equalities (5.6) we obtain

{
U0(x)

}+
=

{
V (φ0)(x)

}+ ≡ H(φ0)(x) =

7∑
k=1

CkΨ
(k)
S (x), x ∈ S,

where H is the integral operator defined in (4.30). By invertibility of the
operator H we deduce

φ0(x) =

7∑
k=1

Ck

(
H−1Ψ

(k)
S

)
(x), x ∈ S. (5.7)

Since the system
{
Ψ(k)(x)

}7

k=1
is linearly independent in the domain Ω+,

the restriction onto S of the same system is linearly independent as well.
Indeed, if there are constants b1, b2, · · · , b7, such that

∑7
k=1 |bk| ̸= 0 and

7∑
k=1

bkΨ
(k)
S (x) = 0, x ∈ S,

then it follows that the vector-function

U(x) =
7∑

k=1

bkΨ
(k)(x), x ∈ Ω+,

solves the Dirichlet interior boundary value problem. Consequently, U(x) =
0 in Ω+ due to the uniqueness Theorem 4.8, which contradicts to the linear
independence of the system

{
Ψ(k)(x)

}7

k=1
in Ω+.
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Next we show that the system{
H−1Ψ

(k)
S (x)

}7

k=1
, x ∈ S, (5.8)

is also linearly independent. In fact, let d1, d2, ..., d7, be constants such that∑7
k=1 |dk| ̸= 0 and

7∑
k=1

dkH−1Ψ
(k)
S (x) = 0, x ∈ S.

Applying the operator H to this equation we get

7∑
k=1

dkΨ
(k)
S (x) = 0, x ∈ S,

which in turn contradicts to the linear independence of the system (5.8).
Introduce the notation

φ(k)(x) := H−1Ψ
(k)
S (x), x ∈ S, k = 1, 7. (5.9)

From the above reasonings it follows that the system
{
φ(k)(x)

}7

k=1
is lin-

early independent on S, which implies that the homogeneous equation (5.3)
possesses at least 7 linearly independent solutions, i.e., dimker[−2−1 I4 +
K] > 7.

On the other hand, from the representation (5.7) of an arbitrary element

of ker [−2−1 I4 +K], it is evident that the system
{
φ(k)

}7

k=1
is basis of the

null-space ker [−2−1 I4 + K], yielding that dimker [−2−1 I4 + K] = 7. This
completes the proof.

2

Remark 5.2 An arbitrary element φ0 of the null-space ker [−2−1 I4 + K]
is representable as

φ0(x) =

7∑
k=1

Ck φ
(k)(x), x ∈ S,

where Ck are real constants and φ(k) are defined in (5.9).

Now we investigate the homogenous adjoint equation (5.4).

Theorem 5.3 Let S ∈ C2,α with 0 < α 6 1. Then the null space of the
adjoint operator −2−1 I4 + K∗ is seven dimensional with the basis vector-
functions

Φ(k) := Ψ(k), k = 1, 6, Φ(7) :=
(
0, 0, 0, 1

)⊤
, (5.10)

where Ψ(k), k = 1, 6, are defined in (3.9).
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Proof. The equality dimker
[
− 2−1 I4 +K∗] = 7 follows from Theorem

5.1 since the index of the operator −2−1 I4 +K equals to zero.
To construct the basis of the null space of the operator −2−1 I4 + K∗

explicitly we proceed as follow. Let ψ0 ∈
[
C1,α(S)

]4
be a solution to the

corresponding homogenous equation (5.4), i.e.,

−2−1 ψ0(x) +K∗ψ0(x) = 0, x ∈ S.

Then it follows that the vector-function U∗
0 defined by the adjoint double

layer potential

U∗
0 (x) = (u∗, ϑ∗)⊤ :=W ∗(ψ0)(x), x ∈ Ω±,

solves the homogenous differential equation

A∗(∂)U∗
0 (x) = 0, x ∈ Ω±,

and, in view of the relation{
U0

}−
=

{
W ∗(ψ0)

}−
= −2−1 ψ0 +K∗ψ0 = 0 on S,

satisfies the homogeneous exterior Dirichlet boundary condition. Since

U∗
0 =W ∗(ψ0) ∈

[
C1,α(Ω±)

]4 ∩ [
C2(Ω±)

]4 ∩ Z∗(Ω−) ,

by the uniqueness Theorem 4.9 for the adjoint exterior Dirichlet boundary
value problem we deduce

U∗
0 (x) =W ∗(ψ0)(x) = 0, x ∈ Ω−. (5.11)

Applying the Liapunov-Tauber type theorem (4.29) we get{
Q(∂, n)W ∗(ψ0)

}−
=

{
Q(∂, n)W ∗(ψ0)

}+
= 0,

implying that the vector-function U∗
0 solves the following adjoint interior

Neumann type boundary value problem:

A∗(∂)U∗
0 (x) = 0 in Ω+,{

Q(∂, n)U∗
0

}+
= 0 on S.

(5.12)

In turn, in accordance with (2.10)–(2.11), this problem can be decomposed
into two interior Neumann type boundary value problems

C(∂)u∗(x) = 0, x ∈ Ω+,{
T (∂, n)u∗(x)

}+
= 0, x ∈ S,

43



AMIM Vol.18 No.1, 2013 M. Ivanidze, D. Natroshvili +

and

Λ(∂)ϑ∗ = 0, x ∈ Ω+,
λ(∂, n)ϑ∗ = 0, x ∈ S.

The general solutions to these problems read as

u∗ = a× x+ b =

6∑
k=1

CkΨ̃
(k), ϑ∗ = C7 = const,

where a = (a1, a2, a3)
⊤ and b = (b1, b2, b3)

⊤ are arbitrary constant vectors,
Cj = bj , j = 1, 2, 3, Cj = aj , j = 4, 5, 6, C7 is an arbitrary constant, while

Ψ̃(1) =
(
1, 0, 0

)⊤
, Ψ̃(2) =

(
0, 1, 0

)⊤
, Ψ̃(3) =

(
0, 0, 1

)⊤
,

Ψ̃(4) =
(
0,−x3, x2

)⊤
, Ψ̃(5) =

(
x3, 0,−x1

)⊤
, Ψ̃(6) =

(
− x2, x1, 0

)⊤
.

Therefore the linearly independent system of vectors
{
Φ(k)(x)

}7

k=1
, where

Φ(k) := Ψ(k), k = 1, 6, with Ψ(k) defined in (3.9), and Φ(7) :=
(
0, 0, 0, 1

)⊤
,

represents a basis of the space of solutions to the homogeneous boundary
value problem (5.12) in Ω+. This implies that

W ∗(ψ0)(x) =

7∑
k=1

CkΦ
(k)(x) = 0, x ∈ Ω+.

It is easy to verify that the system
{
Φ
(k)
S (x)

}7

k=1
with Φ

(k)
S (x) := Φ(k)(x)

for x ∈ S is linearly independent on S as well.

Taking into account (5.11) and using the jump formulas for the adjoint
double layer potential, we get

{
W ∗(ψ0)(x)

}+ −
{
W ∗(ψ0)(x)

}−
= ψ0(x) =

7∑
k=1

CkΦ
(k)
S (x), x ∈ S.

The later yields that the system
{
Φ
(k)
S (x)

}7

k=1
defined in (5.10) represents

a basis of the null space ker
[
− 2−1 I4 +K∗].

2

5.3 Necessary and sufficient conditions of solvability

Here we present basic existence theorems which immediately follow from
the results established in Subsection 5.2.

44



+ Interior Neumann Type BVP ... AMIM Vol.18 No.1, 2013

Theorem 5.4 Let S ∈ C2,α and F ∈ [C0,β(S)]4 with 0 < β < α 6 1.
The necessary and sufficient conditions for the non-homogenous singular
integral equation (5.2) to be solvable read as(

F,Φ
(k)
S

)
L2(S)

≡
∫
S
F (x) · Φ(k)

S (x) dS = 0, k = 1, 7, (5.13)

where
{
Φ(k)(x)

}7

k=1
is the basis of the null space ker

[
−2−1 I4+K∗] defined

in (5.10).
If φ0 is some particular solution to equation (5.2), then the general

solution φ is representable in the form

φ(x) = φ(0)(x) +

7∑
k=1

CkH−1Ψ
(k)
S (x), x ∈ S, k = 1, 7,

where Ck are arbitrary constants, H−1 is the operator inverse to H and the

vector-functions Ψ
(k)
S are defined in (3.9).

Proof. The assertion follows directly from Theorems 5.1 and 5.3 due
to the general theory of normally solvable singular integral equations (see,
e.g., [6, Ch. IV], [7]). 2

This theorem immediately implies the following basic existence results
for the interior Neumann type BVP under consideration.

Theorem 5.5 Let S ∈ C2,α and F ∈ C0,β(S) with 0 < β < α 6 1. The
conditions (5.13) are necessary and sufficient for solvability of the nonho-
mogeneous Neumann type interior boundary value problem (2.16)–(2.17).
A solution to the problem is representable in the form of a single layer
potential (5.1), where the unknown density φ is defined by the singular
integral equation(5.2). If U0 is some particular solution to the nonhomoge-
neous problem (2.16)–(2.17), then the general regular solution to the same
problem can be represented as

U(x) = U0(x) +

7∑
k=1

CkΨ
(k)(x), x ∈ Ω+,

where Ck are arbitrary constants, while Ψ(k) are the generalized rigid dis-
placement vector-functions defined in (3.9).
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