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Abstract

We consider the statics case of the two-temperature theory of two-component

elastic mixtures. The representation formula of a general solution of the homogeneous

system of differential equations obtained in the paper is expressed by means of four

harmonic and four metaharmonic functions. These formulas are very convenient and

useful in many particular problems for domains with concrete geometry. Here we

demonstrate an application of these formulas to the Dirichlet and Neumann type

boundary value problem for a ball. Uniqueness theorems are proved. We construct

explicit solutions in the form of absolutely and uniformly convergent series.
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1 Introduction

Elastic composite materials with complex structures, as well as with struc-
tures composed of substantially differing materials are widely applied in
the modern technological processes. Hemitropic elastic materials, mixtures
produced from two or more elastic materials, etc., belong to the class of
such composite materials and structures. The study of practical problems
of mechanical properties of such materials naturally results in the necessity
to develop mathematical models, which would allow to get more precise
description of actual processes ongoing during the experiments. Mathe-
matical modeling for such materials commenced as early as in the sixties of
the past century. The first mathematical model of an elastic mixture (solid
with solid), the so-called diffuse model, was developed by A. Green and
T. Steel in 1966. In this model, the interaction force between components
depend upon the difference of displacement vectors of components. In the
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same year they have developed the single-temperature thermoelasticity the-
ory diffuse model of the elastic mixtures. Mathematical model of the linear
theory of thermoelasticity of two-temperature elastic mixtures for the com-
posites of granular, fibrous and layered structures was developed in 1984
by L. Khoroshun and N.Soltanov, Normally, the study of processes ongoing
in the body is reduced in the relevant mathematical model described by
the system of differential equations with partial derivatives to the study of
boundary value problems (BVPs), mixed type BVPs and boundary-contact
problems, and also the fundamental matrix for solving the system of differ-
ential equations playing a substantial role. For the diffuse and displacement
models of the two-component mixtures (single-temperature) thermoelas-
ticity theory, the issue of steadiness and correctness, identification of the
asymptotic behavior of problem solution, proving of the uniqueness and
existence theorems, solution of the BVPs for the domains bounded by the
specific surfaces, as absolutely and uniformly convergent series, are stud-
ied by many scientists, among them: Alves, Munoz Rivera, Quintanilla
[2], Basheleishvili [3], Basheleishvili, Zazashvili [4], Burchuladze, Svanadze
[6], Gales [8], Giorgashvili [10],Giorgashvili, Skhvitaridze [11], [12], Gior-
gashvili, Karseladze, Sadunishvili [13],Iesan [16], Natroshvili, Jaghmaidze,
Svanadze [32], Svanadze [38], Quintanilla [37], Pompei [36] etc.

We treat here only the classical setting of basic boundary value prob-
lems for smooth domains, however applying the results obtained in the
references Agranovich [1], Buchukuri, Chkadua, Duduchava, Natroshvili
[5], Duduchava, Natroshvili [7], Gao [9], Jentsch, Natroshvili [17], [18], [19],
Jentsch, Natroshvili, Wedland [20], [21], Kupradze, Gegelia, Basheleishvili,
Burchuladze [23], Mitrea, Pipher [24], Natroshvili [26], [27], [38], Natroshvili,
Giorgashvili, Stratis [29], Natroshvili, Giorgashvili, Zazashvili [30], Na-
troshvili, Kharibegashvili, Tediashvili [33], Natroshvili, Sadunishvili [34],
Natroshvili, Stratis [35], and using the same type approaches and rea-
sonings, one can analyze the generalized basic and mixed type boundary
value problems, as well as crack type and interface problems in Sobolev-
Slobodetskii and Bessel potential spaces for smooth and Lipschitz domains

In this paper we consider the statics case of the two-temperature theory
of two-component elastic mixtures. The representation formula of a general
solution of the homogeneous system of differential equations obtained in
the paper is expressed by means of four harmonic and four metaharmonic
functions. These formulas are very convenient and useful in many particular
problems for domains with concrete geometry. Here we demonstrate an
application of these formulas to the Dirichlet and Neumann type boundary
value problem for a ball. Uniqueness theorems are proved. We construct
an explicit solutions in the form of absolutely and uniformly convergent

4
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series.

2 Basic Equations and Auxiliary Theorems

The basic statical relationships for the two-component elastic mixtures, tak-
ing two-temperature thermal field into consideration, are mathematically
described by the following system of partial differential equations [22], [15]

a1∆u′(x) + b1 grad div u
′(x) + c∆u′′(x) + d grad div u′′(x)

−κ(u′(x)− u′′(x))− grad(η1θ1(x) + η2θ2(x)) = 0, (2.1)

c∆u′(x) + d grad div u′(x) + a2∆u′′(x) + b2 grad div u
′′(x)

+κ(u′(x)− u′′(x))− grad(ζ1θ1(x) + ζ2θ2(x)) = 0, (2.2)

κ1∆θ1(x) + κ2∆θ2(x)− α(θ1(x)− θ2(x)) = 0, (2.3)

κ2∆θ1(x) + κ3∆θ2(x)− α(θ1(x)− θ2(x)) = 0, (2.4)

where ∆ is the three-dimensional Laplace operator, u′ = (u′1, u
′
2, u

′
3)

⊤, u′′ =
(u′′1, u

′′
2, u

′′
3)

⊤ are partial displacement vectors, θ1 and θ2 are temperatures
of each component of the mixture, aj , bj , c, d, j = 1, 2 are the elasticity
coefficients, κ, κ3, α, ηj , ζj , κj , j = 1, 2, are the mechanical and
thermal constants of the elastic mixture, x = (x1, x2, x3) is a point in the
three-dimensional Cortesian space, ⊤ denotes transposition.

In the system (2.1)-(2.4), aj , bj , c, d, j = 1, 2, are the constants given
as follows [15]

a1 = µ1 − λ5, b1 = µ1 + λ5 + λ1 −
ρ2
ρ
α0, c = µ3 + λ5

a2 = µ2 − λ5, b2 = µ2 + λ5 + λ2 −
ρ1
ρ
α0, ρ = ρ1 + ρ2,

d = µ3 − λ5 + λ3 −
ρ1
ρ
α0, α0 = λ3 − λ4,

where ρ1 > 0, ρ0 > 0 are the densities of mixture components, λj , j =
1, 2, . . . , 5, µj , j = 1, 2, 3 are elastic constants satisfying the conditions

µ1 > 0, λ5 < 0, µ1µ2 − µ2
3 > 0, λ1 +

2

3
µ1 −

ρ2
ρ
α0 > 0,

(λ1 +
2

3
µ1 −

ρ2
ρ
α0)(λ2 +

2

3
µ2 −

ρ1
ρ
α0) > (λ3 +

2

3
µ3 −

ρ1
ρ
α0)

2.

5



AMIM Vol.18 No.1, 2013 L. Giorgashvili, A.Jaghmaidze,... +

From these inequalities it follows that

a1 > 0, a1 + b1 > 0,

d1 := a1a2 − c2 > 0, d2 := (a1 + b1)(a2 + b2)− (c+ d)2 > 0.

In addition, from physical consideration it follows that

κ > 0, α > 0, ,κj > 0, j = 1, 2, 3, d3 := κ1κ3 − κ2
2 > 0.

Assume that U = (u′, u′′, θ1, θ2)
⊤. The stress vector, which we denote

by the symbol P (∂, n)U , has the form

P (∂, n)U = (P (1)(∂, n)U, P (2)(∂, n)U, P (3)(∂, n)U, P (4)(∂, n)U)⊤,

where θ = (θ1, θ2)
⊤, n is the unit vector,

P (1)(∂, n)U = T (1)(∂, n)U ′ − n(η1θ1 + η2θ2),

P (2)(∂, n)U = T (2)(∂, n)U ′ − n(ξ1θ1 + ξ2θ2), U = (u′, u′′)⊤,

P (3)(∂, n)θ = κ1∂nθ1 + κ2∂nθ2,

P (4)(∂, n)θ = κ2∂nθ1 + κ3∂nθ2,

(2.5)

T (1)(∂, n)U ′ = 2∂n(µ1u
′ + µ3u

′′)

+ n

[
(λ1 −

ρ2
ρ
α0) div u

′ + (λ3 −
ρ1
ρ
α0) div u

′′
]

+
[
n×

(
(µ1 + λ5) rotu

′ + (µ3 − λ5) rotu
′′)] ,

T (2)(∂, n)U ′ = 2∂n(µ3u
′ + µ2u

′′)

+ n

[
(λ3 −

ρ1
ρ
α0) div u

′ + (λ2 −
ρ1
ρ
α0) div u

′′
]

+
[
n×

(
(µ3 − λ5) rotu

′ + (µ2 + λ5) rotu
′′)] ,

∂n = ∂/∂n is the derivative along the normal, symbol [×] denotes the vector
products of two vectors in R3.

Definition. The vector U = (u′, u′′, θ1, θ2)
⊤ is assumed to be regular

in a domain Ω ⊂ R3 if U ∈ C2(Ω) ∩ C1(Ω).

Theorem 2.1. For the vector U = (u′, u′′, θ1, θ2)
⊤ to a regular solution

of system (2.1)–(2.4) in a domain Ω ⊂ R3 it is necessary and sufficient

6
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that it be represented in the form

u′(x) = gradΦ1(x) + β1 gradΦ2(x) + β3

[
rot rot(xΦ3(x)) + rot(xΦ4(x))

]
+ β5 grad r

2

(
r
∂

∂r
+ 1

)
Φ5(x)− α1 rot rot(xr

2Φ5(x))

+ β6 grad

(
r
∂

∂r
+ 1

)(
2r

∂

∂r
+ 3

)
Φ5(x) + rot(xΦ6(x))

+ α2 grad

(
2r

∂

∂r
+ 3

)
Φ7(x) + α3 grad r

2Φ7(x) + α4 gradΦ8(x),

u′′(x) = gradΦ1(x) + β2 gradΦ2(x)

+ β4

[
rot rot(xΦ3(x)) + rot(xΦ4(x))

]
+ β5 grad r

2

(
r
∂

∂r
+ 1

)
Φ5(x)− α1 rot rot(xr

2Φ5(x))

+ β7 grad

(
r
∂

∂r
+ 1

)(
2r

∂

∂r
+ 3

)
Φ5(x) + rot(xΦ6(x))

− α2 grad

(
2r

∂

∂r
+ 3

)
Φ7(x) + α3 grad r

2Φ7(x)

+ α5 gradΦ8(x),

(2.6)

θ1(x) = 2α1

(
2r

∂

∂r
+ 3

)
Φ7(x) + (κ2 + κ3)Φ8(x),

θ2(x) = 2α1

(
2r

∂

∂r
+ 3

)
Φ7(x)− (κ1 + κ2)Φ8(x),

where ∆Φj(x) = 0, j = 1, 5, 6, 7, (∆ − λ2
2)Φ2(x) = 0, (∆ − λ2

3)Φj(x) =
0, j = 3, 4, (∆ − λ2

1)Φ8(x) = 0, α1 = κ(a1 + b1 + a2 + b2 + 2(c + d)),
α3 = η1+η2+ζ1+ζ2, α2 = (a1+b1+c+d)(ζ1+ζ2)−(a2+b2+c+d)(η1+η2),

α4 =
1

λ2
1d2(λ

2
1 − λ2

2)

×
{[

λ2
1(a2 + b2)− κ

]
[η1(κ2 + κ3) + η2(κ1 + κ2)]

−
[
λ2
1(c+ d) + κ

]
[ζ1(κ2 + κ3) + ζ2(κ1 + κ2)]

}
,

α5 =
1

λ2
1d2(λ

2
1 − λ2

2)

{[
λ2
1(a1 + b1)− κ

]
[ζ1(κ2 + κ3) + ζ2(κ1 + κ2)]

−
[
λ2
1(c+ d) + κ

]
[η1(κ2 + κ3) + η2(κ1 + κ2)]

}
,

(2.7)

β1 = −(a2 + b2 + c+ d), β2 = a1 + b1 + c+ d, β3 = a2 + c,

β4 = −(a1 + c), β5 = κ(a1 + a2 + 2c), β6 = 2(a2b1 + cb1 + a2d),

7
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β7 = 2(a1b2 + a1d+ cb2), λ2
1 = α(κ1 + κ3 + 2κ2)/d1 > 0,

λ2
2 = α1/d2 > 0, λ2

3 = κ(a1 + a2 + 2c)/d3 > 0.

Proof. Assume that the vector U = (u′, u′′, θ1, θ2)
⊤ is a solution of

system (2.1)–(2.4). From (2.3)–(2.4) we obtain

∆ [(κ1 + κ2)θ1(x) + (κ2 + κ3)θ2(x)] = 0,

(∆− λ2
1)[θ1(x)− θ2(x)] = 0,

where λ2
1 = α(κ1 + κ3 + 2κ2)/d1 > 0.

From these system we get

θ1(x) = 2α1

(
2r

∂

∂r
+ 3Φ7(x) + (κ2 + κ3)Φ8(x)

)
,

θ2(x) = 2α1

(
2r

∂

∂r
+ 3

)
Φ7(x)− (κ1 + κ2)Φ8(x),

(2.8)

where ∆Φ7(x) = 0, (∆−λ2
1)Φ8(x) = 0, α1 = κ(a1+ b1+a2+ b2+2(c+d)).

Substituting the values of θ1(x) and θ2(x), from (2.8) into equations
(2.1)–(2.2), we obtain

a1∆u′(x) + b1 grad div u
′(x) + c∆u′′(x) + d grad div u′′(x)

−κ(u′(x)− u′′(x)) = 2α1(η1 + η2) grad(2r
∂

∂r
+ 3)Φ7(x)

+(η1(κ2 + κ3) + η2(κ1 + κ2)) gradΦ8(x),

c∆u′(x) + d grad div u′(x) + a2∆u′′(x) + b2 grad div u
′′(x)

+κ(u′(x)− u′′(x)) = 2α1(ζ1 + ζ2) grad(2r
∂

∂r
+ 3)Φ7(x),

+(ζ1(κ2 + κ3) + ζ2(κ1 + κ2)) gradΦ8(x).

(2.9)

A general solution of system (2.9) has the form

U ′(x) = U ′
0(x) + V (x), (2.10)

where U ′
0 = (u′0, u

′′
0)

⊤ is a general solution of the homogeneous system of
differential equations

a1∆u′0(x) + b1 grad div u
′
0(x) + c∆u′′0(x) + d grad div u′′0(x)

−κ(u′0(x)− u′′0(x)) = 0,

8
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c∆u′0(x) + d grad div u′0(x) + a2∆u′′0(x) + b2 grad div u
′′
0(x)

+κ(u′0(x)− u′′0(x)) = 0, (2.11)

and V (x) is a particular solution of the nonhomogeneous system (2.9).

The solution U ′
0(x) has the form

u′0(x) = gradΦ1(x) + β1 gradΦ2(x) + β3

[
rot rot(xΦ3(x)) + rot(xΦ4(x))

]
+ β5 grad r

2

(
r
∂

∂r
+ 1

)
Φ5(x) + β6 grad

(
r
∂

∂r
+ 1

)
×
(
2r

∂

∂r
+ 3

)
Φ5(x)− α1 rot rot

(
xr2Φ5(x)

)
+ rot

(
xr2Φ6(x)

)
,

u′′0(x) = gradΦ1(x) + β2 gradΦ2(x) + β4

[
rot rot(xΦ3(x)) + rot(xΦ4(x))

]
+ β5 grad r

2

(
r
∂

∂r
+ 1

)
Φ5(x) + β6 grad

(
r
∂

∂r
+ 1

)
×
(
2r

∂

∂r
+ 3

)
Φ5(x)− α1 rot rot

(
xr2Φ5(x)

)
+ rot (xΦ6(x)) ,

where ∆Φj(x) = 0, j = 1, 5, 6, (∆−λ2
2)Φ2(x) = 0, (∆−λ2

3)Φj(x) = 0, j =
3, 4, the constant α1, λ2

2, λ2
3, βj , j = 1, 2, ..., 7 are defined by formulas

(2.7).

The particular solution of the system (2.9) will be written as

v′(x) = α2 grad

(
2r

∂

∂r
+ 3

)
Φ7(x) + α4 gradΦ8(x),

v′′(x) = −α2 grad

(
2r

∂

∂r
+ 3

)
Φ7(x) + α5 gradΦ8(x),

where ∆Φ7(x) = 0, (∆−λ2
1)Φ8(x) = 0, the constants λ2

1, αj , j = 2, 3, 4, 5
are defined by (2.7).

Substituting the values of the vectors U ′
0(x) and V (x) into (2.10), we

there by prove the first part of the theorem. As to the second part, it is
proved by a straight forward verification that the vector U = (u′, u′′, θ1, θ2)

⊤

represented in form (2.6) is solution of system (2.1)–(2.4). ⊓⊔
Assume that r, ϑ, φ, (0 ≤ r < +∞, 0 ≤ ϑ ≤, 0 ≤ φ < 2π) are the

spherical coordinates of the point x ∈ R3. Denote by Σ1 the sphere with
unit radius and centre at the origin lying in the space R3.

Let us consider, in the space L2(Σ1), the following complete system of
orthonormal vectors [10],

9
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Xmk(ϑ, φ) = erY
(m)
k (ϑ, φ), k ≥ 0,

Ymk(ϑ, φ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eφ
sinϑ

∂

∂φ

)
Y

(m)
k (ϑ, φ), k ≥ 0,

Zmk(ϑ, φ) =
1√

k(k + 1)

(
eϑ

sinϑ

∂

∂ϑ
− eφ

∂

∂φ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

where |m| ≤ k, er, eϑ, eφ are the orthonormal vectors in R3,

er = (cosφ sinϑ, sinφ sinϑ, cosϑ)⊤,

eϑ = (cosφ cosϑ, sinφ sinϑ, − sinϑ)⊤,

eφ = (− sinφ, cosφ, 0)⊤,

Y
(m)
k (ϑ, φ) =

√
2k + 1

4π

(k −m)!

(k +m)!
P

(m)
k (cos θ)eimφ,

P
(m)
k (cosϑ) is the adjoint Legendre polynomial.

Assume that f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 )⊤, j = 1, 2 is a vector-function and

the function f4 and f5, represent as the following Fourier-Laplace series

f (j)(ϑ, φ)=

∞∑
k=0

k∑
m=−k

{αmkXmk(ϑ, φ)+
√

k(k + 1)

×[β
(j)
mkYmk(ϑ, φ)+γ

(j)
mkZmk(ϑ, φ)]}, j = 1, 2,

fj(ϑ, φ) =
∞∑
k=0

k∑
m=−k

α
(j)
mkY

m
k (ϑ, φ), j = 4, 5, (2.12)

where α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 1, 2, α

(j)
mk, l = 4, 5 are Fourier-Laplace coeffi-

cients.

Note that in formula (2.12) and in further analogous series containing
the vectors Ymk(ϑ, φ), Zmk(ϑ, φ) the summation index k varies from 1 to
+∞.

Let us formulate several important lemmas [10], [25]

Lemma 2.2. If f j ∈ C l(Σ1), j = 1, 2, fj ∈ C l(Σ1), j = 4, 5, l ≥ 1

then the coefficients α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 4, 5 admit the following estimates

α
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1),

γ
(j)
mk = O(k−l−1), α

(3+j)
mk = O(k−l), j = 1, 2.

10
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Lemma 2.3. The vectors Xmk(ϑ, φ), Ymk(ϑ, φ), Zmk(ϑ, φ) defined by
equalities (2.11) admit the following estimates

|Xmk(ϑ, φ)| ≤
√

2k + 1

4π
, k ≥ 0,

|Ymk(ϑ, φ)| <
√

k(k + 1)

2k + 1
, |Zmk(ϑ, φ)| <

√
k(k + 1)

2k + 1
, k ≥ 1.

Note that [39]

|Y (m)
k (ϑ, φ)| <

√
2k + 1

4π
, k ≥ 0,

The equalities

2π∫
0

dφ

π∫
0

Y
(m)
k (ϑ, φ) sinϑ dϑ =

{√
π, k = 0, m = 0,

0, in other cases,
(2.13)

are also true.

Let Ω+ = B(R) ⊂ R3 be the ball bounded by the spherical surface
ΣR = ∂Ω+ of radius R and centre at the origin. We introduce the notation
Ω− = R3 \ Ω+.

Theorem 2.4. The vector U = (u′, u′′, θ1, θ2)
⊤ represented in form

(2.6) is uniquely defined in the domain Ω+ by the functions Φj(x), j = 1, 8,
if the following conditions are fulfilled∫

∑
r

Φj(x)dΣr = 0, j = 1, 3, 4, 6, r = |x| ≥ R, (2.14)

i.e. to the zero value of the vector U = (u′, u′′, θ1, θ2)
⊤ there corresponds

the zero value of the vector (Φ1, Φ2, . . . ,Φ8)
⊤ and vice versa.

The proof of this theorem is similar to that of theorem in [12].

Hereinafter we make use the following equalities [10]

er ·Xmk(ϑ, φ) = Y
(m)
k (ϑ, φ), er · Ymk(ϑ, φ) = 0,

er · Zmk(ϑ, φ) = 0, er ×Xmk(ϑ, φ) = 0,

er × Ymk(ϑ, φ) = −Zmk(ϑ, φ), er × Zmk(ϑ, φ) = Ymk(ϑ, φ);

(2.15)

11
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grad[a(r)Y
(m)
k (ϑ, φ)] =

da(r)

dr
Xmk(ϑ, φ)

+

√
k(k + 1)

r
a(r)Ymk(ϑ, φ),

rot[xa(r)Y
(m)
k (ϑ, φ)] =

√
k(k + 1)a(r)Zmk(ϑ, φ),

rot rot[xa(r)Y
(m)
k (ϑ, φ)] =

k(k + 1)

r
a(r)Xmk(ϑ, φ)+

+
√

k(k + 1)

(
d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

(2.16)

div[a(r)Xmk(ϑ, φ)] =

(
d

dr
+

2

r

)
a(r)Y

(m)
k (ϑ, φ),

div[a(r)Ymk(ϑ, φ)] = −
√

k(k + 1)

r
a(r)Y

(m)
k (ϑ, φ),

div[a(r)Zmk(ϑ, φ)] = 0,

rot[a(r)Xmk(ϑ, φ)] =

√
k(k + 1)

r
a(r)Zmk(ϑ, φ),

rot[a(r)Ymk(ϑ, φ)] = −
(

d

dr
+

1

r

)
a(r)Zmk(ϑ, φ),

rot[a(r)Zmk(ϑ, φ)] =

√
k(k + 1)

r
a(r)Xmk(ϑ, φ)+

+

(
d

dr
+

1

r

)
a(r)Ymk(ϑ, φ).

(2.17)

3 Statement of the Problem.
The Uniqueness Theorem

Problem. Find, in the domain Ω+, such a regular vector U = (u′, u′′, θ1, θ2)
⊤

that satisfies in this domain the system of differential equations (2.1)-(2.4)
and, on the boundary ∂Ω+, one of the following boundary conditions:

(I)+ (the Dirichlet problem)

{u′(z)}+ = f (1)(z), {u′′(z)}+ = f (2)(z),

{θ1(z)}+ = f4(z), {θ2(z)}+ = f5(z);

(II)+ (the Neumann problem)

12
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{P (1)(∂, n)U(z)}+ = f (1)(z), {P (2)(∂, n)U(z)}+ = f (2)(z),

{P (3)(∂, n)U ′′(z)}+ = f4(z), {P (4)(∂, n)θ(z)}+ = f5(z),

where the vector f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 ), j = 1, 2 and the functions f4, f5,

are given on the boundary ∂Ω+, n(z) is the external normal unit vector
passing at the point z ∈ ∂Ω+ with respect to the domain Ω+.

Theorem 3.1. Homogeneous (f (j) = 0, j = 1, 2, fj = 0, j = 4, 5)
problem (I)+0 has the trivial solution only, whereas any solution of problem
(II)+ is defined to within a summand

u′(x) = a+ [b× x] +

[
B0 + β1B1

1

r

d

dr
g0(λ2r)

]
cx,

u′′(x) = a+ [b× x] +

[
B0 + β3B1

1

r

d

dr
g0(λ2r)

]
cx,

θ1(x) = θ2(x) = c, x ∈ Ω+,

where a and b are any three-dimensional constant vectors, c = const, βj , j =
1, 3 has a (2.7) from, B0 and B1 are the solutions of system

[3(b1 + d) + β4]B0 = −
[
4(µ1β1 + µ3β3)

1

R

d

dR
g0(λ2R) + α1

]
B1

= η1 + η2,

[3(b2 + d)− β2]B0 = −
[
4(µ3β1 + µ2β3)

1

R

d

dR
g0(λ2R)− α1

]
B1

= ζ1 + ζ2,

(3.1)

d

dR
g0(λ2R) = lim

r→R

d

dr
g0(λ2r), g0(λ2r) =

√
R

r

I1/2(λ2r)

I1/2(λ2R)
,

I1/2(λ2r) is the Bessel function with an imaginary argument.

Proof. Assume that the vector U = (u′, u′′, θ1, θ2)
⊤ is a regular solution

of system (2.1)–(2.4). Multiplying both sides of the equation (2.3) by θ1,
and of the equation (2.4) by θ2 and applying the Stokes’ formula, we obtain

∫
∂Ω+

[
θ1(z)P

(3)(∂, n)θ(z) + θ2(z)P
(4)(∂, n)θ(z)

]+
ds−

∫
Ω+

[κ1(grad θ1(x))
2

+2κ2 grad θ1(x) · grad θ2(x) + κ3(grad θ2(x))
2]dx = 0.

13
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By the boundary conditions of homogeneous problems (I)+0 and (II)+0
we obtain

∫
Ω+

[κ1(grad θ1(x))
2 + 2κ2 grad θ1(x) · grad θ2(x) + κ3(grad θ2(x))

2]dx = 0.

From this it follows that θ1(x) = θ2(x) = c = const, x ∈ then for the
vectors u′(x) and u′′(x), we obtain

a1∆u′(x) + b1 grad div u
′(x) + c∆u′′(x) + d grad div u′′(x)

− κ(u′(x)− u′′(x)) = 0,

c∆u′(x) + d grad div u′(x) + a2∆u′′(x) + b2 grad div u
′′(x)

− κ(u′(x)− u′′(x)) = 0.

(3.2)

1) In the case of problem (I)+0 vector U ′ = (u′, u′′)⊤ satisfying the boundary
conditions

{
u′(z)

}+
= 0,

{
u′′(z)

}+
= 0, z ∈ ∂Ω+. (3.3)

2) In the case of problem (II)+0 vector U ′ = (u′, u′′)⊤ satisfying the bound-
ary conditions

{
T (1)(∂, n)U ′(z)

}+
= C(η1 + η2)n(z), (3.4){

T (2)(∂, n)U ′(z)
}+

= C(ζ1 + ζ2)n(z), z ∈ Ω+.

Let us multiply the first equation of (3.2) by the vector u′, the second
one by the vector u′′, sum up and applying the Stokes formula, we obtain

∫
∂Ω+

[u′(z) · T (1)(∂, n)U ′(z) + u′′(z) · T (2)(∂, n)U ′(z)]+ ds

−
∫
Ω+

[E(U ′, U ′) + κ(u′(x)− u′′(x))2] dx = 0,

(3.5)

14
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where

E(U ′, U ′) = (a1 + b1)(div u
′)2 + (a2 + b2)(div u

′′)2

+2(c+ d) div u′ div u′′ +
µ1

2

3∑
k ̸=j=1

(∂u′k
∂xj

+
∂u′j
∂xk

)2
+
µ2

2

3∑
k ̸=j=1

(∂u′′k
∂xj

+
∂u′′j
∂xk

)2
+ µ3

3∑
k ̸=j=1

(∂u′k
∂xj

+
∂u′j
∂xk

)(∂u′′k
∂xj

+
∂u′′j
∂xk

)

−λ5

2

3∑
k,j=1

(∂u′k
∂xj

−
∂u′j
∂xk

+
∂u′′k
∂xj

−
∂u′′j
∂xk

)2
.

(3.6)

From (3.3) and (3.5) we have∫
Ω+

[E(U ′, U ′) + κ(u′(x)− u′′(x))2]dx = 0.

Since E(U ′, U ′) ≥ 0, κ > 0, from (3.6) we get

u′(x) = u′′(x), E(U ′, U ′) = 0, x ∈ Ω+,

A solution of this equation has the form

u′(x) = u′′(x) = a+ [b× x], x ∈ Ω+, (3.7)

where a and b are any three-dimensional constant vectors.
In the case of problem (I)+0 we have{

u′(z)
}+

= 0,
{
u′′(z)

}+
= 0, z ∈ ∂Ω+,

from (3.7) we obtained a = 0, b = 0, i.e. u′(x) = 0, u′′(x) = 0, x ∈ Ω+,
also {θ1(z)}+ = {θ2(z)}+ = c = 0, it follows that θ1(x) = θ2(x) = 0, x ∈
Ω+. Thus we conclude that U(x) = 0, x ∈ Ω+.

In the case of problem (II)+0 we have θ1(x) = θ2(x) = c, x ∈ Ω+, and
obtain for the vector U ′(x) the problem (3.2), (3.4). A general solution of
this problem has the form

u′(x) = a+ [b× x] +

[
B0 + β1B1

1

r

d

dr
g0(λ2r)

]
cx, x ∈ Ω+

u′′(x) = a+ [b× x] +

[
B0 + β3B1

1

r

d

dr
g0(λ2r)

]
cx, x ∈ Ω+,

where a and b are arbitrary three-dimensional constant vectors, c = const,
βj , j = 1, 3 has (2.7) form, B0 and B1 are the solution of system (3.1). ⊓⊔
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4 Solution of the Dirichlet and Neumann
Boundary Value Problems

A solution of these problems is sought for in the form (2.6), where the
functions Φj(x), j = 1, 8 are written as

Φj(x) =
∞∑
k=0

k∑
m=−k

( r

R

)k
Y

(m)
k (ϑ, φ)A

(j)
mk, j = 1, 5, 6, 7,

Φ2(x) =

∞∑
k=0

k∑
m=−k

gk(λ2r)Y
(m)
k (ϑ, φ)A

(2)
mk,

Φj(x) =

∞∑
k=0

k∑
m=−k

gk(λ3r)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 3, 4,

Φ8(x) =

∞∑
k=0

k∑
m=−k

gk(λ1r)Y
(m)
k (ϑ, φ)A

(8)
mk.

(4.1)

Here A
(j)
mk, j = 1, 8, are the constants to be defined, and

gk(λjr) =

√
R

r

Ik+1/2(λjr)

Ik+1/2(λjR)
, j = 1, 2, 3,

Ik+1/2(x) is the Bessel function with an imaginary argument.

Substituting the values of Φj(x), j = 1, 3, 4, 6 from (4.1), into (2.14)

and taking into account the equalities (2.13), we get that A
(j)
00 = 0, j =

1, 3, 4, 6.

Substituting the values of the function Φj(x), j = 1, 8, defined by (4.1)
into (2.6) and taking into consideration the equalities (2.16), we obtain

u′(x) =

∞∑
k=0

k∑
m=−k

{
u
(1)
mk(r)Xmk(ϑ, φ)

+
√

k(k + 1)[v
(1)
mk(r)Ymk(ϑ, φ) + w

(1)
mk(r)Zmk(ϑ, φ)]

}
,

u′′(x) =

∞∑
k=0

k∑
m=−k

{
u
(2)
mk(r)Xmk(ϑ, φ)

+
√

k(k + 1)[v
(2)
mk(r)Ymk(ϑ, φ) + w

(2)
mk(r)Zmk(ϑ, φ)]

}
,

16
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θj(x) =

∞∑
k=0

k∑
m=−k

θ
(j)
mk(r)Y

(m)
k (ϑ, φ), j = 1, 2, (4.2)

where

u
(j)
mk(r) =

k

R

(
r

R

)k−1

A
(1)
mk + βj

d

dr
gk(λ2r)A

(2)
mk + β2+j

k(k + 1)

r
gk(λ3r)A

(3)
mk

+
k + 1

R

[
(β5(k + 2)− α1k)r

2 + β5+jk(2k + 3)
]( r

R

)k−1

A
(5)
mk

+
1

R

[
α3(k + 2)r2 − (−1)jα2k(2k + 3)

]( r

R

)k−1

A
(7)
mk

+ α3+j
d

dr
gk(λ1r)A

(8)
mk, k ≥ 0,

v
(j)
mk(r) =

1

R

(
r

R

)k−1

A
(1)
mk + βj

1

r
gk(λ2r)A

(2)
mk + β2+j

(
d

dr
+

1

r

)
gk(λ3r)A

(3)
mk

+
1

R

[
(β5(k + 1)− α1k)r

2 + β5+j(k + 1)(2k + 3)
]( r

R

)k−1

A
(5)
mk

+
1

R

[
α3r

2 − (−1)jα2(2k + 3)
]( r

R

)k−1

A
(7)
mk

+ α3+j
1

r
gk(λ1r)A

(8)
mk, k ≥ 1,

w
(j)
mk(r) = β2+jgk(λ2r)A

(4)
mk +

(
r

R

)k

A
(6)
mk, k ≥ 1,

θ
(j)
mk(r) = 2α1(2k + 3)

(
r

R

)k

A
(7)
mk + [(κ2 + κ3)δ1j − (κ1 + κ2)δ2j ]

× gk(λ1r)A
(8)
mk, k ≥ 0, j = 1, 2.

If we substitute the values of the vectors u′(x), u′′(x) and the functions
θj(x), j = 1, 2, into (2.5) and use the equality (2.15), (2.17), we get

P (j)(∂, n)U(x) =

∞∑
k=0

k∑
m=−k

{
a
(j)
mk(r)Xmk(ϑ, φ) +

√
k(k + 1)

× [b
(j)
mk(r)Ymk(ϑ, φ) + c

(j)
mk(r)Zmk(ϑ, φ)]

}
, j = 1, 2,

P (j)(∂, n)θ(x) =
∞∑
k=0

k∑
m=−k

a
(j)
mk(r)Y

(m)
k (ϑ, φ), j = 3, 4,

(4.3)
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where

a
(j)
mk(r) = 2

d

dr

[
(µ1δ1j + µ3δ2j)u

(1)
mk(r) + (µ3δ1j + µ2δ2j)u

(2)
mk(r)

]
+

[(
λ1 −

ρ2
ρ
α0

)
δ1j +

(
λ3 −

ρ1
ρ
α0

)
δ2j

]
×
[(

d

dr
+

2

r

)
u
(1)
mk(r)−

k(k + 1)

r
v
(1)
mk(r)

]
+

[(
λ3 −

ρ1
ρ
α0

)
δ1j +

(
λ2 −

ρ1
ρ
α0

)
δ2j

]
×
[(

d

dr
+

2

r

)
u
(2)
mk(r)−

k(k + 1)

r
v
(2)
mk(r)

]
−
[
(η1δ1j + ζ1δ2j)ϑ

(1)
mk(r) + (η2δ1j + ζ2δ2j)ϑ

(2)
mk

]
, k ≥ 0,

b
(j)
mk(r) = 2

d

dr

[
(µ1δ1j + µ3δ2j) v

(1)
mk(r) + (µ3δ1j + µ2δ2j) v

(2)
mk(r)

]
+ [(µ1 + λ5) δ1j + (µ3 − λ5) δ2j ]

[
1

r
u
(1)
mk(r)−

(
d

dr
+

1

r

)
v
(1)
mk(r)

]
× [(µ3 − λ5) δ1j + (µ2 + λ5) δ2j ]

[
1

r
u
(2)
mk(r)−

(
d

dr
+

1

r

)
v
(2)
mk(r)

]
,

k ≥ 1,

c
(j)
mk(r) = 2

d

dr

[
(µ1δ1j + µ3δ2j)w

(1)
mk(r) + (µ3δ1j + µ2δ2j)w

(2)
mk(r)

]
− [(µ1 + λ5) δ1j + (µ3 − λ5) δ2j ]

(
d

dr
+

1

r

)
w

(1)
mk(r)

− [(µ3 − λ5) δ1j + (µ2 + λ5) δ2j ]

(
d

dr
+

1

r

)
w

(2)
mk(r),

k ≥ 1, j = 1, 2,

a
(j)
mk(r) = (κ1δ3j + κ2δ4j)

dθ
(1)
mk(r)

dr
+ (κ2δ3j + κ3δ4j)

dθ
(2)
mk(r)

dr
, j = 3, 4,

δlj is the Kroneker symbol.

Assume that the vectors f (j)(z), j = 1, 2 and the function f (j)(z), j =
4, 5 satisfy the sufficient smoothness conditions. Then they can be expanded
into (2.12) Fourier-Laplace series.

Let us now consider problem (I)+. If in both parts of the equalities
(4.2) we pass to the limit as x → z ∈ ∂Ω+ (r → R), take into account
the boundary condition (4.1) and the formulas (2.12) that for the desired

constants A
(j)
mk, j = 1, 8 we obtain the system of linear algebraic equation
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βj
d

dR
gk(λ2R)A

(2)
00 − 2Rβ5A

(5)
00 + 2Rα3A

(7)
00

+ α3+j
d

dR
gk(λ1R)A

(8)
00 = α

(j)
00 ,

6α1A
(7)
00 + [(κ2 + κ3)δ1j − (κ1 + κ3)δ2j ]A

(8)
00 = α

(3+j)
00 , j = 1, 2;

(4.4)

u
(j)
mk(R) = α

(j)
mk, v

(j)
mk(R) = β

(j)
mk,

w
(j)
mk(R) = γ

(j)
mk, θ

(j)
mk(R) = α

(3+j)
mk , j = 1, 2, k ≥ 1.

(4.5)

By virtue of theorem 2.4 and theorem 3.1, the systems (4.4)–(4.5) have
a unique solution. If we substitute the solutions of these systems into (4.2),
then the vector U = (u′, u′′, θ1, θ2)

⊤ given by (4.2) will be a formal solution
of problem (I)+. T0 justify the existent of such a solution we must show
the convergence of the series (4.2)–(4.3).

Note that for k → +∞ the Bessel function admit the folloving asymp-
totic estimates [39]

gk(λjr) ≈
( r

R

)k
, g′k(λjr) ≈

k

r

( r

R

)k
, r < R. (4.6)

According to the asymptotic estimates (4.6), the series (4.2)–(4.3) will
be absolutely and uniformly convergent, if the following majorant series is
convergent

α0

∞∑
k=k0

k3/2
2∑

j=1

(
|α(j)

mk|+ k|β(j)
mk|+ |γ(j)mk|+ k|α(3+j)

mk |

)
, (4.7)

where α
(j)
mk, β

(j)
mk γ

(j)
mk α

(3+j)
mk , j = 1, 2, are Fourier-Laplace coefficients.

The series (4.7) will be convergent if these coefficients admit the following
estimates

α
(j)
mk = O(k−3), β

(j)
mk = O(k−4),

γ
(j)
mk = O(k−3), α

(3+j)
mk = O(k−4) j = 1, 2.

(4.8)

According to Lemma 2.2, the estimates (4.8) will hold if we require of the
boundary vector-functions to satisfy the following smoothness conditions

f (j)(z) ∈ C3(∂Ω+), j = 1, 2, fj(z) ∈ C4(∂Ω+), j = 4, 5. (4.9)

Therefor if the boundary vector-functions satisfy the conditions (4.9),
then the vector U = (u′, u′′, θ1, θ2)

⊤ represented by the equalities (4.2) will
be a regular solution of Problem (I)+.
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The solving of the Problem (II)+ is analogous.
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