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Abstract

In this paper, systems of homogeneous equations of statics of the linear thermoe-

lasticity with microtemperatures are solved in terms of four harmonic and three meta-

harmonic functions. These formulas are very convenient and useful in many particular

problems for domains with concrete geometry. Here we demonstrate an application of

these formulas to the Dirichlet and Neumann type boundary value problem for a space

with spherical cavities. Uniqueness theorems are proved. We construct an explicit

solutions in the form of absolutely and uniformly convergent series.
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1 Introduction

Mathematical models describing the chiral properties of the linear thermoe-
lasticity with microtemperatures materials have been proposed by Iesan [8],
[9] and recently it has been extended to a more general case, when the ma-
terial points admit micropolar stucture [10].

The Dirichlet, Neumann and mixed type boundary value problems cor-
responding to this model are well investigated for general domains of ar-
bitrary shape and the uniqueness and existence theorems are proved, and
regularity results for solutions are established by potential methods as by
variational methods (see [1], [12], [15] and the references therein).

The main goal of this paper is to derive general representation formulas
for the displacement, microtemperatures vectors and temperature function
by means of harmonic and metaharmonic functions. That is, we can rep-
resent solutions to the very complicated coupled system of simultaneous
differential equations of thermoelasticity with the help of solutions of a
simpler canonical equations.
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In particular, here we apply these representation formulas to construct
explicit solutions to the Dirichlet and Neumann type boundary value prob-
lem for a ball. We represent the solution in the form of Fourier-Laplace
series and show their absolute and uniform convergence along withtheir
derivatives of the first order if the boundary data satisfy appropriate smooth-
ness conditions. One of the approaches to fulfillment of the boundary condi-
tions is given in A. Ulitko [18], F. Mors and G Feshbah [14], L. Giorgashvili
[2], [3], L. Giorgashvili, K. Skhvitaridze [4], L. Giorgashvili, D. Natroshvili
[5], L. Giorgashvili, G. Karseladze, G. Sadunishvili [6], L. Giorgashvili, A.
Djagmaidze, K. Skhvitaridze [7] and other papers.

2 Basic equations and auxiliary theorems

The system of equations of statics in the linear theory of thermoelasticity
with microtemperatures has the following form [9]

µ∆u(x) + (λ+ µ) grad div u(x)− γ grad θ(x) = 0, (2.1)

κ6∆w(x) + (κ5 + κ4) grad divw(x)− κ3 grad θ(x)− κ2w(x) = 0, (2.2)

κ∆θ(x) + κ1 divw(x) = 0, (2.3)

where u = (u1, u2, u3)
⊤ is the displacement vector, w = (w1, w2, w3)

⊤ is
the microtemperature vector, θ is the temperature measured from the con-
stant absolute temperature T0, (T0 > 0), ∆ is three-dimensional Laplace
operator, λ, µ, γ, κ, κj , j = 1, 2, . . . , 6 are constitutive coefficients, ⊤ is
the transposition symbol.

We will suppose that the following assumptions on the constitutive co-
efficients hold [9]

µ > 0, 3λ+ 2µ > 0, κ > 0, 3κ4 + κ5 + κ6 > 0, κ6 + κ5 > 0,

κ6 − κ5 > 0, (κ1 + T0κ3)
2 < 4T0κκ2, γ > 0.

Assume that U = (u,w, θ)⊤. The stress vector, which we denote by the
symbol P (∂, n)U , has the form

P (∂, n)U =
(
P (1)(∂, n)U ′, P (2)(∂, n)U ′′, P (3)(∂, n)U ′′

)⊤
,

Where U ′ = (u, θ)⊤, U ′′ = (w, θ)⊤, n is the unit vector,
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P (1)(∂, n)U ′ = T (1)(∂, n)u− γnθ, P (2)(∂, n)U ′′ = T (2)(∂, n)w − κ3nθ,

P (3)(∂, n)U ′′ = κ
∂θ

∂n
+ (κ1 + κ3)(n · w),

T (1)(∂, n)u =2µ
∂u

∂n
+ λn div u+ µ[n× rotu],

T (2)(∂, n)w =(κ6 + κ5)
∂w

∂n
+ κ4ndivw + κ5[n× rotw].

(2.4)

The symbol (.) and [×] denotes the scalar and vector products of two
vectors in R3.

Definition. The vector U = (u,w, θ)⊤, is assumed to be regular in a
domain Ω ⊂ R3 if U ∈ C2(Ω) ∩ C1(Ω).

The following theorem is valid.

Theorem 2.1.For the vector U = (u,w, θ)⊤ to a regular solution of
system (2.1)-(2.3) in a domain Ω ⊂ R3, it is necessary and sufficient that
it be represented in the form

u(x) = gradΦ1(x)− a grad r2
(
r
∂

∂r
+ 1
)
Φ2(x) + rot rot(xr2Φ2(x))+

+ rot(xΦ3(x)) + γxΦ4(x) + γ gradΦ5(x),

w(x) = a1 grad
[
(λ+ µ)r

∂

∂r
+ 3λ+ 5µ

]
Φ4(x) + a2 gradΦ5(x)+

+ rot rot(xΦ6(x)) + rot(xΦ7(x))

θ(x) =
[
(λ+ µ)r

∂

∂r
+ 3λ+ 5µ

]
Φ4(x) + (λ+ 2µ)λ2

1Φ5(x),

(2.5)
where ∆Φj(x) = 0, j = 1, 2, 3, 4, (∆ − λ2

1)Φ5(x) = 0, (∆ − λ2
2)Φj(x) =

0, j = 6, 7,

λ2
1 =

κκ2 − κ1κ3

κ(κ4 + κ5 + κ6)
> 0, λ2

2 =
κ2

κ6
> 0, a =

µ

λ+ 2µ
, a1 = −κ3

κ2
,

a2 = − 1

κ1
κ(λ+ 2µ)λ2

1, r = |x|, x = (x1, x2, x3)
⊤, r

∂

∂r
= x · grad .

Assume that r, ϑ, φ (0 ≤ r < +∞, 0 ≤ ϑ ≤ π, 0 ≤ φ < 2π) are the
spherical coordinates of the point x ∈ R3. Denote by Σ1 the sphere with
unit radius and centre at the origin lying in the space R3.

Let us consider, in the space L2(Σ1), the following complete system of
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orthonormal vectors [2], [14], [18]

Xmk(ϑ, φ) = erY
(m)
k (ϑ, φ), k ≥ 0,

Ymk(ϑ, φ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eφ
sinϑ

∂

∂φ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

Zmk(ϑ, φ) =
1√

k(k + 1)

( eϑ
sinϑ

∂

∂φ
− eφ

∂

∂ϑ

)
Y

(m)
k (ϑ, φ), k ≥ 1,

(2.6)

Where |m| ≤ k, er, eϑ, eφ are the orthonormal vectors in R3,

er = (cosφ sinϑ, sinφ sinϑ, cosϑ)⊤,

eϑ = (cosφ cosϑ, sinφ sinϑ, − sinϑ)⊤,

eφ = (− sinφ, cosφ, 0)⊤,

Y
(m)
k (ϑ, φ) =

√
2k + 1

4π

(k −m)!

(k +m)!
P

(m)
k (cos θ)eimφ,

P
(m)
k (cosϑ) is the adjoint Legendre polynomial. Assume that f (j) = (f

(j)
1 , f

(j)
2 , f

(j)
3 )⊤,

j = 1, 2 is a vector-function and the function f4, represent as the following
Fourier-Laplace series

f (j)(ϑ, φ) =

∞∑
k=0

k∑
m=−k

{
αmkXmk(ϑ, φ) +

√
k(k + 1)

[
β
(j)
mkYmk(ϑ, φ) +

+γ
(j)
mkZmk(ϑ, φ)

]}
, j = 1, 2,(2.7)

f4(ϑ, φ) =

∞∑
k=0

k∑
m=−k

αmkY
m
k (ϑ, φ) (2.8)

Where αmk, α
(j)
mk, β

(j)
mk, γ

(j)
mk, j = 1, 2, are Fourier-Laplace coefficients.

Note that in formula (2.7) and in analogous series below the summa-
tion index k varies from 1 to +∞ in the summands containing the vectors
Ymk(ϑ, φ), Zmk(ϑ, φ).

Let us introduce a few important lemmas [3], [13]

Lemma 2.2. Let f (j) ∈ C l(Σ1), l ≥ 1, then the coefficients α
(j)
mk, β

(j)
mk,

γ
(j)
mk, j = 1, 2, admit the following estimates

α
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1), γ

(j)
mk = O(k−l−1), j = 1, 2.
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Lemma 2.3. If f4 ∈ C l(Σ1), l ≥ 1 then the coefficients αmk, admit
the following estimates

αmk = O(k−l).

Lemma 2.4. The vectors Xmk(ϑ, φ), Ymk(ϑ, φ), Zmk(ϑ, φ) defined by
equalities (2.6) admit the following estimates

|Xmk(ϑ, φ)| ≤
√

2k + 1

4π
, k ≥ 0,

|Ymk(ϑ, φ)| <
√

k(k + 1)

2k + 1
, |Zmk(ϑ, φ)| <

√
k(k + 1)

2k + 1
, k ≥ 1.

Note that [17]

|Y (m)
k (ϑ, φ)| <

√
2k + 1

4π
, k ≥ 0,

Assume that Ω+ = B(R) ⊂ R3 is the ball bounded by the spherical
surface ΣR = ∂Ω, centered at the origin and having radius R. Further, let
Ω− = R3 \ Ω+.

The equalities∫
∂Ω

Y
(m)
k (ϑ, φ) ds =

{√
πR2, k = 0, m = 0,

0, in other cases,

are valid too [17].
Theorem 2.5. The vector U = (u,w, θ)⊤ represented as (2.5) will be

uniquely defined, in the domain Ω+, by the functions Φj(x), j = 1, 7, if
the following conditions are fulfilled∫

∑
r

Φj(x)dΣr = 0, j = 2, 3, 6, 7, r = |x| ≥ R, (2.9)

Which means that to the zero value of the vector U = (u,w, θ)⊤ there
corresponds the zero value of the vector (Φ1, Φ2, . . . ,Φ7)

⊤ and vice versa.
Proof. Assume that U = (u,w, θ)⊤ = 0, x ∈ Ω− . Then from (2.5) we

obtain that Φ4(x) = 0, Φ5(x) = 0, x ∈ Ω−, and

gradΦ1(x)− a grad r2
(
r
∂

∂r
+ 1

)
Φ2(x) + rot rot(xr2Φ2(x))

+ rot(xΦ3(x)) = 0,

(2.10)

rot rot(xΦ6(x)) + rot(xΦ7(x)) = 0. (2.11)
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From (2.10) we obtain Φj(x) = 0, j = 1, 2, 3, x ∈ Ω− [5]. From (2.11)
taking into consideration the equalities x · rot(xΦ) = 0 we obtain

r2
(

∂2

∂r2
+

2

r

∂

∂r
− λ2

2

)
Φj(x) = 0, j = 6, 7, x ∈ Ω−. (2.12)

Let us represent the function Φj(x), j = 6, 7 in the domain Ω− as. Follows

Φj(x) =

∞∑
k=0

k∑
m=−k

hk(λ2r)Y
(m)
k (ϑ, φ)A

(j)
mk = 0, j = 6, 7,

where A
(j)
mk are unknown constants,

hk(λ2r) =

√
R

r

Kk+1/2(λ2r)

Kk+1/2(λ2R)

Kk+1/2(x) is the Hankel function of complex (pure imaginary) argument
[17].

If we substitute the values of the functions Φj(x), j = 6, 7 into (2.12)
and take into consideration the equalities

r2
( d2

dr2
+

2

r

d

dr
− λ2

2

)
hk(λ2r) = k(k + 1)hk(λ2r),

we obtain

∞∑
k=0

k∑
m=−k

k(k + 1)hk(λ2r)Y
(m)
k (ϑ, φ)A

(j)
mk = 0, j = 6, 7, x ∈ Ω−.

This implies that A
(j)
mk = 0, j = 6, 7, k ≥ 1, i.e.

Φj(x) =
1√
4π

h0(λ2r)A
(j)
00 , j = 6, 7, x ∈ Ω−.

If this value is substituted into (2.9), then we obtain A
(j)
00 = 0, j = 6, 7,

i.e. Φj(x) = 0, x ∈ Ω−. If Φj(x) = 0, j = 1, 7, when x ∈ Ω−, then from
(2.5) it immediately follows that U = (u,w, θ)⊤ = 0, x ∈ Ω−.

Definition 2.6. Assume that in the domain Ω−, the regular vector
U = (u,w, θ)⊤ has the property Z(Ω−) if it satisfies the following conditions

u(x) = O(1), w(x) = (|x|−2), θ(x) = O(|x|−1), |x| → ∞ (2.13)
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lim
r→∞

1

4πr

∫
Σr

n(x) · u(x)dΣr = 0, (2.14)

where n(x) is the external normal unit vector passing at a point x ∈ Σr.
Σr is a sphere centered at the origin and radius r.

3 Statement of the problem. The uniqueness
theorem

Problem. Find, in the domain Ω−, a vector U = (u,w, θ)⊤ with property
Z(Ω−) that in this domain satisfies system (2.1)-(2.3) and, on the boundary
∂Ω the following boundary conditions

(I)− (the Dirichlet problem)

{u(z)}− = f (1)(z), {w(z)}− = f (2)(z), {θ(z)}− = f4(z);

(II)− (the Neumann problem)

{P (1)(∂, n)U ′(z)}− = f (1)(z), {P (2)(∂, n)U ′′(z)}− = f (2)(z),

{P (3)(∂, n)U ′′(z)}− = f4(z),
(3.1)

where the vector f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 ), j = 1, 2 and the function f4, are

given on the boundary ∂Ω, n(z) is the external normal unit vector passing
at the point z ∈ ∂Ω with respect to the domain Ω+.

A solution of system (2.1)-(2.3) will be sought for in form (2.5), where
the functions Φj(x), j = 1, 2, . . . , 7, are represented as

Φj(x) =
∞∑
k=0

k∑
m=−k

(
R

r

)k+1

Y
(m)
k (ϑ, φ)A

(j)
mk, j = 1, 2, 3, 4,

Φ5(x) =
∞∑
k=0

k∑
m=−k

hk(λ1r)Y
(m)
k (ϑ, φ)A

(5)
mk,

Φj(x) =
∞∑
k=0

k∑
m=−k

hk(λ2r)Y
(m)
k (ϑ, φ)A

(j)
mk, j = 6, 7,

(3.2)
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where A
(j)
mk, j = 1, 2, . . . , 7, are unknown constants

hk(λjr) =

√
R

r

Kk+ 1
2
(λjr)

Kk+ 1
2
(λjR)

, j = 1, 2,

The substitution of the values of the functions Φj(x), j = 2, 3, 6, 7, from

(3.2), into (2.9) yields A
(j)
00 = 0, j = 2, 3, 6, 7.

Let us substitute the expressions (3.2) into (2.5) and apply the following
identities [3]

grad[a(r)Y
(m)
k (ϑ, φ)] =

da(r)

dr
Xmk(ϑ, φ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, φ),

rot[xa(r)Y
(m)
k (ϑ, φ)] =

√
k(k + 1)a(r)Zmk(ϑ, φ),

rot rot[xa(r)Y
(m)
k (ϑ, φ)] =

k(k + 1)

r
a(r)Xmk(ϑ, φ)+

+
√

k(k + 1)

(
d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

xa(r)Y
(m)
k (ϑ, φ) = ra(r)Xmk(ϑ, φ),

a(r) is the function of r, we obtain

u(x) =

∞∑
k=0

k∑
m=−k

{
u
(1)
mk(r)Xmk(ϑ, φ)+

+
√

k(k + 1)[v
(1)
mk(r)Ymk(ϑ, φ) + w

(1)
mk(r)Zmk(ϑ, φ)]

}
,

w(x) =

∞∑
k=0

k∑
m=−k

{
u
(2)
mk(r)Xmk(ϑ, φ)+

+
√

k(k + 1)[v
(2)
mk(r)Ymk(ϑ, φ) + w

(2)
mk(r)Zmk(ϑ, φ)]

}
,

θ(x) =
∞∑
k=0

k∑
m=−k

umk(r)Y
(m)
k (ϑ, φ),

(3.3)
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where

u
(1)
mk(r) = −k + 1

R

(
R

r

)k+2

A
(1)
mk +Rk(bk + a+ 1)

(
R

r

)k

A
(2)
mk+

+ γR

(
R

r

)k

A
(4)
mk + γ

d

dr
hk(λ1r)A

(5)
mk, k ≥ 0,

v
(1)
mk(r) =

1

R

(
R

r

)k+2

A
(1)
mk −R(bk − 2)

(
R

r

)k

A
(2)
mk+

+ γ
1

r
hk(λ1r)A

(5)
mk, k ≥ 1,

w
(1)
mk(r) =

(
R

r

)k+1

A
(3)
mk, k ≥ 1,

u
(2)
mk(r) = αka1(k + 1)

(
R

r

)k+2

A
(4)
mk + a2

d

dr
hk(λ1r)A

(5)
mk+

+
k(k + 1)

r
hk(λ2r)A

(6)
mk, k ≥ 0,

v
(2)
mk(r) = −αka1

(
R

r

)k+2

A
(4)
mk + a2

1

r
hk(λ1r)A

(5)
mk+

+
( d
dr

+
1

r

)
hk(λ2r)A

(6)
mk, k ≥ 1,

w
(2)
mk(r) = hk(λ2r)A

(7)
mk, k ≥ 1,

umk(r) = −Rαk

(
R

r

)k+1

A
(4)
mk + (λ+ 2µ)λ2

1hk(λ1r)A
(5)
mk, k ≥ 0,

αk =
1

R
[(λ+ µ)(k − 2)− 2µ] , b = 1− a = (λ+ µ)(λ+ 2µ)−1.

If we substitute the values of the vectors u(x), w(x) and the function
θ(x), into (2.4) and use the equality [3]

er ·Xmk(ϑ, φ) = Y
(m)
k (ϑ, φ), er · Ymk(ϑ, φ) = 0, er · Zmk(ϑ, φ) = 0,

er ×Xmk(ϑ, φ) = 0, er × Ymk(ϑ, φ) = −Zmk(ϑ, φ),

er × Zmk(ϑ, φ) = Ymk(ϑ, φ);
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div[a(r)Xmk(ϑ, φ)] =

(
d

dr
+

2

r

)
a(r)Y

(m)
k (ϑ, φ),

div[a(r)Ymk(ϑ, φ)] = −
√

k(k + 1)

r
a(r)Y

(m)
k (ϑ, φ),

div[a(r)Zmk(ϑ, φ)] = 0,

rot[a(r)Xmk(ϑ, φ)] =

√
k(k + 1)

r
a(r)Zmk(ϑ, φ),

rot[a(r)Ymk(ϑ, φ)] = −
(

d

dr
+

1

r

)
a(r)Zmk(ϑ, φ),

rot[a(r)Zmk(ϑ, φ)] =

√
k(k + 1)

r
a(r)Xmk(ϑ, φ)+

+

(
d

dr
+

1

r

)
a(r)Ymk(ϑ, φ),

we get

P (1)(∂, n)U ′(x) =
∞∑
k=0

k∑
m=−k

{
a
(1)
mk(r)Xmk(ϑ, φ)+

+
√

k(k + 1)[b
(1)
mk(r)Ymk(ϑ, φ) + c

(1)
mk(r)Zmk(ϑ, φ)]

}
,

P (2)(∂, n)U ′′(x) =

∞∑
k=0

k∑
m=−k

{
a
(2)
mk(r)Xmk(ϑ, φ)+

+
√

k(k + 1)[b
(2)
mk(r)Ymk(ϑ, φ) + c

(2)
mk(r)Zmk(ϑ, φ)]

}
,

P (3)(∂, n)U ′′(x) =

∞∑
k=0

k∑
m=−k

amk(r)Y
(m)
k (ϑ, φ),

(3.4)
where

a
(1)
mk(r) =

2µ(k + 1)(k + 2)

R2

(
R

r

)k+3

A
(1)
mk

− 2µk

[
b(k + 1)(k + 2) + 1− 4b

](
R

r

)k+1

A
(2)
mk

− µγ(k + 4)

(
R

r

)k+1

A
(4)
mk + 2µγ

(
d2

dr2
− λ2

1

)
hk(λ1r)A

(5)
mk, k ≥ 0,
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b
(1)
mk(r) = −2µ(k + 2)

R2

(
R

r

)k+3

A
(1)
mk + 2µ

(
bk2 − 1

)(R

r

)k+1

A
(2)
mk+

+ µγ

(
R

r

)k+1

A
(4)
mk + 2µγ

1

r

(
d

dr
− 1

r

)
hk(λ1r)A

(5)
mk, k ≥ 1,

c
(1)
mk(r) = −µ(k + 2)

R

(
R

r

)k+2

A
(3)
mk,

a
(2)
mk(r) =

αk

R

[
−(κ6 + κ5)a1(k + 1)(k + 2) + κ3r

2
](R

r

)k+3

A
(4)
mk+

+ a2(κ6 + κ5)

(
d2

dr2
+ a3

)
hk(λ1r)A

(5)
mk+

+ (κ6 + κ5)k(k + 1)
1

r

(
d

dr
− 1

r

)
hk(λ2r)A

(6)
mk, k ≥ 0,

b
(2)
mk(r) =

κ6 + κ5

R
a1αk(k + 2)

(
R

r

)k+3

A
(4)
mk+

+ a2(κ6 + κ5)
1

r

(
d

dr
− 1

r

)
hk(λ1r)A

(5)
mk+

+

[
(κ6 + κ5)

d

dr

(
d

dr
+

1

r

)
− λ2

2κ5

]
hk(λ2r)A

(6)
mk, k ≥ 0,

c
(2)
mk(r) =

(
κ6

d

dr
− κ5

r

)
hk(λ1r)A

(7)
mk, k ≥ 1,

amk(r) = αk(k + 1)[κ + (κ1 + κ3)a1]

(
R

r

)k+2

A
(4)
mk + a2κ3

d

dr
hk(λ1r)A

(5)
mk+

+ (κ1 + κ3)
k(k + 1)

r
hk(λ2r)A

(6)
mk k ≥ 0,

a3 =
λ2
1(a2κ4 − (λ+ 2µ)κ3)

a2(κ6 + κ5)
.

From the limit equality (2.14) and (2.13) it follows that

lim
r→∞

∫
Σr

u(x) · P (1)(∂, n)U ′(x) dx = 0,

lim
r→∞

∫
Σr

w(x) · P (2)(∂, n)U ′′(x) dx = 0,

lim
r→∞

∫
Σr

θ(x)P (3)(∂, n)U ′′(x) dx = 0.

(3.5)
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Theorem 3.1. The Homogeneous Problem (I)−0 and (II)−0 where (f (j) =
0, j = 1, 2, f4 = 0), have only a trivial solution in the class of regular func-
tions.

Proof. Let Σr be the sphere with center at the origin and radius r (r =
|x| > R). Denote by Ωr the domain bounded by the spheres ∂Ω = ΣR and
Σr. For the domain Ωr we write Green’s formulas

−
∫
∂Ω

[u(z) · P (1)(∂, n)U ′(z)]− ds+

∫
Σr

u(x) · P (1)(∂, n)U ′(x) dΣr −

−
∫
Ωr

[E(1)(u, u)− γθ(x) div u(x)]dx = 0, (3.6)

−
∫
∂Ω

[w(z) · P (2)(∂, n)U ′′(z)]− ds+

∫
Σr

w(x) · P (2)(∂, n)U ′′(x) dΣr−

−
∫
Ωr

[
E(2)(w,w)− κ3θ(x) divw(x) + κ2w

2(x)
]
dx = 0,

(3.7)

−
∫
∂Ω

[θ(z) · P (3)(∂, n)U ′′(z)]− ds+

∫
Σr

θ(x) · P (3)(∂, n)U ′′(z) dΣr−

−
∫
Ωr

[
κ grad2 θ(x) + (κ1 + κ3)w(x) · grad θ(x) + κ3θ(x) divw(x)

]
dx = 0,

(3.8)
where U ′ = (u, θ)⊤, U ′′ = (w, θ)⊤, the vectors P (1)(∂, n)U ′, P (2)(∂, n)U ′′

and function P (3)(∂, n)U ′′ have form (2.4), and [11], [?]

E(1)(u, u) =
3λ+ 2µ

3
(div u)2 +

µ

2

3∑
k ̸=j=1

(∂uk
∂xj

+
∂uj
∂xk

)2
+

µ

3

3∑
k,j=1

(∂uk
∂xk

− ∂uj
∂xj

)2
,

E(2)(w,w) =
3κ4 + κ5 + κ6

3
(divw)2 +

κ6 − κ5

2
(rotw)2+

+
κ5 + κ6

4

3∑
k ̸=j=1

(∂wk

∂xj
+

∂wj

∂xk

)2
+

κ5 + κ6

6

3∑
k,j=1

(∂wk

∂xk
− ∂wj

∂xj

)2
.

(3.9)

Passing to the limit on both sides of equalitys (3.6)-(3.8) as r → +∞
and taking into consideration the boundary conditions of the homogeneous
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problems (I)−0 and (II)−0 as well as the asymptotic representations (3.5),
we obtain ∫

Ω−

[E(1)(u, u)− γθ(x) div u(x)]dx = 0, (3.10)

∫
Ω−

[E(2)(w,w)− κ3θ(x) divw(x) + κ2w
2(x)]dx = 0, (3.11)

∫
Ω−

[κgrad2θ(x) + (κ1 + κ3)w(x) · grad θ(x)+

+κ3θ(x) divw(x)]dx = 0,

(3.12)

From the equalities (3.11) and (3.12) , we obtained∫
Ω+

{
E(2)(w,w) +

4κκ2 − (κ1 + κ3)
2

4κ
w2(x)

+
1

4κ

[
(κ1 + κ3)w(x) + 2κ grad θ(x)

]2}
dx = 0.

(3.13)

Since E(2)(w,w) ≥ 0, 4κκ2 − (κ1 + κ3)
2 > 0, κ > 0, from (3.13) we

obtained that w(x) = 0, θ(x) = c′ = const, x ∈ Ω−.

From the equalities {θ(z)}− = 0,, and {P (2)(∂, n)U ′′(z)}− = 0, we
obtained c′ = 0,, i.e. θ(x) = 0, x ∈ Ω−.

Substituting the value of the function θ(x) = 0, x ∈ Ω, into (3.10), we
obtain

∫
Ω−

E(1)(u, u)dx = 0. (3.14)

Taking into account that 3λ+2µ > 0, µ > 0, from (3.9) it follows that
E(1)(u, u) ≥ 0. By virtue of this fact, (3.14) implies

E(1)(u, u) = 0, x ∈ Ω−.

A solution of this equation has the form

u(x) = [c× x] + d, x ∈ Ω−,

where c and d are any three-dimensional constant vectors. By asymptotics
(2.13)-(2.14) we have c = d = 0, i.e. u(x) = 0, x ∈ Ω−.
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4 Solution of the Dirichlet and Neumann
boundary value problems

Let us first investigate the Neumann problem.
Assume that the vectors f (j)(ϑ, φ), j = 1, 2 and the function f4(ϑ, φ),

satisfy the sufficient smoothness conditions by means of which they can be
represented in form (2.7)-(2.8).

Passing to the limit on both sides of (3.4) as x → z ∈ ∂Ω and using
both the Neumann boundary conditions (3.1) and equalities (2.7)-(2.8), for

the sought constants A
(j)
mk, j = 1, 7, we obtain the following system of linear

algebraic equations:
a) k = 0,

4µ

R2
A

(1)
00 − 4µγA

(4)
00 + 2µγ

(
d2

dR2
− λ2

1

)
h0(λ1R)A

(5)
00 = α

(1)
00 ,

2(λ+ 2µ)

R2

[
2(κ6 + κ5)a1 − κ3R

2
]
A

(4)
00

+ a2(κ6 + κ5)

(
d2

dR2
+ a3

)
h0(λ1R)A

(5)
00 = α

(2)
00 ,

− 2(λ+ 2µ)

R
(κ + (κ1 + κ3)a1)A

(4)
00 + a2κ3

d

dR
h0(λ1R)A

(5)
00 = α00; (4.1)

b) k ≥ 1,

a
(j)
mk(R) = α

(j)
mk, b

(j)
mk(R) = β

(j)
mk,

c
(j)
mk(R) = γ

(j)
mk, amk(R) = αmk, j = 1, 2. (4.2)

It is assumed here that

d

dR
hk(λjR) = lim

r→R

d

dr
gk(λjr), j = 1, 2.

Systems (4.1)–(4.2) are compatible by Theorem 2.5 and Theorem 3.1.If
the solutions of these system are substituted into (3.3), then we obtain a
formal solution of the Neumann problem. We need to show that series
(3.3)–(3.4) are absolutely and uniformly convergent in the domain Ω−.

The folloving asymtotic representations are true as k → +∞ [16]

hk(λjr) ∼
(
R

r

)k+1

, h′k(λjr) ∼ −k

r

(
R

r

)k+1

, j = 1, 2. (4.3)

If x ∈ Ω− (r > R), then by the asimptotic representation (4.3) the
above-mentioned series are convergent.
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If x ∈ ∂Ω (r = R), then by Lemma 2.4 and asymptotic representation
(4.3), series (3.3)–(3.4) are absolutely and uniformly convergent provided
that the majorant series

∞∑
k=k0

k3/2
2∑

j=1

(
|α(j)

mk|+ k|β(j)
mk|+ k|γ(j)mk|+ |αmk|

)
, (4.4)

is convergent. The series (4.4) will be convergent if these coefficients α
(j)
mk,

β
(j)
mk, γ

(j)
mk, αmk, j = 1, 2, admit the following estimates

α
(j)
mk = O(k−3), β

(j)
mk = O(k−4), γ

(j)
mk = O(k−4), αmk = O(k−3) j = 1, 2.

(4.5)
According to Lemma 2.2 and Lemma 2.3, the estimates (4.5) will hold if

we require of the boundary vector-functions to satisfy the following smooth-
ness conditions

f (j)(z) ∈ C3(∂Ω), j = 1, 2, f4(z) ∈ C3(∂Ω). (4.6)

Therefor if the boundary vector-functions satisfy the conditions (4.6),
then the vector U = (u,w, θ)⊤ represented by the equalities (3.3) will be a
regular solution of Problem (II)−.

The solving of the Problem (I)− is analogous.
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