
STATEMENT AND EFFECTIVE SOLUTION OF SOME
NONCLASSICAL THREE-DIMENSIONAL PROBLEMS OF

THERMOELASTICITY

N. Khomasuridze, R. Janjgava, N. Zirakashvili

I.Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
0186 University Street 2, Tbilisi, Georgia

(Received: 17.06.2012; accepted: 14.12.2012)

Abstract

Some special nonclassical problems of thermoelasticity are formulated and solved

in the generalized cylindrical coordinate system (Cartesian, circular cylindrical, cylin-

drical elliptic, cylindrical parabolic and cylindrical bipolar coordinate systems). The

nonclassical formulation of a thermoelastic problem means that, given zero stresses

on the upper and lower plane boundaries of an elastic body and a temperature dis-

turbance on the lower boundary, it is required to choose a temperature value on the

upper boundary such that normal displacements to the plane boundaries would obey

certain conditions within the body.
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1 Introduction

In the elasticity theory there are quite a number of problems which we call
nonclassical because the boundary conditions on a part of the boundary
surface are either overdetermined or underdetermined [1], [2], [3], or the
conditions on the boundary are related to the conditions within the body
(the so-called nonlocal problems) [4], [5], [6], [7], [8], [9], [10].

In the present paper, we formulate and solve by the method of separa-
tion of variables some nonclassical three-dimensional problems of thermoe-
lasticity.

The thermoelastic equilibrium of a homogeneous isotropic body occupy-
ing the domain Ω = {ξ0 < ξ < ξ1, φ0 < φ < φ1, 0 < z < z1} is considered
in the generalized cylindrical system of coordinates ξ, φ, z, where ξ and
φ are orthogonal coordinates on the surface, and z is a linear coordinate.
Homogeneous conditions of special type are given on the lateral surfaces of
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the domain Ω; the planes z = 0 and z = z1 are assumed to be stress-free,
and a thermal disturbance is given on the plane z = 0.

The problem consists in defining, on the plane z = z1, a temperature
such that a linear combination of normal displacements on the inner planes
z = z2 and z = z3 of the body would take an a priori given value. A
particular case of this problem is the problem of finding, on the surface
z = z1, a temperature disturbance that enables us to obtain the desired
value of the function of normal displacements of points of some inner plane
z = z2. After solving the stated problems, it is quite an easy matter to
define the stress-deformed state of the considered body.

The concrete examples of nonclassical problems of the above-mentioned
type are considered in the Cartesian and circular cylindrical coordinate
systems.

2 Statement of the problems

Assume that we are given a homogeneous isotropic elastic body occupying
the domain Ω = {ξ0 < ξ < ξ1, φ0 < φ < φ1, 0 < z < z1}, where ξ, φ,
z are generalized cylindrical coordinates (ξ, φ are orthogonal coordinates
on the plane and z is a linear coordinate), ξ0, ξ1, φ0, φ1, z1 are constants
(see Fig. 1 a)). The considered elastic body is in the state of stationary
thermoelastic equilibrium. On the lateral surfaces of the domain Ω, the
following boundary conditions are given [11]:

For ξ = ξj : a) T = 0, D = 0, v = 0, w = 0

or

b) ∂ξT = 0, u = 0, K = 0, σξz = 0;

 (1)

For φ = φj : a) T = 0, D = 0, u = 0, w = 0

or

b) ∂φT = 0, v = 0, K = 0, σφz = 0.

 (2)

4
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Fig. 2

Fig.1. Elastic cylindrical bodies in the generalized cylindrical (a), Carte-
sian (b), circular cylindrical (c), elliptical cylindrical (d), parabolic cylin-
drical (e) and bipolar cylindrical (f) coordinate systems.

On the upper and lower planes of the domain Ω, we have the following
conditions:

For z = zj : σzξ = 0, σzφ = 0, σzz = 0; (3)

For z = 0 : a) T = τ(ξ, φ) or b) ∂zT = τ̃(ξ, φ)

or

c) ∂zT +ΘT = τ̃(ξ, φ),

 (4)

where j = 0, 1 and z0 = 0; u, v, w are the components of the displacement
vector U⃗ along the tangents to the coordinate lines ξ, φ, z, respectively; T
is a change of the elastic body temperature that satisfies the equation

∆T = 0, (5)

where ∆ ≡ 1
h2 (∂ξξ+∂φφ)+∂zz; ∂ξ ≡ ∂

∂ξ ; ∂φ ≡ ∂
∂φ , ∂z ≡

∂
∂z ; h = hξ = hφ are

the Lamé coefficients of the system ξ, φ, z. In the case of circular cylindrical
coordinates r, φ, z it is assumed that h = r and the operation ∂ξ is replaced
by the operation r∂r;

D =
E

(1− 2ν)(1 + ν)

{
1− ν

h2
[∂ξ(hu) + ∂φ(hv)] + ν∂zw

}
− kT ;

K =
E

2(1 + ν)
[∂ξ(hv)− ∂φ(hu)] ;

5
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E is Young’s modulus, ν is Poisson’s ratio, k is the thermal expansion
coefficient; σξξ, σφφ, σzz are normal stresses; σξφ = σφξ, σξz = σzξ, σφz =
σzφ are shear stresses; Θ is a given constant; τ(ξ, φ), τ̃(ξ, φ) are given
analytical functions of the variables ξ and φ in the closed domain ω =
{ξ0 ≤ ξ ≤ ξ1, φ0 ≤ φ ≤ φ1}.

Note that the boundary conditions (1a) and (2a) can be called to be
of antisymmetry type for the following reason: if the surfaces ξ = ξj and
φ = φj are planes, then conditions (1a) and (2a) transform to antisymmetry
conditions. Analogously, conditions (1b) and (2b) can be called to be of
symmetry-type [12].

Our aim is to define a change of the temperature T on the plane z = z1
for which the following condition is fulfilled:

w(ξ, φ, z2)− aw(ξ, φ, z3) = g(ξ, φ), (6)

where z2 and z3 are constants; without loss of generality it is assumed that
0 < z3 < z2 < z1; a is a constant; g(ξ, φ) is a given analytical function of
the variables ξ and φ in the domain ω.

If in condition (6) we put a = 0, then the problem will consist in
satisfying a given value of the function of normal displacements w(ξ, φ, z2)
of points of the plane z = z2. If in condition (6) we put a = 1 (a = −1)
and g(ξ, φ) = 0, then it will imply that the normal displacements of the
planes z = z2 and z = z3 are equal (are equal with respect to a modulus
and opposite in the direction) and so on. The validity of these conditions
is obtained by an appropriate choice of a temperature value on the upper
boundary of the considered body.

As is well known, in the absence of mass forces, the thermoelastic equi-
librium of an isotropic homogeneous elastic body is described by means of
the differential equation

grad
[
2(1− ν) div U⃗ − 2k(1 + ν)T

]
− (1− 2ν) rot rot U⃗ = 0. (7)

Stresses and displacements are related by the well-known Duhamel–Neumann
formula (see e.g. [11]).

3 Solution of the stated problems

The construction of solutions of the stated problems is based on the method
of separation of variables, taking into account the results of [11]. In that
paper, a general solution of the system of equilibrium equations (7) is rep-
resented through three arbitrary harmonic functions and the function T̃
which is also a solution of the Laplace equation and is related to the change
in the temperature T by

T = ∂zzT̃ . (8)

6
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It is shown in [6] that when the boundary conditions (1)–(3) are fullfilled,
the above-mentioned harmonic functions, except for T̃ , are equal to zero,
while the displacements and stresses are expressed through the function T̃
as follows

w = k(1 + ν)∂zT̃ ; (9)

hu = −k(1 + ν)∂ξT̃ , hv = −k(1 + ν)∂φT̃ ; (10)

σzz = σzφ = σzξ = 0; (11)

σξξ = − E

1 + ν

(
1

h
∂φv +

1

h2
∂ξhu

)
,

σφφ = − E

1 + ν

(
1

h
∂ξu+

1

h2
∂φhv

)
,

σξφ =
E

2(1 + ν)

[
∂ξ

(v
h

)
+ ∂φ

(u
h

)]
.


(12)

Problems analogous to the ones studied here are considered in classical
terms in [13].

Since the solutions of all the stated problems are constructed here by
one and the same method, we give a detailed description of the solution of
only one of the problems, namely of problem (7), (5), (1a), (2a), (3), (4a),
(6).

Using the method of separation of variables and taking into account
relation (8) and the boundary conditions (1a), (2a), we can write the har-
monic function T̃ in the form

T̃ =
∞∑

m=0

∞∑
n=0

1

γ2mn

(
Amne

−γmnz +Bmne
γmnz

)
ψmn(ξ, φ), (13)

where γmn > 0 are the constants defined in the process of separation of
variables; Amn, Bmn are the variables which depend on m and n; ψmn(ξ, φ)
is a non-trivial solution of the following Sturm–Liuville problem

∆2ψmn + γ2mnψmn = 0; ∆2 ≡
1

h2
(∂ξξ + ∂φφ);

for ξ = ξj : ψmn = 0; for φ = φj : ψmn = 0; j = 0, 1.

ψmn is the product of trigonometric functions in the Cartesian system;
ψmn is the product of a trigonometric function and a Bessel function in
the case of circular cylindrical coordinates; ψmn is the product of Mathieu
functions in the cylindrical-elliptical system of coordinates, and so on.

The given analytical functions τ(ξ, φ) and g(ξ, φ) satisfy the following

7
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consistency conditions

τ(ξ0, φ) = τ(ξ1, φ) = 0, g(ξ0, φ) = g(ξ1, φ) = 0,

τ(ξ, φ0) = τ(ξ, φ1) = 0, g(ξ, φ0) = g(ξ, φ1) = 0.

We expand these functions into Fourier series in terms of basic functions
ψmn(ξ, φ)

τ(ξ, φ) =

∞∑
m=0

∞∑
n=0

τmnψmn(ξ, φ), (14)

g(ξ, φ) =

∞∑
m=0

∞∑
n=0

gmnψmn(ξ, φ). (15)

Let us assume that the Fourier coefficients τmn and gmn satisfy the condi-
tions

τmn = O

(
1

eγmn(z1−z3)

)
, gmn = O

(
1

eγmnz1

)
. (16)

Conditions (16) guarantee the convergence of the series in the domain Ω
(naturally, for z3 < z < z2, too).

From (13) with formula (8) taken into account we obtain the following
expression for a change in the temperature T

T =

∞∑
m=0

∞∑
n=0

(
Amne

−γmnz +Bmne
γmnz

)
ψmn(ξ, φ) (17)

Substituting expression (13) in formula (9), for the displacement w we
have

w = k(1 + ν)

∞∑
m=0

∞∑
n=0

1

γmn

(
−Amne

−γmnz +Bmne
γmnz

)
ψmn(ξ, φ). (18)

Substituting series (17) and (14) in the boundary condition (4a), and
series (18) and (15) in condition (6) and equating the coefficients of the
identical basic functions, for the sought coefficients Amn and Bmn we obtain
the system of two linear algebraic equations with two unknowns, which will
be investigated below.

4 Discussion of the obtained results

The system of equations mentioned at the end of the preceding section has
the form

Amn +Bmn = τmn,

− (e−γmnz2 − ae−γmnz3)Amn + (eγmnz2 − aeγmnz3)Bmn

=
γmn

k(1 + ν)
gmn .

(19)

8
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Assuming that the determinant of the obtained system is different from
zero, we can impose the following conditions on the coefficient a

a ̸= ch(γmnz2)

ch(γmnz3)
, m = 0, 1, . . . ; n = 0, 1, . . . . (20)

If conditions (20) are fulfilled, then the sought coefficients Amn and Bmn

are uniquely defined from (19) as follows:

Amn =
1

eγmnz2 + e−γmnz2 − a(eγmnz3 + e−γmnz3)

×
{
(eγmnz2 − aeγmnz3) τmn − γmn

k(1 + ν)
gmn

}
, (21)

Bmn =
1

eγmnz2 + e−γmnz2 − a(eγmnz3 + e−γmnz3)

×
{(
e−γmnz2 − ae−γmnz3

)
τmn +

γmn

k(1 + ν)
gmn

}
. (22)

The substitution of (21) and (22) in formula (17) gives the following ex-
pression for a change in the temperature T

T =
∞∑

m=0

∞∑
n=0

1

ch(γmnz2)− a ch(γmnz3)

×
{
[ch(γmn(z − z2))− a ch(γmn(z − z3))] τmn

+
γmn

k(1 + ν)
sh(γmnz)gmn

}
ψmn(ξ, φ) . (23)

It can be easily verified that if the coefficients τmn and gmn satisfy conditions
(16), then series (23) converges absolutely and uniformly in the domain Ω.
Moreover, the obtained function T will be the analytical function of the
variables ξ, φ, z in the domain Ω.

After replacing z in formula (23) by z1, we obtain the desired value of
a temperature change on the boundary z = z1. This value is a unique so-
lution of the considered problem. It can be easily proved that the obtained
solution depends continuously on the initial data provided that the Fourier
coefficients of the functions τ∗(ξ, φ), g∗(ξ, φ) which are some disturbances
of the functions τ(ξ, φ), g(ξ, φ) also satisfy conditions (16).

When the function T̃ is known, by virtue of formulas (9)–(12) it is easy
to find displacements and stresses in the considered body.

Thus, if conditions (16) and (20) are fulfilled, then the problem we have
formulated and solved is well-posed.

9
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Let us now assume that conditions (20) are not fulfilled for some mk

and nl (mk, nl are some values of the indices m,n), and only for them.
Then

1) if the conditions

τmknl
+

γmknl

k(1 + ν)(e−γmknl
z2 − ae−γmknl

z3)
gmknl

= 0 (24)

are fulfilled, then the stated problem has infinitely many analytical solutions
in Ω;

2) if condition (24) is not fulfilled for at least one pair of values mk, nl,
then the stated problem has no solution.

Note that conditions (20) are satisfied for a ≤ 1 and thereby for a = 0,
a = 1, a = −1, too.

If a = 0 in conditions (6), this means that the normal displacement
value is assumed to be given on the inner surface of the body z = z2.

If a = 1 (a = −1), this means that the difference (the sum) of normal
displacements of the corresponding points of the planes z = z2 and z = z3
is assumed to be given. Also, if g(ξ, φ) = 0, then normal displacements
are equal (for a = −1, normal displacements are equal with respect to a
modulus and opposite in the direction.)

Note that we could not give any geometrical, physical or any other inter-
pretation of condition (20) perhaps because of the non-classical formulation
of the problem, which is not so obvious as the classical one.

In the next two sections, some concrete examples are given in the Carte-
sian and circular cylindrical coordinate systems.

5 Solution of the problem for a rectangular parallelepiped

Before we proceed to considering an elastic parallelepiped, it must be said
that the problems stated and solved in Sections 1 and 2 represent quite a
large class of nonclassical problems since the shapes of the elastic bodies
considered in these problems are absolutely different. In particular, an elas-
tic body can be a rectangular parallelepiped (Fig.1 b), a circular cylinder
(Fig.1 c), an elliptical cylinder (Fig.1 d), a parabolic cylinder (Fig.1 e) or a
body bounded by the coordinate surfaces of bipolar cylindrical coordinates
(Fig.1 f), and so on.

In the Cartesian system of coordinates x, y, z, for the rectangular par-
allelepiped Ω = {0 < x < x1, 0 < y < y1, 0 < z < z1}, which is in the state

10
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of thermal equilibrium, conditions (1)–(4) take the form

For x = xj : a) T = 0, σxx = 0, v = 0, w = 0

are antisymmetry conditions

or

b) ∂xT = 0, u = 0, σxy = 0, σxz = 0

are symmetry conditions.


(25)

For y = yj : a) T = 0, σyy = 0, u = 0, w = 0

are antisymmetry conditions

or

b) ∂yT = 0, v = 0, σxy = 0, σyz = 0

are symmetry conditions.


(26)

For z = zj : σzx = 0, σzy = 0, σzz = 0. (27)

For z = 0 : a) T = τ(x, y) or b) ∂zT = τ̃(x, y)

or

c) ∂zT +ΘT = τ̃(x, y),

 (28)

where j = 0, 1 and x0 = y0 = z0 = 0.

Fig. 2

Fig.2. The investigated thermoelastic rectangular parallelepiped.

The problem is to define a change in the temperature T on the face
z = z1 such that the following condition be fulfilled (see Fig.2)

w(x, y, z2)− aw(x, y, z3) = g(x, y). (29)

11
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Bearing in mind that the basic functions ψmn in the Cartesian system
are the products of trigonometric functions, the solution of problem (7),
(5), (25a), (26a), (27), (28a), (29) immediately follows from formula (23)
(it is assumed that conditions (20) are fulfilled). In particular we obtain

T =
∞∑

m=1

∞∑
n=1

1

ch(γmnz2)− a ch(γmnz3)

×
{
[ch(γmn(z − z2))− a ch(γmn(z − z3))] τmn

+
γmn

k(1 + ν)
sh(γmnz)gmn

}
sin

πmx

x1
sin

πny

y1
, (30)

where

γmn =

√(
πm

x1

)2

+

(
πn

y1

)2

.

Replacing z in in formula (30) by z1, we obtain the desired value for a
change in the temperature T on the face z = z1, which is a unique solution
of the problem.

Let us consider a concrete practical example in which functions τ(x, y)
and g(x, y) have the form

τ(x, y) = τ22 sin
2πx

x1
sin

2πy

y1
,

g(x, y) = g11 sin
πx

x1
sin

πy

y1
.

In this case, for the function T , formula (30) implies

T =
γ11w11 sh(γ11z)

k(1 + ν)[ch(γ11z2)− a ch(γ11z3)]
sin

πx

x1
sin

πy

y1

+
τ22[ch(γ22(z − z2))− a ch(γ22(z − z3))]

ch(γ22z2)− a ch(γ22z3)
sin

2πx

x1
sin

2πy

y1
.

Now let us consider the case where the anti-symmetry conditions (25a)
and (26a) are given on the two neighbouring faces of the parallelepiped
x = 0 and y = 0, and the symmetry conditions (25b) and (26b) are given
on the faces x = x1 and y = y1. The other conditions and the aim of the
problem are the same as in the preceding problem.

In that case, the functions τ(x, y) and g(x, y) satisfy the following con-
sistency conditions

τ(0, y) = τ(x, 0) = 0, ∂xτ(x, y)
∣∣
x=x1

= 0, ∂yτ(x, y)
∣∣
y=y1

= 0,

12
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g(0, y) = g(x, 0) = 0, ∂xg(x, y)
∣∣
x=x1

= 0, ∂yg(x, y)
∣∣
y=y1

= 0.

Therefore functions τ(x, y) and g(x, y) can be represented by Fourier series
as

τ(x, y) =

∞∑
m=1

∞∑
n=1

τmn sin
(2m− 1)πx

2x1
sin

(2n− 1)πy

2y1
,

g(x, y) =

∞∑
m=1

∞∑
n=1

gmn sin
(2m− 1)πx

2x1
sin

(2n− 1)πy

2y1
.

Let the Fourier coefficients τmn and gmn satisfy conditions (16) where

γmn =
π

2

√(
2m− 1

x1

)2

+

(
2n− 1

y1

)2

.

If conditions (20) are satisfied, then the solution of the considered problem
is represented as

T =
∞∑

m=1

∞∑
n=1

1

ch(γmnz2)− a ch(γmnz3)

×
{
[ch(γmn(z − z2))− a ch(γmn(z − z3))] τmn

+
γmn

k(1 + ν)
sh(γmnz)gmn

}
sin

(2m− 1)πx

2x1
sin

(2n− 1)πy

2y1
. (31)

The substitution of z1 instead of z in formula (31) gives the desired value
of T on the upper face z = z1 of the considered parallelepiped.

If for example we assume that τ(x, y) and g(x, y) have the form

τ(x, y) = τ11 sin
πx

x1
sin

πy

y1
and g(x, y) = 0,

then formula (31) implies for the function T the following elementary ex-
pression

T =
ch(γ11(z − z2))− a ch(γ11(z − z3))

ch(γ11z2)− a ch(γ11z3)
τ11 sin

πx

x1
sin

πy

y1
.

The solutions of other non-classical problems of thermoelasticity are
constructed in an absolutely analogous manner.

13
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6 Solution of problems in the circular cylindrical coordinate
system.

In the circular cylindrical system of coordinates r, φ, z, let an elastic body
occupy the domain Ω = {r0 < r < r1, 0 < φ < φ1 ≤ 2π, 0 < z < z1} and
be in the state of thermoelastic equilibrium (see Fig. 3).

Fig. 2

Fig.3. The investigated thermoelastic circular cylindrical body.
Let us consider problem (7), (5), (1a), (2a), (3), (4a), (6). When con-

ditions (16) and (20) are fulfilled, the solution of this problem follows from
(23).

Thus we have

T =

∞∑
m=1

∞∑
n=1

1

ch(γmnz2)− a ch(γmnz3)

×
{
[ch(γmn(z − z2))− a ch(γmn(z − z3))] τmn +

γmn

k(1 + ν)
sh(γmnz)gmn

}
× sin

πmφ

φ1
[Ym̃(γmnr0)Jm̃(γmnr)− Jm̃(γmnr0)Ym̃(γmnr)] , (32)

where m̃ = πm
φ1

; Jm̃(γmnr), Ym̃(γmnr) are Bessel functions of first and
second kind, respectively; γmn is a solution of the following transcendental
equation

Ym̃(γmr0)Jm̃(γmr1)− Jm̃(γmr0)Ym̃(γmr1) = 0. (33)

When φ1 = 2π, i.e. when the domain is a hollow cylinder (r0 ̸= 0), we
have two expressions like (32) with the integer values of m̃, which differ
only in trigonometric functions (this is obvious by virtue of (17)).

14
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As an illustration let us consider the following concrete example.

Assume that in the above problem we have φ1 = 2π
3 and functions

τ(r, φ) and g(r, φ) are written as

τ(r, φ) = τ11 sin
3φ

2

[
Y3/2(γ11r0)J3/2(γ11r)− J3/2(γ11r0)Y3/2(γ11r)

]
,

g(r, φ) = 0,

then a solution of the problem will have the form

T =
ch(γ11(z − z2))− a ch(γ11(z − z3))

ch(γ11z2)− a ch(γ11z3)

× τ11 sin
3φ

2

[
Y3/2(γ11r0)J3/2(γ11r)− J3/2(γ11r0)Y3/2(γ11r)

]
. (34)

If we use the formulas [14]

J3/2(x) =

(
2

πx

)1/2(sinx

x
− cosx

)
and

Y3/2(x) = −
(

2

πx

)1/2(sinx

x
+ cosx

)
,

then the obtained solution (34) is expressed through elementary functions.

Let us now consider the problem which differs from the one considered
at the beginning of this section only in that the anti-symmetry condition
(2a) on the face φ = φ1 is replaced by the symmetry condition (2b), i.e.

∂φT = 0, v = 0, σφr = 0, σφz = 0 for φ = φ1.

A solution of the problem (we omit the algebraic details of its derivation)
has the form

T =
∞∑

m=1

∞∑
n=1

1

ch(γmnz2)− a ch(γmnz3)

×
{
[ch(γmn(z − z2))− a ch(γmn(z − z3))] τmn+

γmn

k(1 + ν)
sh(γmnz)gmn

}
× sin

(2m− 1)πφ

2φ1
[Ym̃(γmnr0)Jm̃(γmnr)− Jm̃(γmnr0)Ym̃(γmnr)] , (35)

where m̃ = (2m−1)π
2φ1

and γmn is again a solution of equation (33).

15
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It can be easily verified that if in the considered problem φ1 = π
2k−1 ,

k ∈ N , then in view of the formulas [9]

Jn+ 1
2
(x) =

√
2

π
xn+

1
2

(
−1

x

d

dx

)n sinx

x
,

Yn+ 1
2
(x) = (−1)n+1

√
2

π
xn+

1
2

(
1

x

d

dx

)n cosx

x
,

we obtain the solution in elementary functions.

The results obtained in this paper enable us to solve a number of ap-
plied problems that arise in mechanical engineering. Let us consider the
following two examples. Both examples concern the interaction of an elas-
tic cylindrical body C whose end-face lies γ1 at a given distance δ from
the boundary plane Γ of the other body D (Γ is a part of the boundary
surface of the body D) having some temperature T . It is assumed that this
temperature brings about a given temperature distribution on the end-face
γ1.

Now we formulate the following two problems.

1. Using the cylinder C, it is required to transfer the torque to the
body D. For this, the end-face γ1 should get deformed so that the friction
coefficient between the planes γ1 and Γ would obey the necessary conditions.
To this end, we make an appropriate choice of the temperature on the other
end-face γ0 of the cylinder C (we remind that we may have an access to the
surface Γ1 of the body D only by means of the cylinder C). It is assumed
that conditions (1.b) and (2.b) are fulfilled on the lateral surface of the
cylinder.

2. The second problem consists in choosing a temperature on the end-
face γ0 (the same conditions as in the first problem are fulfilled on the
lateral surface of C)such that the distance between the planes γ0 and Γ
would become equal to δ0 > δ.

Note that both problems are easily solved using the results obtained in
the present paper.

7 Solution of problems for multi-layer bodies

Nonclassical problems of thermoelasticity can be considered for multilayer
bodies along the coordinate z.

Assume that in the generalized cylindrical system of coordinates ξ, φ, z
we have an elastic multilayer body along z which is in the state of thermoe-
lastic equilibrium and occupies the domain Ωz. Ωz is the union of domains
Ωz(1) = {ξ0 < ξ < ξ1, φ0 < φ < φ1, 0 < z < z(1)}, Ωz(2) = {ξ0 < ξ < ξ1,
φ0 < φ < φ1, z

(1) < z < z(2)}, . . . ,Ωz(l) = {ξ0 < ξ < ξ1, φ0 < φ < φ1,

16
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z(l−1) < z < z(l) = z1} which contact with one another on the planes
z = z(j) where j = 1, 2, . . . , l − 1 and l is the number of layers. Each layer
has its own elastic and thermal characteristics.

Conditions (1)–(4) are satisfied on the domain boundaries. On the
contact planes z = z(j) (j = 1, 2, . . . , l − 1) the following conditions are
given:

Tj = Tj+1, βj∂zTj = βj+1∂zTj+1,

uj = uj+1, vj = vj+1, wj = wj+1,

σ
(j)
zξ = σ

(j+1)
zξ , σ(j)zφ = σ(j+1)

zφ , σ(j)zz = σ(j+1)
zz ,

or

Tj = Tj+1, βj∂zTj = βj+1∂zTj+1, σ(j)zz = σ(j+1)
zz , wj = wj+1,

σ
(j)
zξ = 0, σ

(j+1)
zξ = 0, σ(j)zφ = 0, σ(j+1)

zφ = 0, etc.

where βj is the heat conductivity coefficient of the j-th layer.

The problem consists in defining a change in the temperature T on the
boundary z = z1 such that condition (6) would be satisfied. It is assumed
that z2 ̸= z(j), z3 ̸= z(j), j = 1, 2, . . . , l − 1.

Based on the results of [11], it is not difficult to prove the following
statement.

If, in addition to conditions (16) and (20), conditions

kj(1 + νj) = kj+1(1 + νj+1), j = 1, 2, . . . , l − 1, (36)

are also fulfilled, where kj is the linear thermal expansion coefficient of
the j-th layer, νj is Poisson’s ratio of the j-th layer, then the considered
problem has a unique solution T that coincides with the solution of an
analogous problem for a homogeneous (one-layer) elastic body.

Note that due to the fulfillment of conditions (36), the nonclassical con-
tact boundary value problem for a multilayer body has turned out identical
to the nonclassical boundary value problem considered above. Moreover,
the elasticity moduli of different layers are different in the expressions for
stresses σξξ, σφφ¡ σξφ (see (12)) because in conditions (36) there are no
elasticity moduli. The obtained results can be easily extended to piecewise
homogeneous multilayer transversal isotropic bodies as well.
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