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Abstract

Galerkin finite element method for the approximation of a nonlinear integro-

differential equation associated with the penetration of a magnetic field into a sub-

stance is studied. Initial-boundary value problem with mixed boundary condition is

investigated. The convergence of the finite element scheme is proved. The rate of

convergence is given too.
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1 Introduction

The goal of this paper is a study of Galerkin finite element method for
approximation of a nonlinear integro-differential equation arising in math-
ematical modeling of the process of a magnetic field penetrating into a
substance. If the coefficient of thermal heat capacity and electroconductiv-
ity of the substance highly dependent on temperature, then the Maxwell’s
system [1], that describe above-mentioned process, can be rewritten in the
following form [2]:

∂W

∂t
= −rot

a
 t∫

0

|rotW |2 dτ

 rotW

 , (1.1)

where W = (W1,W2,W3) is a vector of the magnetic field and the function
a = a(σ) is defined for σ ∈ [0,∞). Let us consider magnetic field W , with
the form W = (0, 0, u), where u = u(x, t) is a scalar function of time and
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of one spatial variables. Then rotW =

(
0,−∂u

∂x
, 0

)
and system (1.1) will

take the form

∂u

∂t
=

∂

∂x

a
 t∫

0

(
∂u

∂x

)2

dτ

 ∂u

∂x

 . (1.2)

Note that (1.2) is complex, but special cases of such type models were in-
vestigated, see [2]-[12]. The existence of global solutions for initial-boundary
value problems of such models have been proven in [2]-[5],[11] by using the
Galerkin and compactness methods [13],[14]. The asymptotic behavior of
the solutions of (1.2) have been the subject of intensive research in recent
years, (see e.g. [11],[15]-[21]).

In [8] some generalization of equations of type (1.1) is proposed. As-
sume the temperature of the considered body is depending on time, but
independent of the space coordinates. If the magnetic field again has the
form W = (0, 0, u) and u = u(x, t), then the same process of penetration
of the magnetic field into the material is modeled by the following integro-
differential equation [8]

∂u

∂t
= a

 t∫
0

1∫
0

(
∂u

∂x

)2

dxdτ

 ∂2u

∂x2
. (1.3)

The asymptotic behavior of solutions of the initial-boundary value prob-
lem for the equation (1.3) and the convergence of the finite difference ap-
proximation for the case a(σ) = 1 + σ with first kind boundary conditions
were studied in [18]. The asymptotic behavior of solutions of the initial-
boundary value problem for the equation (1.3) with mixed boundary con-
ditions are considered in [22].

Note that in [18], [23]-[26] difference schemes for (1.2),(1.3) type mod-
els were also investigated. Difference schemes for one nonlinear parabolic
integro-differential model similar to (1.2) were studied in [27] and [28].

The purpose of this study is the Galerkin finite element approximation
of the initial-boundary value problem with mixed boundary conditions for
(1.3) in the case a(σ) = 1 + σ.

2 Statement of Problem and Main Results

Consider the following initial-boundary value problem:

∂u

∂t
= (1 + σ(t))

∂2u

∂x2
+ f(x, t), (x, t) ∈ (0, 1)× (0, T ), (2.1)
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u(0, t) = 0,
∂u

∂x

∣∣∣∣
x=1

= 0, t ≥ 0, (2.2)

u(x, 0) = u0(x), x ∈ [0, 1], (2.3)

where

σ(t) =

t∫
0

1∫
0

(
∂u

∂x

)2

dxdτ

and u0(x) is a given function.

We use the usual spaces Ck, Lp, H
k and norm

||u(·, t)||r =


1∫

0

r∑
i=0

∣∣∣∣∂iu(x, t)

∂xi

∣∣∣∣2 dx


1/2

.

Let us assume that u = u(x, t), is a solution of problem (2.1)-(2.3) such

that u(·, t), ∂u(·, t)
∂x

,
∂u(·, t)

∂t
,
∂2u(·, t)
∂t ∂x

are all in C0([0,∞); L2(0, 1)), while

∂2u(·, t)
∂t2

, is in L2((0,∞); L2(0, 1)).

It is easy to obtain the continuous dependence of solutions on initial
data. Indeed, by multiplying equation (2.1) by u, after simple transforma-
tions, we get the following estimate

∥u∥0 ≤ ∥u0∥0.

The following theorems are strengthening the result above [22].

Theorem 2.1. If u0 ∈ H2(0, 1), u0(0) = 0,
∂u0(x)

∂x

∣∣∣∣
x=1

= 0, then for

the solution of problem (2.1)-(2.3) the following estimate is true

∥u∥0 +
∥∥∥∥∂u∂x

∥∥∥∥
0

≤ C exp

(
− t

2

)
.

Here and below C denotes positive constants.

Theorem 2.2. If u0 ∈ H3(0, 1), u0(0) = 0,
∂u0(x)

∂x

∣∣∣∣
x=1

= 0, then for

the solution of problem (2.1)-(2.3) the following relations hold:∣∣∣∣∂u(x, t)∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
,

∣∣∣∣∂u(x, t)∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
.

These theorems guarantee the continuous dependence of solution on
initial data.
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Remark: The existence of globally defined solutions of problems (2.1)-
(2.3) can be obtained by a routine procedure. One first establishes the
existence of local solutions on a maximal time interval and then uses the
derived a priori estimates to show that the solutions cannot escape in finite
time. This approach is used very often (see, for example, [13], [14]).

The uniqueness of solutions of problem (2.1)-(2.3) can be proven as
well. Indeed, let u, ū, be two solutions of problem (2.1)-(2.3) and z(x, t) =
u(x, t)− ū(x, t). We have

∂z

∂t
= [1 + σ(t)]

∂2u

∂x2
− [1 + σ̄(t)]

∂2ū

∂x2
, (2.4)

where

σ̄(t) =

t∫
0

1∫
0

(
∂ū

∂x

)2

dxdτ.

Multiplying (2.4) by z and integrating, after some transformations we get

1∫
0

z2dx+
1

2
[σ(t)− σ̄(t)]2 ≤ 0.

From this we immediately get z(x, t) ≡ 0, which proves the uniqueness of
the solution.

Now we are going to study Galerkin finite element method for the in-
vestigated problem. One of the ingredients of finite-element method is a
variational formulation of problem. Let us denote by H the linear space of
functions u satisfying (2.2) and

||u(·, t)||1 < ∞.

The variational formulation of problem (2.1)-(2.3) can be stated as fol-
lows: find a function u(x, t) ∈ H for which

< v,
∂u

∂t
> + < (1 + σ(t))

∂u

∂x
,
∂v

∂x
>=< f, v >, (2.5)

and
< v, u(x, 0) >=< v, u0(x) >, ∀v ∈ H, (2.6)

where < p(x), q(x) >=
1∫
0

p(x)q(x)dx.

To approximate the solution of (2.5),(2.6) we require that u lies in a
finite-dimensional subspace Sh of H for each t (see e.g. [29]).

The approximation uh ∈ Sh to u is defined by the following variational
analog of (2.5),(2.6):
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Find a uh ∈ Sh such that

< vh,
∂uh

∂t
> + < (1 + σh(t))

∂uh

∂x
,
∂vh

∂x
>=< f, vh >, (2.7)

and
< vh, uh(x, 0) >=< vh, u0(x) >, ∀vh ∈ Sh, (2.8)

where

σh(t) =

t∫
0

1∫
0

(
∂uh

∂x

)2

dxdτ.

Once a basis has been selected for Sh, (2.7),(2.8) are equivalent to a set
of N integro-differential equations, where N is a dimension of Sh.

Using the technic of the work [30], where same question for initial-
boundary value problem with first kind boundary conditions for equation
(2.1) is studied, the following statement is proved.

Theorem 2.3. The error in the finite element approximation uh gen-
erated by (2.7),(2.8) satisfies the relation

|||u− uh|||1 ≤ hj−1C

{
1

2
h2||u0||20 + Ch2|||ut|||20

+C2
[
1 + h2(j−1)|||u|||20

]
|||u|||20 + C3

(
hj−1|||u|||20 + []u[]

)2}1/2
, j > 1,

where

|||E|||r =

T∫
0

1∫
0

r∑
i=0

∣∣∣∣∂iE(x, t)

∂xi

∣∣∣∣2 dxdt
and

[]u[] =

T∫
0

1∫
0

|u| dxdτ.

For the numerical solution of (2.7),(2.8) we let ϕ1(x), . . . , ϕN (x) be a
basis for Sh. Therefore uh ∈ Sh can be represented by

uh(x, t) =
N∑
j=1

uj(t)ϕj(x).

Since (2.7),(2.8) are valid for all vh ∈ Sh, one can let vh = ϕk. This yields
the following system for the weight u(t):

M u̇+K(u)u = F, (2.9)
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Mu(0) = U, (2.10)

where

Mjk =< ϕk, ϕj >,

K(u)jk =< (1 + σh(t))ϕ
′
k, ϕ

′
j >,

Fj =< ϕj , f >, Uj =< ϕj , u0 > .

Solving the system (2.9),(2.10), we have carried out various experiments
and in all cases we noticed the agreement with the theoretical results.
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