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Abstract

The differential quadrature method (DQM) which is indeed a higher order im-

plicit Runge-Kutta method, is applied to the Lorenz system. Numerical comparisons

are made between the DQM and the conventional fourth-order Runge-Kutta method

(RK4). It is concluded that the DQM can be used as an efficient tool for handling the

Lorenz system.
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For almost 50 years, the Lorenz attractor [1], with its intriguing double-
lobed shape and chaotic behavior, has symbolized order within chaos in
dynamical systems. The Lorenz attractor dates from 1963, when the mete-
orologist Edward Lorenz published an analysis of a simple system of three
differential equations that he had extracted from a model of atmospheric
convection. He pointed out that they possessed some surprising features.
In particular, the equations are ’sensitive to initial conditions’, meaning
that tiny differences at the start become amplified exponentially as time
passes. Since then, the Lorenz System has been the subject of many articles
[2, 3, 4], monographs [5], textbooks [6, 7], and university theses [8, 9].

In the present paper, we will consider the well-known Lorenz equations
which can be expressed as follows [1]:

dx

dt
= σ(y − x), (1.1)

dy

dt
= Rx− y − xz, (1.2)

dz

dt
= xy + bz, (1.3)
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where x, y, and z are dynamical variables of the Lorenz system; and σ,R,
and b are the related constants. The Lorenz system can exhibit both chaotic
and non-chaotic behaviors for distinct parameter values. Bifurcation stud-
ies show that with the parameters σ = 10 and b = −8/3 chaos sets in
around the critical parameter value R = Rcr = 27.74 [1]. In other words
the system (1-3) exhibit non-chaotic behavior when R < Rcr and does
chaotic behavior when R > Rcr.

Since analytical solution can not be found for the chaotic system (1-
3), there has been a considerable effort to solve this system numerically.
But numerical methods provide the solutions only at the discrete time
points. Besides, they often need very small time step sizes to ensure
the convergence and to arrive at an accurate solution. Thus, much at-
tention has been paid to analytical asymptotic (i.e. semi-analytic) tech-
niques such as the Adomian decomposition method (ADM) [10], Homotopy
analysis method (HAM) [11], and more recently the multistage homotopy-
perturbation method (MHPM) [12]. These semi-analytic methods give
some promising results, but each of these methods has its own drawbacks
and weaknesses. For example, when we use the ADM or the HAM we
should then calculate some polynomials (say ADM/HAM polynomials).
This procedure is often so cumbersome or the ‘formula’ obtained is often
too complicated to understand and display clearly the principle features of
the solution. In the literature, some researchers have also used the HPM
to handle the nonlinear dynamical systems [10, 11]. However, as pointed
out by Chowdhury et al. [12], this technique is not suitable for calculation
of long-term solutions. In fact, the approximate solutions obtained using
HPM, are generally not valid for long time durations [12]. To overcome
the difficulties of the HPM, Chowdhury et al. [12] proposed a multistage
HPM. In this technique, the time domain of interest is first divided into
some time intervals (i.e., time elements/steps). Then, the HPM is applied
to each time interval However, this technique produces high-accurate solu-
tions, many calculations should be done to obtain the required polynomials
coefficients. Thus, the major difficulty is not removed using this technique.

The above mentioned difficulties can be overcome by using the differ-
ential quadrature method (DQM). The DQ method, which was first intro-
duced by Bellman et al [13] in the early 1970s, is an alternative method
for directly solving the differential equations. The DQ method is basically
based on the interpolation and derivation. It was also initiated from the
idea of conventional integral quadrature. The DQ method approximates
the derivative of a function at a certain point by means of a weighted
linear sum of the function values in all discrete points at the domain of
that variable. Since its introduction, the DQ method has been applied
by many researchers to a variety of problems in engineering, mathematics,
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and physics and is gradually emerging as a distinct numerical technique.
Compared to the low-order methods such as the finite element method and
finite difference method, the DQ method can achieve very accurate solu-
tions by using a considerably small number of sample points [13]. Another
particular advantage of the DQ method lies in its ease of use and imple-
mentation. Due to the above-mentioned features, the DQ method has been
applied extensively. Majority of these applications are related to statics
or vibrations. The DQ method was initially proposed for the solution of
initial-value problems, but less attention has been paid to the application
of this technique to initial-value problems until the recent years [14-20].

In this paper, we apply the DQ method to the Lorenz system. To
the authors’ best knowledge, this is the first attempt in applying the DQ
method to nonlinear systems of ODEs having chaotic behaviors such as the
Lorenz system. Since for the Lorenz equation, a closed form of the analytic
solution can not be found, the accuracy of the DQ method is then tested
against conventional fourth-order Runge-Kutta method (RK4). The aim
of this study is to compare the effectiveness of the DQ time integration
method against the classical RK4 in producing solutions for the chaotic
Lorenz system. It is shown that the DQ method produces much better ac-
curacy than the RK4 using much larger time step sizes. Another particular
advantage of the DQ method is its ability in providing us a continuous rep-
resentation of the approximate solution, which allows better information
of the solution over the time interval of interest. This characteristic dis-
tinguishes the DQ time integration scheme from the single step methods.
Note that the RK4 only provides solutions in discretized form (i.e. only
gives the solutions in discrete time points), thereby making it complicated
in achieving a continuous representation of the approximate solution.

As pointed out earlier, the DQ method is basically based on the inter-
polation and derivation. Let x(t) be a function which is approximated by
the Lagrange interpolation functions Lj(t), j = 1, 2,. . . , m, that is

x(t) =
m∑
j=1

x(tj) · Lj(t), (1.4)

where m is the number of sample time points in the time domain (also the
number of Lagrange interpolation functions), x(tj) are the function values
at these points differentiating equation (1.1) with respect to time, we obtain

ẋ(t) =
dx

dt
=

m∑
j=1

x(tj) · L̇j(t) =

m∑
j=1

x(tj)
dLj

dt
. (1.5)

From equation (1.5), the first-order derivative of the function x(t) with
respect to time at a time point ti can be expressed as
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ẋ(ti) =
m∑
j=1

x(tj) · L̇j(ti). (1.6)

Equation (1.6) is, in fact, the quadrature rule
ẋ(ti) =

m∑
j=1

Aijx(tj) or

ẋi =
m∑
j=1

Aijxj ,
(1.7)

which gives the first-order DQ weighting coefficients, Aij, as follows

A
(1.1)
ik =


M(1.1)(ti)

(ti−tk)M(1.1)(tk)
i ̸= k, i, k = 1, 2, ...,m

−
m∑

j=1,j ̸=i

A
(1.1)
ij i = k, i = 1, 2, ...,m

(1.8)

where M(1.1)(t) is defined as

M (1.1)(ti) =
m∏

j=1,j ̸=i

(ti − tj). (1.9)

Obviously, the accuracy, stability, and rate of convergence of the DQ
solutions are dictated by the choice of the sample time points. It is well
known that non-uniformly spaced sample points (i.e, the Chebyshev-Gauss-
Lobatto sample points) perform consistently much better than the equally
spaced sample points. These points are given by

ti = T/2

[
1− cos

(
(i− 1)π

m− 1

)]
, i = 1, 2, ...,m (1.10)

where T is the time span.

Now we derive the DQ analogs of the Lorenz system. From the DQ
rule, the first-order derivative of the functions x(t), y(t), and z(t) at a time
point ti can be written as

ẋi =

m∑
j=1

Aijxj , ẏi =

m∑
j=1

Aijyj , żi =

m∑
j=1

Aijzj . (1.11)

Substituting equation (1.9) in equations (1-3) yields
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m∑
j=1

Aijxj = σ(yi − xi),

m∑
j=1

Aijyj = Rxi − yi − xizi,

m∑
j=1

Aijzj = xiyi + bzi.

i = 1, 2, ...,m (1.12)

Let us take the initial conditions as follows

x(t = 0) = x(t1) = x1 = x0, y1 = y0, z1 = z0. (1.13)

Applying the initial conditions in (1.12) yields



m∑
j=2

Aijxj +Ai1x0 = σ(yi − xi),

m∑
j=2

Aijyj +Ai1y0 = Rxi − yi − xizi,

m∑
j=2

Aijzj +Ai1z0 = xiyi + bzi.

i = 2, 3, ...,m (1.14)

Equation (1.14) is a system of nonlinear algebraic equations which can
be easily and efficiently solved by iterative methods. In this work, we
use the Newton method (i.e. Newton-Raphson method) to solve equation
(1.14). Our numerical experiment for the present problem showed that the
Newton method with only 3-5 iterations produced accurate solutions.

To test the accuracy and efficiency of the DQ time integration method
and to provide a comparison of the results with those previously obtained
by Guella et al. [10], and Chowdhury et al. [12] the parameters of the
problem are chosen as: σ = 10, b = −8/3. The initial conditions of the
problem are also considered as x0 = −15.8, y0 = −17.48 and z0 = 35.64.
We also demonstrate the accuracy and convergence of the DQ method for
the solutions of both non-chaotic and chaotic systems. For the purpose
of comparison, we will consider two cases: R = 23.5 where the system
is non-chaotic and R = 28 where the system exhibits chaotic behavior.
In addition to the above cases, we also consider two cases R = 50 and
R = 100, corresponding to chaotic systems, in our attempt to show the
applicability of DQ time integration method in prediction of behavior of
chaotic systems. In solving the Lorenz equations, we apply the DQM as a
step-by-step scheme (say DQEM: differential quadrature element method).
By using DQEM, the long-term solutions can be efficiently and accurately
obtained. In this case, the time domain of interest is divided into n equal
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DQM time element with m sample time points. The total number of sample
time points and the average time step can be obtained respectively as

Mtot = n (m− 1) + 1, (1.15)

∆t = T/ ( Mtot − 1) = T/ ( n (m− 1)) . (1.16)

Note that the time step given in equation (1.16) is an average time step
since the sample time points are taken non-uniformly spaced in the time
domain (see equation (10)). The time domain is considered in this work
(i.e. [0, T]) is [0, 5] or [0, 2.5].

First, we consider the non-chaotic case where σ = 10, b = −8/3 and
R = 23.5. Figure 1 presents the convergence and accuracy of DQ solutions
for this case. The use of Lagrange interpolation polynomials (in each time
element) enables us to reach a continuous representation of the approximate
solutions. A good convergence trend of solutions can be observed. However,
when the total number of sample time points is too small (i.e. when the
size of time steps are too large) a visible phase shift can be observed. On
the other hand, the accuracy of solutions can be controlled by choosing the
proper values of n and/or m. In other words, the accuracy of solutions can
be improved by increasing n and/or m. Figure 2 presents the phase planes
obtained using the DQmethod and the RK4. The numerical simulations are
done in the time interval 0 ≤ t ≤ 5. By comparing the DQ solutions with
those of RK4, one can conclude that the DQ method gives more accurate
solutions than the RK4 using a considerably larger time step sizes.

As pointed out earlier, the system (1)-(3) with R > 27.74 exhibits
chaotic behavior. For chaotic behaviors of Lorenz system, we consider
three cases: R = 28, R = 50 and R = 100. When the system is chaotic,
care should be taken in choosing a time step since the solutions are highly
sensitive to time step. Figure 3 shows the convergence of DQ time integra-
tion method for the solutions of chaotic Lorenz system against the number
of time elements, n, and the number of sample time points per time ele-
ment, m, when R = 28. It can be observed that the DQ method encounters
some large attenuation of amplitude and overshoot for long-term solutions
when the time step is so large (i.e. when n or m is too small). However,
by decreasing the time step (i.e. by increasing n or m) the solutions con-
verge to the true solutions. In conclusion, the DQ time integration scheme
may be possible to yield inaccurate solutions for chaotic systems with an
inappropriate too large time step. Figure 4 shows the phase portraits of
the Lorenz system, solutions by the RK4 and the DQ method. It can be
seen that the results of the DQ method with ∆t = 0.0357 are comparable
in accuracy to those of RK4 with ∆t = 0.0125. This demonstrates the
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superiority of DQ time integration method over the conventional RK4 for
the solution of chaotic Lorenz system.

Figure 1. Convergence and accuracy of DQ time integration method for
the solution of non-chaotic Lorenz system (R=23.5).
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Figure 2. Phase portraits of the non-chaotic Lorenz system obtained using
DQM and RK4 (R=23.5).
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Figure 3. Convergence and accuracy of DQ time integration method for
the solution of chaotic Lorenz system (R=28).
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Figure 4. Phase portraits of chaotic Lorenz system obtained using DQM
and RK4 (R=28).

Figure 5 presents the results for the chaotic Lorenz system with R =
50. Significant differences in numerical accuracy, amplitude attenuation,
and phase shift are easily observed from figure 5 when using RK4 with
∆t = 0.0277. It is also found that the DQ method also confronts some
small attenuation of amplitude and overshoots for long-term solutions when
∆t = 0.0277. However, the DQ solutions are better than those of RK4
in this case (i.e. when ∆t = 0.0277). It is observed that both the DQ
method and RK4 provide true solutions using sufficiently small time step
∆t = 0.0104. By comparing the DQ solutions shown in figures 1, 3 and 5,
one can conclude that as the parameter R increases, the size of time step
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required to achieve accurate solutions decreases (i.e. the total number of
sample time points required to accurately obtain the solutions increase).
This is actually due to the chaotic behavior of the Lorenz system. As
the parameter R increases, the shape of dynamic responses becomes non-
smoother and thus, a larger number of sample time points (i.e. a smaller
size of time steps) are required to obtain the accurate solutions since the
DQ method is basically based on the interpolation and derivation. The
phase portraits of the Lorenz system obtained using DQ method and RK4
are given in figure 6. The DQ solutions are obtained using ∆t = 0.01786
while those of RK4 are calculated using ∆t = 0.01786 and ∆t = 0.0104. It
can be seen that the DQ solutions with ∆t = 0.01786 are comparable in
accuracy to RK4 solutions with ∆t = 0.0104. It can also be observed the
RK4 solutions have visible phase shift when ∆t = 0.01786.

Figure 5. Accuracy of DQ time integration method for the solution of
chaotic Lorenz system and comparisons with those of RK4 (R=50).
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Figure 6. Phase portraits of chaotic Lorenz system obtained using DQM
and RK4 (R=50).

Figures 7 and 8 illustrate the results for the chaotic Lorenz system with
R=100. From figure 7, it can be observed that the DQ solutions with a
rather large time step ∆t = 0.0185 are comparable in accuracy to the RK4
solutions with a small time step ∆t = 0.00555. Again, the solutions of the
RK4 encounter a sharp drop of accuracy for the long-term response when
the size of time step is large, (i.e. when ∆t = 0.0185) as seen in figure
7. As pointed out earlier and as it was seen in figures 1, 3, 5, and 7, as
the parameter R increases a smaller time steps should be used to ensure
the convergence and arrive at accurate solutions. The phase portraits of
the DQ solution with ∆t = 0.0185 and the RK4 with ∆t = 0.0185 and
∆t = 0.00555 are given in figure 8. It can be observed that as compared to
the RK4, the DQ method produces better results using a much larger time
step size. Note that the RK4 solutions with ∆t = 0.0185 are not acceptable
in accuracy in this case. In chaotic case even the round off error will affect
the instantaneous response but the static response will be the same.
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Figure 7. Accuracy of DQ time integration method for the solution of
chaotic Lorenz system and comparisons with those of RK4 (R=100).

Figure 8. Phase portraits of chaotic Lorenz system obtained using DQM
and RK4 (R=100).

In view of the foregoing discussions and comparison of the DQ time
integration method, and those of RK4, it is concluded that the DQ method
produces much better accuracy than the RK4 using much larger time step
sizes (i.e. using considerable smaller number of sample time points). Thus,
the DQ time integrations method seems to be an effective and promising
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tool for handling the Lorenz system.
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