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Abstract

The accurate estimation of physical characteristics (such as volume, surface area,

length, or other specific parameters) relevant to human organs is of fundamental

importance in medicine. The aim of this article is, in this respect, to provide a general

methodology for the evaluation, as a function of time, of the volume and center

of gravity featured by moving generalized Möbius listing’s bodies used to describe

different human organs.
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1 Introduction

Recently, the mathematical modeling of human organs is attracting a great
deal of interest in modern sciences. As an example, the imaging of heart
is essential to collect kinematic and anatomical information in the form of
structural boundaries which are afterwards used in suitable computational
fluid dynamics models for the evaluation of the blood motion flow within
the organ. This in turn is important to analyze heart and valve biodynamics
and the mechanisms ensuring their proper functioning. Therefore, it’s easy
to figure out that the accurate volumetric description of human organs
is beneficial for aiding the assessment of the relevant functional behavior
and early detection of possible pathologies. In this context, organs can be
conveniently modeled in terms of generalized twisted and rotated bodies,
whose analytical or algorithmic representations are thoroughly discussed
in [6], [7], [9]. In this study, emphasis is put on the evaluation of the



AMIM Vol.17 No.1, 2012 D. Caratelli, M. Rogava, ... +

geometrical characteristics of these bodies and, in particular, the relevant
volume and center of gravity as functions of time due to arbitrary motion.
Here it is also worth noting that the displacement of the mentioned bodies
can be described analytically in terms of elementary permutations [8], [9].

2 Generalized Twisted and Rotated Bodies

The analytical representation of a generalized twisted and rotated body is
given by the following parametric equations [9]:


x(τ, ψ, θ, t) = T1(t) + [R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t))]
× cos(θ +M(t)) ,
y(τ, ψ, θ, t) = T1(t) + [R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t))]
× sin(θ +M(t)) ,
z(τ, ψ, θ, t) = T3(t) +K(θ, t) + p(τ, ψ, θ, t) sin(ψ + n(θ) + g(t)) ,

(1)

where x, y, z denote, as usual, the Cartesian coordinates, and τ, ψ, θ are
spatial parameters satisfying the following conditions:

1. τ ∈ [τ∗, τ
∗], with τ∗ ≤ τ∗;

2. ψ ∈ [0, 2π];
3. θ ∈ [0, 2πh], with h ∈ R.

In (1), t denotes time, andM,R, p, g, n,K, Ti (i = 1, 2, 3) are sufficiently
smooth functions which can be selected, at some extent, in an arbitrary way.
The physical meaning and frames of arbitrariness of such functions have
been extensively discussed in previously published papers [8], [9]. However,
for the sake of clarity, a short description of the relevant features is provided
hereafter.

• The function R(θ, t) defines the basic line of the body, so that:

– If it is a periodic function of θ, the body is closed or, equivalently,
its boundary is a closed surface (see Fig. 1c, f). In the opposite case,
the considered body is not closed and its boundary is an open surface
(see Fig. 1a, b, d, e and Fig. 2e. break in medical terms);
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Fig. 1

– If it is a periodic function of t, the body is subject to periodic con-
tractions and expansions (pulsing motion).

• The function p(τ, ψ, θ, t) defines the shape of the radial cross section of
the body, and:

– If it is a periodic function of t, the cross section of the body is subject
to a pulsing motion (“Peristalsis” in medical terms);

– If it is a periodic function of ψ, the cross section of the body is a
closed plane figure. In the opposite case, the cross section is open and,
in medical terms, one is observing a “rupture” or “scar formation”;

– This function defines the size, namely maximal and minimal diame-
ters, of the cross section. In practical scenarios, it is not zero (unless
we are considering a “sealed” organ) and, on the other hand, should
be within a reference range (conversely, we might be observing an
“aneurysm” or a “burst”);

– The dependence of this function on the variable θ is to be in accor-
dance with the behavior of the function R(θ, t). In particular, if R(θ, t)
is a periodic function of θ, then p(τ, ψ, θ, t) has to be periodic with the
same period, otherwise the surface of the body is open (see Fig. 2a
and c).

5
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Fig. 2

• The function g(t) defines the twisting characteristics of the radial cross
section of the body.

• The function M(t) affects the rotation or swinging of the body around
the coordinate Oz axis or, in medical terms, the “rhythm” “or velocity of
twisting”.

• The function K(θ, t) affects the vertical stretch of the body, so that:

– If it is identically equal to zero, then then basic line of the body lies
in a plane (see Fig. 1e and Fig. 2a, b);

– If it is a 2πh-periodic function, then the considered body features
is characterized by a basic line which evolves in the three-dimensional
space (see Fig. 1c, f and Fig. 2e);

– If it is a constant, then the basic line is a helix line with fixed pitch
(see Fig. 1a, d) or a spiral line on a conic surface (see Fig. 1b and Fig.
2c, d);

– If it is a periodic function of t, the considered body shrinks and
expands rhythmically along the coordinate Oz axis (determining the
“pulsing” or “contraction” rhythm of the organ).

6



+ On Some Geometrical Properties ... AMIM Vol.17 No.1, 2012

3 Volume of Generalized Twisted and Rotated
Bodies

In the general case, the analytical evaluation of the geometrical parameters
relevant to complex-shaped organs as functions of time due to arbitrary
motion in the three-dimensional space is not a trivial problem. For the
specific class of bodies analyzed in this study, the capacity, or volume, may
be calculated according to the classical formula:

V (t) =

∫ ∫ ∫
dxdydz =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

∂(x, y, z)

∂(τ, ψ, θ)
dτdψdθ , (2)

involving the Jacobian determinant:

∂(x, y, z)

∂(τ, ψ, θ)
= J(τ, ψ, θ) =

=

∣∣∣∣∣ pτc(Ψ)C(Θ) −(R+ pc(Ψ))S(Θ) + (Rθ + pθc(Ψ)− pnθs(Ψ))C(Θ) −ps(Ψ)C(Θ)
pτc(Ψ)S(Θ) (R+ pc(Ψ))C(Θ) + (Rθ + pθc(Ψ)− pnθs(Ψ))S(Θ) −ps(Ψ)S(Θ)

pτs(Ψ) Kθ + pθs(Ψ) + pnθc(Ψ) pc(Ψ)

∣∣∣∣∣ ,
(3)

where pτ ≡ ∂p
∂τ , c(Ψ) ≡ cos(ψ + n(θ) + g(t)), s(Ψ) ≡ sin(ψ + n(θ) + g(t)),

C(Θ) ≡ cos(θ +M(t)), and S(Θ) ≡ sin(θ +M(t)). However, after some
mathematical manipulations, it is not difficult to derive the expression of
the volume of a generalized twisted and rotated body as follows:

V (t) =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

(R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t)))

×p(τ, ψ, θ, t)∂p(τ, ψ, θ, t)
∂τ

dτdψdθ ,

(4)

or, equivalently:

V (t) =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

(R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t)))

×p(τ, ψ, θ, t)dpdψdθ ,
(5)

Remark 1. If the function p(τ, ψ, θ, t) does not depend on ψ, the radial
cross section of the body under analysis is a circle whose diameter is, in
general, the function of θ (see Fig. 2b, c, d). In this case, since

∫ 2π
0 cos(ψ+

n(θ) + g(t))dψ = 0, the expression (5) assumes the classical form [7]:

V (t) = π

∫ 2π

0
R(θ, t)

[
p2(τ∗, θ, t)− p2(τ∗, θ, t)

]
dθ . (6)

7



AMIM Vol.17 No.1, 2012 D. Caratelli, M. Rogava, ... +

4 Center of Gravity of Generalized Twisted and
Rotated Bodies

Of great interest in practical applications is the center of gravity, whose
Cartesian coordinates can be readily evaluated, under the assumption Ti(t) =
0 (i = 1, 2, 3), as:

xc(t) =

∫ ∫ ∫
xdxdydz, yc(t) =

∫ ∫ ∫
ydxdydz, zc(t) =

∫ ∫ ∫
zdxdydz .

(7)
Upon combining (1) with (7), one easily obtains:

xc(t) =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

(R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t)))2 ·

·p(τ, ψ, θ, t) cos(θ +M(t))dpdψdθ , (8)

yc(t) =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

(R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t)))2 ·

·p(τ, ψ, θ, t) sin(θ +M(t))dpdψdθ , (9)

zc(t) =

∫ 2πh

0

∫ 2π

0

∫ τ∗

τ∗

(R(θ, t) + p(τ, ψ, θ, t) cos(ψ + n(θ) + g(t))) ·

· (K(θ, t) + p(τ, ψ, θ, t) sin(ψ + n(θ) + g(t))) p(τ, ψ, θ, t)dpdψdθ . (10)

By using equations (8)-(10), once can rigorously determine the location
of the center of gravity in space and, in this way, infer the type of motion
made by the body under analysis.
Remark 2. If the functions R, p, n do not depend on θ, the basic line of the
body is a circle (with possibly time-dependent diameter), whereas the radial
cross section changes only in time with constant twisting rate. In this case,
upon noticing that

∫ 2π
0 cos(θ+M(t))dθ = 0, it is easy to figure out that the

coordinates xc and yc are identically equal to zero, so that center of gravity
can move only along the Oz axis.
Remark 3. In case the assumptions in Remark 1 and Remark 2 hold
true and the function K is either identically equal to zero (the basic line of
the body is a circle lying on the Oxy plane) or 2π-periodic with respect to
the azimuthal angle θ, the coordinate zc is, also, equal to zero, so that the
center of gravity of the body is fixed.

The determination of the surface area of the bodies considered in the
presented study is not trivial, since entails evaluating integral expressions,
not reported here for the sake of brevity, which involve the first quadratic
form of the mapping (1) from the τ, ψ, θ coordinates to the Cartesian ones
x, y, z, and cannot be reduced to simple formulas.
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5 Laplacian Operator on Generalized Twisted and
Rotated Bodies

Many problems of mathematical physics and electromagnetics are related to
the Laplacian operator. Among them, it is worth mentioning those relevant
to the Laplace and Helmholtz, as well as heat and wave equations [1]-[6].
In order to address these differential problems in generalized twisted and
rotated bodies, a suitable analytical expression of the Laplacian is helpful.
In this contribution, this task is accomplished by introducing two different
local coordinate system which directly follow from the representation in
(1).

First Approach. A system of local coordinates conformal to the“twisted
torus” having radius R and twisting parameter µ is introduced, in accor-
dance with (1), as follows:

x = (R+ τ cos(ψ + µθ)) cos(θ)) ,
y = (R+ τ cos(ψ + µθ)) sin(θ)) ,
z = τ sin(ψ + µθ) ,

(11)

so that the inverse mapping is readily found to be:
θ = arctan y

x ,

τ =

√
z2 +

(√
x2 + y2 −R2

)2
,

ψ = arctan z√
x2+y2−R

− µ arctan y
x .

(12)

The coefficients of the Laplacian operator are listed in the second column
of Table 13, in comparison with the corresponding coefficients in classical
toroidal, as well as spherical coordinates.

Terms Twisted Torus Classical Torus Sphere
uττ 1 1 1
uθθ (R+ τ cos(ψ + µθ))−2 (R+ τ cosψ)−2 (τ cosψ)−2

uψψ τ−2 + µτ−4(R+ τ cos(ψ + µθ))−2 τ−2 τ−2

uτθ 0 0 0
uτψ 0 0 0
uθψ −µ(R+ τ cos(ψ + µθ))−2 0 0

uτ
1

τ

(
2− R

R+ τ cos(ψ + µθ)

)
1

τ

(
2− R

R+ τ cosψ

)
2

τ
uθ 0 0 0

uψ
− sin(ψ + µθ)

τ(R+ τ cos(ψ + µθ))

− sinψ

τ(R+ τ cosψ)

− sinψ

τ2 cosψ

Table. 1

9
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Remark 4.
1. In the system of local twisted toroidal coordinates, the coefficients of

the Laplace equation depend on each of the coordinates τ, ψ, θ. This prevents
the use of the eigenfunction method and separation of variables (with respect
to τ, ψ, θ) for the solution of differential problems in the considered class of
bodies.

2. The coefficients of the Laplacian operator strongly depend on the
twisting parameter µ. Wherein µ = 0, the mentioned coefficients coincide
with those obtained in the classical toroidal coordinate system.

3. Wherein R = 0, the oefficients of the Laplacian operator coincide
with those obtained in the classical spherical coordinate system.
Remark 5. The following identities hold true:

P (x, y) ≡ x cos
(
arctan y

x

)
+ y sin

(
arctan y

x

)
≡

√
x2 + y2

≡ R+ τ cos(ψ + µθ) ,
(13)

∂P (x, y)

∂x
=

x

x2 + y2
P (x, y) ≡ x

P (x, y)
,

∂P (x, y)

∂y
=

y

x2 + y2
P (x, y) ≡ y

P (x, y)
,

∂2P (x, y)

∂x2
=

y2

(x2 + y2)2
P (x, y) ≡ y2

P 3(x, y)
, (14)

∂2P (x, y)

∂y2
=

x2

(x2 + y2)2
P (x, y) ≡ x2

P 3(x, y)
,

∂2P (x, y)

∂x∂y
= −n xy

(x2 + y2)2
P (x, y) ≡ − xy

P 3(x, y)
.

Second Approach. A system of local coordinates conformal to the“twisted
torus-like body” having radial cross section with rectangular shape (0 <
τ < τ∗ and 0 < ϱ < ϱ∗):

x = (R+ τ cos(µθ)− ϱ sin(µθ)) cos(θ) ,
y = (R+ τ cos(µθ)− ϱ sin(µθ)) sin(θ) ,
z = τ sin(µθ) + ϱ cos(µθ) .

(15)

In this case, the inverse transformation is described by the following equa-
tions:

θ = arctan y
x ,

τ = z sin
(
µ arctan y

x

)
+

(√
x2 + y2 −R

)
cos

(
µ arctan y

x

)
,

ϱ = z cos
(
µ arctan y

x

)
−

(√
x2 + y2 −R

)
sin

(
µ arctan y

x

)
,

(16)

10



+ On Some Geometrical Properties ... AMIM Vol.17 No.1, 2012

so that the expression of the Laplacian operator is found to be:

∆u ≡
[
1 +

µ2ϱ2

R+ τ cos(µθ)− ϱ sin(µθ)

]
∂2u

∂τ2

+

[
1 +

µ2τ2

R+ τ cos(µθ)− ϱ sin(µθ)

]
∂2u

∂ϱ2

+
1

(R+ τ cos(µθ)− ϱ sin(µθ))2
∂2u

∂θ2
+

µϱ

(R+ τ cos(µθ)− ϱ sin(µθ))2
∂2u

∂τ∂θ

− µϱ

(R+ τ cos(µθ)− ϱ sin(µθ))2
∂2u

∂ϱ∂θ
− µτϱ

(R+ τ cos(µθ)− ϱ sin(µθ))2
∂2u

∂τ∂ϱ

+

[
−µ2τ

(R+ τ cos(µθ)− ϱ sin(µθ))2
+

cos(µθ)

R+ τ cos(µθ)− ϱ sin(µθ)

]
∂u

∂τ

+

[
−µ2ϱ

(R+ τ cos(µθ)− ϱ sin(µθ))2
− sin(µθ)

R+ τ cos(µθ)− ϱ sin(µθ)

]
∂u

∂ϱ
. (17)

Remark 6.

1. In the system of local twisted toroidal-like coordinates, the coefficients
of the Laplace equation depend on each of the coordinates τ, ϱ, θ. This pre-
vents the use of the eigenfunction method and separation of variables (with
respect to τ, ϱ, θ) for the solution of differential problems in the considered
class of bodies.

2. The coefficients of the Laplacian operator strongly depend on the
twisting parameter µ. Wherein µ = 0 (the radial cross section of the body
doesn’t twist), the mentioned coefficients coincide with those obtained in the
classical cylindrical

6 About Some Geometrical Properties of Some
Subclasses of Surfaces GTRn

2

In this section,attention is put on a particular case of “non-regular” gen-
eralized twisting and rotated surfaces GTRn

2 described by the following
parametric equations:

x(τ, ψ, θ) = (R+ τ cos (ψ + µn(θ))) cos(θ) ,
y(τ, ψ, θ) = (R+ τ cos (ψ + µn(θ))) sin(θ) ,
z(τ, ψ, θ) = K(θ) + τ sin (ψ + µn(θ)) ,

(18)

where R is the radius of orthogonal projection of the basic line of the
surface, n(θ) denotes an arbitrary twisting function with coefficient µ = k/2
(k ∈ Z), andK(θ) ia a sufficiently smooth function which affects the vertical

11



AMIM Vol.17 No.1, 2012 D. Caratelli, M. Rogava, ... +

stretch of the surface. In (18) the variables τ, ψ, θ are assumed to satisfy
the same conditions listed in the section 2 for the representation (1).

After some mathematical manipulations, it can be shown that the tan-
gential vectors of the general surface belonging to the considered class are
given by:

−→r τ =


cos (ψ + µn(θ)) cos(θ)
cos (ψ + µn(θ)) sin(θ)
sin (ψ + µn(θ))

 , (19)

and:

−→r θ =


− (R+ τ cos (ψ + µn(θ))) sin(θ)− τµn′(θ) sin (ψ + µn(θ)) cos(θ)
(R+ τ cos (ψ + µn(θ))) cos(θ)− τµn′(θ) sin (ψ + µn(θ)) sin(θ)
τµn′(θ) cos (ψ + µn(θ)) +K ′(θ)

 ,

(20)
respectively, so that the expression of the relevant scalar product can be
easily derived as:

(−→r τ ,
−→r θ) = K ′(θ) sin (ψ + µn(θ)) . (21)

Remark 7. If K ′(θ) ≡ 0, then for any integer number k the tangential vec-
tors −→r τ ,

−→r θ are perpendicular to each other, meaning that the local system
of coordinates (τ, θ) is orthogonal:

a) If K(θ) ≡ 0, we have a generalized Möbius-Listing’s surface GMLn
2

with cicular basic line;
b) If K(θ) ≡ const., we have a helicoidal surface with constant vertical

stretching.
From equations (19), it also follows that:

∂(x, y)

∂(τ, θ)
= (R+ τ cos (ψ + µn(θ))) cos (ψ + µn(θ)) , (22)

∂(z, x)

∂(τ, θ)
= − (R+ τ cos (ψ + µn(θ))) sin (ψ + µn(θ)) sin(θ)

−
(
τµn′(θ)−K ′(θ) cos (ψ + µn(θ))

)
cos(θ) , (23)

∂(y, z)

∂(τ, θ)
= − (R+ τ cos (ψ + µn(θ))) sin (ψ + µn(θ)) cos(θ)

+
(
τµn′(θ) +K ′(θ) cos (ψ + µn(θ))

)
sin(θ) , (24)

and correspondingly the module of the vector product of these two vectors
is found to be:∣∣−→r τ ×−→r θ

∣∣ = √
(R+ τ cos (ψ + µn(θ)))

2
+ (τµn′(θ)/2 +K ′(θ) cos (ψ + µn(θ)))

2
.

(25)

12
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Using equations (22)-(25), it is not difficult to show that:
Remark 8. The following properties of the surfaces (18) hold true:

a) If K(θ) ̸= 0 and K(θ) is not a 2π-periodic function, then the corre-
sponding helicoidal surface is two-sided for any integer index n;

b) If K(θ) ≡ 0 or Q(θ) is a 2π-periodic function, then the corresponding
generalized Möbius-Listing’s surface GMLn

2 is two-sided (the unit normal
vector is a 2π-periodic function);

c) If K(θ) ≡ 0 or Q(θ) is a 2π-periodic function, then the unit normal
vector is a 4π-periodic function and the corresponding generalized Möbius-
Listing’s surface GMLn

2 is one-sided;
The first fundamental form of the general surface belonging to the con-

sidered class is described by the equations:

E(τ, θ) = 1 , (26)

F (τ, θ) = K ′ sin (ψ + µn(θ)) , (27)

G(τ, θ) = (R+ τ cos (ψ + µn(θ)))2 +K ′2(θ) sin2 (ψ + µn(θ))

+
(
τµn′(θ) +K ′2(θ) cos (ψ + µn(θ))

)2
, (28)

so that:

EG−F 2 = (R+ τ cos (ψ + µn(θ)))2+
(
τµn′(θ) +K ′2(θ) cos (ψ + µn(θ))

)2
.

(29)
Remark 9. Each point of a GMLn

2 surface (18) is regular.
The second fundamental form of this class of surfaces is given by:

L(τ, θ) = 0 , (30)

M(τ, θ) =
2µRn′(θ)−K ′(θ) cos (ψ + µn(θ))√

EG− F 2
, (31)

N(τ, θ) =
1√

EG− F 2

{
(R+ τ cos (ψ + µn(θ)))2 sin (ψ + µn(θ))

+ (R+ τ cos (ψ + µn(θ)))
(
τµ2n′′(θ)) +K ′′(θ) cos (ψ + µn(θ))

)
(32)

+τn′(θ)
(
τn′(θ) +K ′(θ) cos (ψ + µn(θ)) sin (ψ + µn(θ))

)}
.

Furthermore, we may rewrite the mean and Gaussian curvatures of this
class of surfaces

G(τ, θ) =
−
[
2µRn′(θ)−K ′(θ) cos

(
ψ + ng(θ)

2

)]2
[EG− F 2]2

. (33)

13
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From equation (33) it is clear that:

Remark 10. The following properties hold true:

a) Each point of a GTRn
2 surface (18) is parabolic or hyperbolic (saddle)

point;

b) If K(θ) ≡ const., then the considered surface features only saddle
points.
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