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Abstract

The notion of unilateral differentiability of functions of two variables is introduced

by O. Dzagnidze. Some properties of such functions are considered.
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1 The Unilateral Differentiability of Functions
of Two Variables

Let U(0) and U0(0) = U(0) \ {0} denote the neighborhood and the punc-
tured neighborhood of the point O = (0, 0). We use the following sets ([1,
p. 43]):

A+
1 = {(h, k) ∈ U(0) : h > 0}, A+

2 = {(0, k) ∈ U(0) : k > 0},
A−

1 = {(h, k) ∈ U(0) : h < 0}, A−
2 = {(0, k) ∈ U(0) : k < 0},

A+
12 = A+

1 ∪A+
2 , A−

12 = A−
1 ∪A−

2 .

It is obvious that

A+
12 ∩A−

12 = ∅ and A+
12 ∪A−

12 = U0(0). (1.1)

Let us introduce the following two definitions.

Definition 1.1. ([2]) A function f(x, y) is called right-differentiable at
the point p0 = (x0, y0) if the equality

lim
(h,k)→(0,0)

(h,k)∈A+
12

f(x0 + h, y0 + k)− f(x0, y0)−A+h−B+k

|h|+ |k|
= 0 (1.2)
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is fulfilled for some finite numbers A+ and B+, and the linear function
A+h + B+k for (h, k) ∈ A+

12 is called a right-differential of f at the point
p0, denoted by d+f(p0) and we write

d+f(p0) = A+h+B+k. (1.3)

Definition 1.2. ([2]) A function f(x, y) is called left-differentiable at
the point p0 = (x0, y0) if there exist finite numbers A− and B− such that
the equality

lim
(h,k)→(0,0)

(h,k)∈A−
12

f(x0 + h, y0 + k)− f(x0, y0)−A−h−B−k

|h|+ |k|
= 0 (1.4)

is fulfilled, and the linear function A−h+B−k is called a left-differential of
f at the point p0, denoted by d−f(p0), (h, k) ∈ A−

12, and we write

d−f(p0) = A−h+B−k. (1.5)

The next two propositions are obvious.

Proposition 1.1. ([2]) A differentiable at a point p0 function f(x, y)
is bilaterally differentiable at p0 and the equalities

d+f(p0) = df(p0), d−f(p0) = df(p0),

A+ = A− = f ′
x̂(p0), B+ = B− = f ′

ŷ(p0)
(1.6)

are fulfilled.

Proposition 1.2. ([2]) If a function f(x, y) is bilaterally differentiable
at a point p0 and the equalities A+ = A− and B+ = B− are fulfilled, then
f is differentiable at p0 and

A+ = f ′
x̂(p0) = A−, B+ = f ′

ŷ(p0) = B−. (1.7)

2 A Symmetrical Differential and Unilateral
Differentials of Functions of Two Variables

Definition 2.1. ([3]) A function φ(x, y) is called symmetrically differen-
tiable at a point (x0, y0) if there exist finite constants A and B with the
property

lim
(h,k)→(0,0)

φ(x0 + h, y0 + k)− φ(x0 − h, y0 − k)− 2Ah− 2Bk

|h|+ |k|
= 0. (2.1)
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When a function is symmetrically differentiable at a point (x0, y0), then
the coefficients of its symmetrical differential at (x0, y0)

dsymφ(x0, y0) = Adx+B dy (2.2)

are symmetrical partial derivatives of φ at the point (x0, y0) with respect
to the variables x and y:

A = φ(1)
x (x0, y0), B = φ(1)

y (x0, y0),

dsymφ(x0, y0) = φ(1)
x (x0, y0) dx+ φ(1)

y (x0, y0) dy.
(2.3)

A symmetrical differential and unilateral differentials are related in the
manner as follows

Theorem 2.1. Let a function f have, at a point p0 = (x0, y0), two
unilateral differentials d+f(p0) and d−f(p0). Then there exists at p0 its
symmetrical differential dsymf(p0) and the equality

dsymf(p0) =
1

2

[
d−f(p0) + d+f(p0)

]
(2.4)

is fulfilled.
Proof. Assume that equalities (1.2) and (1.3) are fulfilled. Since the

point
(−h,−k) belongs to the set A−

12 and the function f is left-differentiable
at the point p0, the equality

lim
(h,k)→(0,0)

(−h,−k)∈A−
12

f(x0 − h, y0 − k)− f(x0, y0)−A−(−h)−B−(−k)

| − h|+ | − k|
= 0 (2.5)

is fulfilled too.
Moreover, we have the equality

f(x0 + h, y0 + k)− f(x0, y0)−A+h−B+k

|h|+ |k|

− f(x0 − h, y0 − k)− f(x0, y0)−A−(−h)−B−(−k)

| − h|+ | − k|
(2.6)

=
f(x0 + h, y0 + k)− f(x0 − h, y0 − k)− 2 A++A−

2 h− 2B++B−

2 k

|h|+ |k|
.

The left-hand side of this equality tends to zero by virtue of equalities (1.2)
and (2.5) when (h, k) ∈ A+

12 and (h, k) → (0, 0). Thus the right-hand side
of (2.6) also tends to zero and

dsymf(p0) =
1

2
(A+ −A−) dx+

1

2
(B+ −B−) dy =

1

2
(A+dx+B+dx)

+
1

2
(A−dx+B−dx) =

1

2
d+f(p0) +

1

2
d−f(p0).

The theorem is proved. ⊓⊔
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3 The Properties of a Unilaterally Differentiable
Function of Two Variables

We will investigate a unilaterally differentiable function with respect to
each independent variable. For this we need to introduce some definitions.

Definition 3.1. The following limits

∂+
x f(p0) = lim

h→0+

f(x0 + h, y0)− f(x0, y0)

h
, (3.1)

∂+
y f(p0) = lim

k→0+

f(x0, y0 + k)− f(x0, y0)

k
(3.2)

are called the right partial derivatives of a function f(x, y) with respect to
the variables x and y at the point p0 = (x0, y0). The left partial derivatives
of a function f(x, y) with respect to x and y at the point p0 = (x0, y0) are
defined analogously:

∂−
x f(p0) = lim

h→0−

f(x0 + h, y0)− f(x0, y0)

h
, (3.3)

∂−
y f(p0) = lim

k→0−

f(x0, y0 + k)− f(x0, y0)

k
. (3.4)

Putting k = 0 in equality (1.2) we obtain
Proposition 3.1. If a function f(x, y) is right-differentiable at a point

p0 = (x0, y0), then for the constants A+ and B+ from equality (1.3) we
have

A+ = ∂+
x f(p0), B+ = ∂+

y f(p0) and

d+f(p0) = ∂+
x f(p0) dx+ ∂+

y f(p0) dy. (3.5)

Analogously we have
Proposition 3.2. If a function f(x, y) is left-differentiable at a point

p0 = (x0, y0), then for the constants A− and B− from equality (1.5) we
have

A− = ∂−
x f(p0), B− = ∂−

y f(p0) and

d−f(p0) = ∂−
x f(p0) dx+ ∂−

y f(p0) dy. (3.6)

Further we need the following
Definition 3.2. ([1, pp. 83-84]) The limits

∂+
x̂ f(p0) = lim

h→0+
|k|≤ch

f(x0 + h, y0 + k)− f(x0, y0 + k)

h
, (3.7)

∂+
ŷ f(p0) = lim

k→0+
k≥l|h|

f(x0 + h, y0 + k)− f(x0 + h, y0)

k
, (3.8)
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if they do not depend on arbitrary constants c > 0 and l > 0, are called
the right angular partial derivatives of a function f(x, y) at the point p0 =
(x0, y0) with respect to the variables x and y.

We define analogously the left angular partial derivatives of a function
f at the point p0 with respect to x and y:

∂−
x̂ f(p0) = lim

h→0−
|k|≤−ch

f(x0 + h, y0 + k)− f(x0, y0 + k)

h
, c > 0, (3.9)

∂−
ŷ f(p0) = lim

k→0−
k≥−l|h|

f(x0 + h, y0 + k)− f(x0 + h, y0)

k
, l > 0. (3.10)

Theorem 3.1. Let a function f(x, y) be right-differentiable at a point
p0 = (x0, y0) and let the equality

B+ = ∂−
y f(p0) (3.11)

be fulfilled. Then there exist finite ∂yf(p0), ∂
+
x̂ f(p0) and the equality

d+f(p0) = ∂+
x̂ f(p0) dx+ ∂yf(p0) dy (3.12)

is fulfilled.
Proof. From equalities (3.5) and (3.11) we obtain

B+ = ∂yf(p0) (3.13)

and we are to consider only those points (h, k) from the set A+
12 where

h > 0. Taking into account the equality A+ = ∂+
x f(p0) from (3.5) and

equality (3.13), equality (1.2) implies that to each number ε1 > 0 there
corresponds a number δ1 = δ1(ε1, p0) > 0 with the property∣∣f(x0 + h, y0 + k)− f(x0, y0)−A+h− k∂yf(p0)

∣∣
< ε1(h+ |k|), 0 < h < δ1, |k| < δ1. (3.14)

Along with this, equality (3.13) implies the fulfillment of the inequality

|f(x0, y0 + k)− f(x0, y0)− k∂yf(p0)| < ε1|k|, |k| < δ2. (3.15)

Using estimates (3.14) and (3.15), from the equality

f(x0 + h, y0 + k)− f(x0, y0 + k)−A+h

=
[
f(x0 + h, y0 + k)− f(x0, y0)−A+h− k∂yf(p0)

]
(3.16)

− [f(x0, y0 + k)− f(x0, y0)− k∂yf(p0)]
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we obtain ∣∣f(x0 + h, y0 + k)− f(x0, y0 + k)−A+h
∣∣

< ε1(h+ |k|) + ε1|k|, 0 < h < δ3, |k| < δ3, (3.17)

where δ3 = min{δ1, δ2}. Hence we have the estimate∣∣∣∣f(x0 + h, y0 + k)− f(x0, y0 + k)

h
−A+

∣∣∣∣
< 2ε1

(
1 +

|k|
h

)
, 0 < h < δ3, |k| < δ3, (3.18)

Let us take an arbitrary constant c > 0 and let the tendency (h, k) →
(0, 0) obey the condition |k| ≤ ch. If now for ε > 0 given in any manner we
put ε1 =

ε
2(1+c) in (3.18), then we obtain∣∣∣∣f(x0 + h, y0 + k)− f(x0, y0 + k)

h
−A+

∣∣∣∣ < ε, (3.19)

when 0 < h < δ, |k| < δ and |k| ≤ ch, where δ = δ(c, ε, p0) > 0. This
means that there exists the finite ∂+

x̂ f(p0) and the equality

A+ = ∂+
x̂ f(p0) (3.20)

is fulfilled.
Now equality (3.12) follows from equalities (1.3), (3.20) and (3.13). ⊓⊔
Remark 3.1. From (3.7) it obviously follows that the definition of the

number ∂+
x̂ f(p0) contains both positive and negative values of the increment

k. Therefore the equalityB+ = ∂+
y f(p0) from relations (3.5) is not sufficient

for the fulfilment of inequality (3.15) without which it is impossible to
establish the existence of the number ∂+

x̂ f(p0). This is the reason for which
Theorem 3.1 contains the assumption as to the fulfillment of equality (3.11).

Corollary 3.1. If a function f(x, y) is right-differentiable at a point
p0 and there exists the finite ∂yf(p0), then there exists the finite ∂+

x̂ f(p0)
and the equality

d+f(p0) = ∂+
x̂ f(p0) dx+ ∂yf(p0) dy (3.21)

is fulfilled.
The following statement is proved analogously.
Theorem 3.2. Let a function f(x, y) be left-differentiable at a point

p0 = (x0, y0) and let the equality

B− = ∂+
y f(p0) (3.22)

44



+ Some Properties of Unilateral ... AMIM Vol.16 No.2, 2011

be fulfilled. Then there exist finite ∂yf(p0), ∂
−
x̂ f(p0) and

d−f(p0) = ∂−
x̂ f(p0) dx+ ∂yf(p0) dy. (3.23)

Corollary 3.2. Assume that a function f(x, y) is left-differentiable at
a point p0 = (x0, y0) and let there exist the finite ∂yf(p0). Then there
exists the finite ∂−

x̂ f(p0) and

d−f(p0) = ∂−
x̂ f(p0) dx+ ∂yf(p0) dy. (3.24)

4 Unilateral differentials and unilateral strong
partial derivatives

Now we need the following

Definition 4.1. ([1, p. 82]) The right strong partial derivatives of a
function f(x, y) at a point p0 = (x0, y0) with respect to the variables x and
y are defined by the equalities

∂+
[x]f(p0) = lim

(h,k)→(0,0)
h>0

f(x0 + h, y0 + k)− f(x0, y0 + k)

h
, (4.1)

∂+
[y]f(p0) = lim

(h,k)→(0,0)
k>0

f(x0 + h, y0 + k)− f(x0 + h, y0)

k
. (4.2)

We define analogously the left strong partial derivatives with respect to
the variables x and y for a function f(x, y) at a point p0 = (x0, y0):

∂−
[x]f(p0) = lim

(h,k)→(0,0)
h<0

f(x0 + h, y0 + k)− f(x0, y0 + k)

h
, (4.3)

∂−
[y]f(p0) = lim

(h,k)→(0,0)
k<0

f(x0 + h, y0 + k)− f(x0 + h, y0)

k
. (4.4)

Theorem 4.1. A sufficient condition for a function f(x, y) to be right-
differentiable at a point p0 = (x0, y0) is the existence of finite ∂+

[x]f(p0) and

∂yf(p0). If this condition is fulfilled, then we have

d+f(p0) = ∂+
[x]f(p0) dx+ ∂yf(p0) dy. (4.5)
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proof. The existence of finite ∂+
[x]f(p0) and ∂yf(p0) is equivalent to the

fulfillment of the inequalities∣∣∣f(x0 + h, y0 + k)−f(x0, y0 + k)−h∂+
[x]f(p0)

∣∣∣ < εh, 0 < h < δ1, |k| < δ1,

(4.6)

|f(x0, y0 + k)− f(x0, y0)− k∂yf(p0)| < ε|k|, |k| < δ2. (4.7)

By virtue of these inequalities, from the equality

f(x0 + h, y0 + k)− f(x0, y0)− h∂+
[x]f(p0)− k∂yf(p0)

=
[
f(x0 + h, y0 + k)− f(x0, y0 + k)− h∂+

[x]f(p0)
]

+ [f(x0, y0 + k)− f(x0, y0)− k∂yf(p0)]

we obtain the estimate∣∣∣f(x0 + h, y0 + k)− f(x0, y0)− h∂+
[x]f(p0)− k∂yf(p0)

∣∣∣ < ε(h+ |k|), (4.8)

when h + |k| < min{δ1, δ2}. Inequality (4.8) implies the fulfillment of
equality (1.2) for the numbers A+ = ∂+

[x]f(p0) and B+ = ∂yf(p0). Hence,

according to (1.3), equality (4.5) is valid. ⊓⊔
We prove analogously
Theorem4.2. A sufficient condition for a function f(x, y) to be left-

differentiable at a point p0 = (x0, y0) is the existence of finite ∂−
[x]f(p0) and

∂yf(p0). Under this assumption we have

d−f(p0) = ∂−
[x]f(p0) dx+ ∂yf(p0) dy. (4.9)

Note that from Theorems 4.1 and 4.2 we obtain the following known
condition for the existence of a differential.

Theorem4.3. ([1, p. 80]) If a function f(x, y) has finite ∂[x]f(p0) and
∂yf(p0) at a point p0 = (x0, y0), then the function f is differentiable at p0
and equality

df(p0) = ∂[x]f(p0) dx+ ∂yf(p0) dy (4.10)

is fulfilled.
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