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Abstract

In this paper by means of consistent approximation has been studied unsteady
problem of the simultaneous rotation of the infinite porous plate and fluid with account
of magnetic field and heat transfer in case of variable electroconductivity, when into
the plate takes place injection of the same flow with vw(t) speed.

To determine the thickness of the dynamic and thermal boundary layers, differ-
ential equations are obtained and found the exact solutions in special cases when the
injection velocity varies according to different laws and between the thicknesses of a
functional dependence of the form δT (t) = γδ(t).

All physical characteristics of the flow are calculated.

Key words and phrases: flow, conductivity, injection velocity, magnetic field,
porosity, heat transfer.
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1 Introduction

Injection of fluid through the plate is used to reduse the growth unstable
perturbatoin in the boundary layer and delaying its separation. It can also
serve as an effective means of intensifying prosseses that use heat transfer
[1,2].

In [3] the method of successive approximation studied unsteady problem
of rotation of a porous plate in a conducting fluid with allowance for heat
transfer, and in [4] and [5] studied a similar problem, with the falling stream
of the fluid on the plate with velocity components

vr = ar, vϕ = 0, vz = −2az.

And the simultaneous rotation of the porous plate and the fluid, taking
into account the magnetic field and heat transfer.
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2 Basic part

In this paper by means of consistent approximation a unsteady problem of
the simultaneous rotation of the infinite porous plate and fluid with account
of magnetic field and heat transfer in case of variable electroconductivity,
when into the plate takes place injection of the same flow with vw(t) speed,
has been studied.

Let the influence of dissipative effects on the fluid flow and heat transfer
are negligible small and intensive injection leads to a significant reduction of
the radial velocity of the fluid near the plate and the temperature difference
in the main stream and the plate is relatively small.

With this in mind, to solve the problem, we use the following system of
equations of unsteady motion of a conducting fluid in a uniform magnetic
field and the energy equation





∂vr
∂t + vr

∂vr
∂r + vz

∂vr
∂z −

v2
ϕ

r = −1
ρ

∂p
∂r + ν

(
∆vr − vr

r2

)
− σB2

0
ρ vr,

∂vϕ

∂t + vr
∂vϕ

∂r + vz
∂vϕ

∂z + vϕvr

r = ν
(
∆vϕ − vϕ

r2

)
− σB2

0
ρ (vϕ − ω2r),

∂vz
∂t + vr

∂vz
∂r + vz

∂vz
∂z = −1

ρ
∂p
∂z + ν∆vz,

∂vr
∂r + vr

r + ∂vz
∂z = 0,

λ∂2T
∂z2 = ρCp

(
∂T
∂t + vr

∂T
∂r + vz

∂T
∂z

)
,

(1)

where ∆ = ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂z2 ; vr(t), vϕ(t), vz(t)-are the components of fluid ve-
locity, T -temperature, cp-is heat capacity for constant pressure, λ-thermal
conductivity, µ-viscosity, σ-coefficient of electroconductivity, ρ-density, B0-
the magnetic field and ω2(t)-the angular velocity of the fluid.

System (1) must be integrated with the following initial and boundary
conditions:





t = 0, vr = vϕ = vz = 0, T = Tw(z, 0),
t > 0, z = 0, vr = 0, vϕ = sω1r, vz = −vw(t), T = Tw(0, t),

z = ∞, vr = 0, vϕ = ω2r, T = T∞.

(2)

Here vw(t)-injection velocity, s-parameter rotation, ω1(t)-angular veloc-
ity of the plate, Tw-temperature of the plate and T∞-temperature of the
fluid away from the plate. Solution of (1) is sought in the form:





vr = ω0rf(η, t′), vϕ = ω0rq(η, t′), vz =
√

νω0g(η, t′),

z =
√

ν
ω0

η, t′ = ω0t, ω(t) = ω0ω
′(t′), vw(t) =

√
νω0v

′
w(t′),

p = −ρνω0p
′(η, t′).

(3)
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We assume that the electroconductivity is variable depending on the
temperature, in the form of:

σ = σ0
T

T∞
(4)

Using (3) and (4) into (1) , we obtain the following system of equations:




∂2f
∂η2 − ∂f

∂t − m2

T∞ fT = g ∂f
∂η + f2 − q2 + ω2

2,
∂2q
∂η2 − ∂q

∂t − m2

T∞ qT = 2fq + g ∂q
∂η −m2ω2,

∂p
∂η = −∂2g

∂η2 + ∂g
∂t + g ∂g

∂η ,
∂g
∂η = −2f,
∂2T
∂η2 = Pr

(
∂T
∂t + g ∂T

∂η

)
(5)

where m2 = σB2
0

ρω , Pr = µcp

λ -Prandtl’s number and the primes over the
symbols are omitted.

To determine the thicknesses of the dynamic and thermal boundary
layers formed in the rotating plate, with the asymptotic layers consider the
layers of finite thickness, which will change over time. To determine them
we use the following terms:

η = δ(t),
∂q

∂η
= 0, η = δT (t),

∂T

∂η
= 0. (6)

Thus, for the solution of (5) we have the following initial and boundary
conditions:





t = 0, f = q = g = 0, T = Tw(η, 0), σ(0) = 0, σT = 0,

t > 0, η = 0, f = 0, q = sω1(t), g = −vw(t), T = Tw(0, t),
η = δ(t), f = 0, q = ω2(t), ∂q

∂η = 0,

η = δT (t), T = T∞, ∂T
∂η = 0.

(7)
Problem (5)–(7) will be solved by successive approximation and let us

search solutions of this problem in the form of series:

f =
∞∑

k=0

fk(η, t), q =
∞∑

k=0

qk(η, t), g =
∞∑

k=0

gk(η, t), T =
∞∑

k=0

Tk(η, t).

(8)
To determine the unknown functions required only the first two approx-

imations. Options f0, q0, T0, f1, q1, T1 respectively are solutions

∂2f0

∂η2
= 0,

∂2q0

∂η2
= 0,

∂2T0

∂η2
= 0,
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η = 0, f0 = 0, q0 = sω1(t), T0 = Tw(0, t),
η = δ(t), f0 = 0, q0 = ω2(t),
η = δT (t), T0 = T∞,





∂2f1

∂η2 = g0
∂f0

∂η + ∂f0

∂t + m2

T∞ f0T0 + f2
0 − q2

0 + ω2
2,

∂2q1

∂η2 = g0
∂q0

∂η + ∂q0

∂t + m2

T∞ q0T0 + 2f0q0 −m2ω2,

∂2T1
∂η2 = Pr

(
∂T0
∂t + g0

∂T0
∂η

)
,





η = 0, f1 = 0, q1 = 0, T1 = 0,

η = δ(t), f1 = 0, q1 = 0,

η = δT (t), T1 = 0

and functions g0 and g1 determined from the expressions

g0 = −2
∫ η

0
f0dζ − vw(t), g1 = −2

∫ η

0
f1dζ.

Functions f0, q0, g0, T0, f1, q1, g1, T1 are as follows:

f0 =0, q0 =
ω2 − sω1

δ
η + sω1, g0 = −vw(t), T0 =

θ

δT
η + Tw,

f1 =− (ω2 − sω1)2

12δ2
(η4 − δ3η)− sω1(ω2 − sω1)

3δ
(η3 − δ2η)+

+
ω2

2 − s2ω2
1

2
(η2 − δη),

q1 =
m2θ(ω2 − sω1)

T∞δδT

(η4

12
− δ3

12
η
)
+

+
[(ω2 − sω1

δ

)′
+

m2sω1θ

T∞δT
+

m2(ω2 − sω1)Tw

T∞δ

](η3

6
− δ2

6
η
)
+

+
[
− vw(ω2 − sω1)

δ
+ sω′1 −m2ω2 +

sω1m
2Tw

T∞

](η2

2
− δ

2
η
)
,

g1 =
(ω2 − sω1)2

6δ2

(η5

5
− δ3

2
η2

)
+ (ω2

2 − s2ω2
1)

(η3

3
− δ

2
η2

)
+

+
sω1(ω2 − sω1)

3δ

(η3

2
− δ2η2

)
,

T1 =Pr

[ ∂

∂t

( θ

δT

)(η3

6
− δ2

T

6

)
+

(∂Tw

∂t
− vwθ

δT

)(η2

2
− δT

2
η
)]

,

where θ = T∞ − Tw.
To determine the unknown thicknesses δ(t) and δT (t) use the condition

(6) continuous transition of velocity and temperature boundary layer veloc-
ity and temperature of the external flow, assuming that they are functions
of time only.
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For determining the thicknesses of the dynamic and thewrmal boundary
layers, we obtain the following system of equations:

{
(δ2)′ −A1

δ3

δT
− [A2 + 2 ln′(ω2 − sω1)]δ2 + 3vwδ = 6,

(δ2
T )′ −

[
2(ln θ)′ + 3

θ
∂Tw
∂t

]
δ2
T + 3vwδT = 6

Pr
,

(9)

where we introduced the following notations:

A1 =
m2(3ω2 + sω1)θ
2T∞(ω2 − sω1)

, A2 =
Twm2(2ω2 + sω1)

T∞(ω2 − sω1)
− 3(m2ω2 − sω′1)

ω2 − sω1
.

Let us consider some special cases, when it will be possible to obtain an
expression δT (t) explicitly.

Let vw(t) = βT δT (t), where βT = const. Then from the second equation
of (9), we obtain the following differential equation

(δ2
T )′ −

[
2(ln θ)′ +

3
θ

∂Tw

∂t
− 3βT

]
δ2
T =

6
Pr

.

The solution of this equation can be written as:

δ2
T (t) =

6θ2

Pr
e
∫ t
0 ( 3

θ
∂Tw
∂τ

−3βT )dτ

∫ t

0

1
θ2(τ)

e−
∫ t
0 ( 3

θ
∂Tw
∂α

−3βT )dαdτ.

In particular, if θ = const, than δT (t) =
√

2
PrβT

(1− e−3βT t).

If βT = 1
θ(t)

∂Tw
∂t + 2

3 [ln θ(t)]′, then for any θ(t) we have: δT (t) =
√

6
Pr

t.
If the injection velocity is chosen as

vw(t) =
2(ln θ)′ + 3

θ
∂Tw
∂t

3
δT (t), (10)

then to determine the thickness of the thermal boundary layer we obtain a
simple equation (δ2

T (t))′ = 6
Pr

, whence δT (t) =
√

6
Pr

t.
Let us assume that vw(t) = βδ(t) and thicknesses between δ(t) and

δT (t) there is a functional relationship of the form δT (t) = γδ(t), where β
and γ are constants. Then, to determine the dinamic boundary layer from
the first equation of (9) we obtain the following differential equation

(δ2)′ −
[
2 ln′(ω2 − sω1) +

A1

γ
+ A2 − 3β

]
δ2 = 6,

whose solution can be written as follows

δ2(t) = 6[ω2(t)− sω1(t)]2e
∫ t
0 (

A1
γ

+A2−3β)dτ×
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×
∫ t

0

1
[ω2(τ)− sω1(τ)]2

e
− ∫ t

0 (
A1
γ

+A2−3β)dα
dτ.

If ω1(t), ω2(t) and θ(t) are constants, then

δ(t) =

√
6

3β − A1
γ −A2

[
1− e

−(3β−A1
γ
−A2)

t
]
,

If ω1(t), ω2(t) and θ(t) are constants and β = 1
3

(
A1
γ +A2

)
, then δ(t) =

√
6t.

If the obtained expressions δ(t) and δT (t) calculate circumferencial com-
ponent of shear stress-τzϕ, moment of resistance to rotation of the plate-
M , moment coefficient of resistance-CM and heat transfer coefficient-N , we
have

a) for the district component of shear stress:

τzϕ = rρω0
√

νw0

{(2 + vwδ)(ω2 − sω1)
2δ

−

−
[m2θ(ω2 + sω1)

2T∞δT
+

(ω2 − sω1

δ

)′]δ2

6
−

−
[m2Tw(ω2 + 2sω1)

6T∞
+

sω′1 −m2ω2

2

]
δ
}

,

b) for the moment of resistance of the plate:

M = −πρω0s
√

νω0R
4

2

{(2 + vwδ)(ω2 − sω1)
2δ

−

−
[m2θ(ω2 + sω1)

2T∞δT
+

(ω2 − sω1

δ

)′]δ2

6
−

−
[m2Tw(ω2 + 2sω1)

6T∞
+

sω′1 −m2ω2

2

]
δ
}

,

c) for the torque coefficient of resistance

CM =
2πs

ω0

√
Re

{(2 + vwδ)(ω2 − sω1)
2δ

−

−
[m2θ(ω2 + sω1)

2T∞δT
+

(ω2 − sω1

δ

)′]δ2

6
−

−
[m2Tw(ω2 + 2sω1)

6T∞
+

sω′1 −m2ω2

2

]
δ
}

,

d) for the heat transfer coefficient:

N = − r

Tw

{ θ

δT
− Pr

[δ2
T

6
∂

∂t

( θ

δT

)
+

δT

2
∂Tw

∂t
− vwθ

2

]}
.
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3 Conclusion

From the above formulas we can easily discern the influence of the mag-
netic field, velocity suction fluid, angular velocity of the plate, Reynolds
and Prandtl’s numbers on the physical characteristics of the flow and heat
transfer.
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