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Abstract

In the paper the necessary and sufficient conditions are found, which should be

satisfied by orthonormal system so that the partial sums of Fourier series of functions

with finite variation were uniformly bounded.
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1 Statement of the problem

S. Banach [2] has proved that for any function f(x) ∈ L2(I) (I = [0, 1],
f(x) 6≡ 0) there exists an orthonormal on I system (ONS) (ϕn(x)), such
that lim

n→∞ |Sn(f, x)| = +∞ almost everywhere on I, where Sn(f, x) is a

partial sum of the Fourier series of function f(x) with respect to the system
(ϕn(x)) = Φ.

Denote as usual by V (I) the space of functions with finite variation
with the norm

‖f‖V =
∫ 1

0
|f ′(x)| dx + ‖f‖C .

Let f ∈ L(I),
∞∑

n=1

ϕ̂n(f)ϕn(x) (1)

be its Fourier series with respect to ONS (ϕn(x)) and

ϕ̂n(f) =
∫ 1

0
f(x)ϕn(x) dx

be the Fourier coefficients;

SN (f, x) =
N∑

n=1

ϕ̂n(f)ϕn(x)
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is the partial sum of series (1).
Let

DN (t, x) =
N∑

n=1

ϕn(t)ϕn(x)

be the Dirichlet kernel. Assume

DN (x) = max
1≤i≤N

∣∣∣∣
∫ i/N

0
DN (t, x) dt

∣∣∣∣. (2)

Definition 1. We say that ONS Φ has the property A, if there exists
a positive constant C(Φ) depending only on the system Φ such that

sup
x∈I

N−1
N∑

n=1

ϕ2
n(x) ≤ C(Φ). (3)

Lemma 1. Let f(x), g(x) and f(x)g(x) ∈ L(I) and f(x) take the finite
values at every point of the segment I. Then we have the equality

∫ 1

0
f(t)g(t) dt =

N−1∑

k=1

(
f

(
k

N

)
− f

(
k + 1

N

)) ∫ k/N

0
g(t) dt

+
N∑

k=1

∫ k
N

k−1
N

(
f(t)− f

(
k

N

))
g(t) dt + f(1)

∫ 1

0
g(t) dt. (4)

Proof. Using the Abel transformation we have

0 =
N−1∑

k=1

(
f

(
k

N

)
− f

(
k + 1

N

))∫ k/N

0
g(t) dt

−
N∑

k=1

f

(
k

N

) ∫ k
N

k−1
N

g(t) dt + f(1)
∫ 1

0
g(t) dt.

Since ∫ 1

0
f(t)g(t) dt =

N∑

k=1

∫ k
N

k−1
N

f(t)g(t) dt,

summing these two equalities we get (4). ut
Definition 2. The partial sums of the Fourier series of the function

f(x) with respect to the system Φ are said to be uniformly bounded, if
there exists a positive constant C(f, Φ) depending only on the function f
and the system Φ such that

|SN (f, x)| < C(f, Φ) (5)

for any x ∈ I and natural N .
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2 Main results

Theorem 1. Let ONS Φ have the property A. Then in order that for any
function f(x) ∈ V (I) the partial sums of the Fourier series of f(x) with
respect to Φ were uniformly bounded, it is necessary and sufficient that
there exists a positive constant M(Φ) > 0 depending only on the system Φ
such that

sup
N≥1

sup
x∈I

DN (x) < M(Φ). (6)

Proof. Since for any x ∈ I

SN (f, x) =
∫ 1

0
f(t)DN (t, x) dt,

assuming in equality (4) g(t) = DN (t, x) we get

SN (f, x) =
∫ 1

0
f(t)DN (t, x) dt (7)

=
N−1∑

k=1

(
f

(
k

N

)
− f

(
k + 1

N

))∫ k/N

0
DN (t, x) dt

+
N∑

k=1

∫ k
N

k−1
N

(
f(t)− f

(
k

N

))
DN (t, x) dt

+ f(1)
∫ 1

0
DN (t, x) dt.

Hence, taking into account that f(x) ∈ V (I), (2) and (6), we have

∣∣∣∣
N−1∑

k=1

(
f

(
k

N

)
− f

(
k + 1

N

))∫ k/N

0
DN (t, x) dt

∣∣∣∣ (8)

≤
N−1∑

k=1

∣∣∣∣f
(

k

N

)
− f

(
k + 1

N

)∣∣∣∣
∣∣∣∣
∫ k/N

0
DN (t, x) dt

∣∣∣∣

≤ ‖f‖V max
1≤k<N

∣∣∣∣
∫ k/N

0
DN (t, x) dt

∣∣∣∣ ≤ ‖f‖V ·M(Φ).

Further, in view of the conditions of Theorem 1 and f(x) ∈ V (I) we have
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(see (3))

∣∣∣∣
N∑

k=1

∫ k
N

k−1
N

(
f(t)− f

(
k

N

))
DN (t, x) dt

∣∣∣∣ (9)

≤
N∑

k=1

sup
x∈[ k−1

N
, k
N

]

∣∣∣∣f(x)− f

(
k

N

)∣∣∣∣
∫ k

N

k−1
N

|DN (t, x)| dt

≤ ‖f‖V · 1√
N

(∫ 1

0
D2

N (t, x) dt

) 1
2

=
‖f‖V√

N

( N∑

k=1

ϕ2
k(x)

) 1
2

≤ ‖f‖V ·
√

C(Φ) .

Since (see (2))

|f(1)|
∣∣∣∣
∫ 1

0
DN (t, x) dt

∣∣∣∣ ≤ ‖f‖C ·DN (x) ≤ ‖f‖C ·M(Φ),

from the latter inequality on account of (9), (8) and (7) we get

|SN (f, x)| ≤
(
M(Φ) +

√
C(Φ)

)
‖f‖V + ‖f‖CM(Φ).

The sufficiency of Theorem 1 is proved.
Necessity. It is given that for any function f(x) ∈ V (I) inequality

(5) is fulfilled and the validity of inequality (6) should be proved. Assume
the opposite, then for some sequences of natural numbers (Nm) and points
xm ∈ I we have

lim
m→∞DNm(xm) = +∞. (10)

Assume that

DNm(xm) = max
1≤k≤Nm

∣∣∣∣
∫ k/N

0
DNm(t, xm) dt

∣∣∣∣ =
∣∣∣∣
∫ km/Nm

0
DNm(t, xm) dt

∣∣∣∣.

Define the sequence of functions (fm(t)) in the following way

fm(t) =





0 when x ∈
[
0, km

Nm

]
,

1 when x ∈
[

km+1
Nm

, 1
]
,

linear and continuous on
[

km
Nm

, km+1
Nm

]
.

Assuming in equality (7) that f(t) = fm(t), N = Nm and DN (t, x) =
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DNm(t, xm), we get
∫ 1

0
fm(t)DNm(t, xm) dt (11)

=
Nm−1∑

k=1

(
fm

(
k

Nm

)
− fm

(
k + 1
Nm

))∫ k/Nm

0
DNm(t, xm) dt

+
Nm∑

k=1

∫ k
Nm

k−1
Nm

(
fm(t)− fm

(
k

Nm

))
DNm(t, xm) dt

+ fm(1)
∫ 1

0
DNm(t, xm) dt.

From the definition of function fm(t) for the first summand of (11) we have

∣∣∣∣
Nm−1∑

k=1

(
fm

(
k

Nm

)
− fm

(
k + 1
Nm

))∫ k/Nm

0
DNm(t, xm) dt

∣∣∣∣

=
∣∣∣∣
∫ km/Nm

0
DNm(t, xm) dt

∣∣∣∣ = DNm(xm). (12)

Since
∣∣∣fm(t)− fm

(
k

Nm

)∣∣∣ = 0 when t ∈
[

k−1
Nm

, k
Nm

]
and k 6= km + 1, for the

second summand of equality (11) we get

∣∣∣∣
Nm∑

k=1

∫ k
Nm

k−1
Nm

(
fm(t)− fm

(
k

Nm

))
DNm(t, xm) dt

∣∣∣∣

≤
∫ km+1

Nm

km
Nm

|DNm(t, xm)| dt ≤ 1√
Nm

( Nm∑

k=1

ϕ2
k(xm)

) 1
2

≤
√

C(Φ) . (13)

Sine 1 ∈ V (I) and inequality (5) is fulfilled for any f(x) ∈ V (I), we have
∣∣∣∣
∫ 1

0
DNm(t, xm) dt

∣∣∣∣ ≤ C(1, Φ),

where C(1, Φ) is a positive constant depending only on the system Φ.
Consequently, using (11), (12) and (13) we get

∣∣∣∣
∫ 1

0
fm(t)DNm(t, xm) dt

∣∣∣∣ ≥ DNm(xm)−
√

C(Φ)− C(1,Φ).

Hence in view of (10)

lim
m→∞

∣∣∣∣
∫ 1

0
fm(t)DNm(t, xm) dt

∣∣∣∣ = +∞. (14)

26



+ Properties of Partial Sums of Fourier AMIM Vol.16 No.1, 2011

Now since

‖fm‖V =
∫ 1

0
|f ′(t)| dt + ‖fm‖C = 2,

from (14) applying the Banach-Steinhaus theorem there exists the function
f0(t) ∈ V (I) such that

lim
m→∞

∣∣∣∣
∫ 1

0
f0(t)DNm(t, xm) dt

∣∣∣∣ = +∞.

Hence
lim

m→∞ |SNm(f0, xm)| = +∞.

This contradicts inequality (5). Theorem 1 is completely proved. ut
The similar problem may be posed for the summability of (C,α) in the

Cèsaro sense for the functions f(x) ∈ V (I).
Assume, in fact, that (see [1 p. 77])

Kα
N (t, x) =

1
Aα

N

N∑

k=0

Aα
N−kϕk(t)ϕk(x),

where Aα
N =

(
N + α

N

)
and α > 0. Hence

σα
N =

1
Aα

N

∫ 1

0
f(t)Kα

N (t, x) dt.

Introduce the notation

Hα
N (x) = max

1≤i≤N

∣∣∣∣
∫ i/N

0
Kα

N (t, x) dt

∣∣∣∣.

Theorem 2. Let ONS Φ have the property A. Then the condition

|σα
N (f, x)| < M < +∞

for any function f(x) ∈ V (I) is satisfied if and only if when

sup
x∈I

Hα
N (x) < M1(Φ) < +∞,

where M > 0 does not depend on N and x, but M1(Φ) > 0 depends only
on Φ; α > 0 is any fixed number.

Proof. Theorem 2 is proved in a similar way as Theorem 1. Indeed,
in equality (6) let us substitute g(t) = Kα

n (x, t) and repeating the above
reasoning (see (6), (7) and (8)) we get

|σα
N (f, x)| ≤ M1(Φ)‖f‖V + M1(Φ)‖f‖C + ‖f‖V

√
M1(Φ) .
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This proves the sufficiency of Theorem 2.
For proving the necessity assume that for some sequences of natural

numbers Nm and points xm ∈ I

lim
m→∞HNm(xm) = +∞.

For this case consider the sequence of functions (fm(t)) which was con-
structed in the proof of Theorem 2. By repeating the similar reasoning, it
is easily obtained that

lim
m→∞ |σ

α
Nm

(f0, xm)| = +∞,

where f0(x) ∈ V (I) is a certain function. Thus Theorem 2 is completely
proved. ut
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