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Abstract

We consider the stationary oscillation case of the theory of two-temperature elastic

mixtures when partial displacements of the elastic components of which the mixture

consists are equal to each other. The previously obtained general solution represen-

tation makes it possible to represent the displacement vector and the stress vector by

Fourier-Laplace series with respect to a complete system of well-defined orthonormal

vectors. Solutions are obtained in the form of absolutely and uniformly convergent

series. A nev version of the proof of the uniqueness theorem of the considered the

Dirichlet and Neumann problems is given.
Key words and phrases: Mixture theory, Legendre function, Bessel function,

Fourier-Laplace series.
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1 Introduction

A mathematical model of the linear theory of two-temperature elastic mix-
tures for composite materials of granular, fiber-like and layered structure
was constructed by Khoroshun and Soltanov [11] in 1984.

Usually, the study of processes occurring in bodies reduces for the corre-
sponding mathematical model described by a system of partial differential
equations to the investigation of boundary value, mixed type and boundary-
contact problems.

From the theoretical viewpoint, the well-posedness (the solution exis-
tence, smoothness, uniqueness and stability) of problems and the creation
of adequate calculation algorithms for applied purposes are also the subject
of great interest.

For diffusion and shear stress models of the thermoelastic theory of
two-temperature elastic mixtures, the questions pertaining to stability and
well-posedness, establishment of the asymptotic behavior of a problem so-
lution, theorems of solution existence and uniqueness were studied by many
scientists, including Alves, Munoz Rivera, and Quitamila [1], Basheleishvili



+ Stationary Oscillation Boundary ... AMIM Vol.16 No.1, 2011

[2], Basheleishvili and Zazashvili [3], Burchuladze and Svanadze [4], Gales
[5], Giorgashvili, Karseladze and Sadunishvili [9], Giorgashvili and Skhvu-
taridze [7], [8], Giorgashvili, Karseladze and Sadunisvili [10],Giorgashvili
[6] Iesan [11], Nappa [13], Natroshvili, Jaghmaidze and Svanadze [14],
Svanadze [17], Quintanilla [16], Pompei [15] and others.

2 Basic differential equations and Auxiliary
Theorems

If it is assumed that the partial components of the mixture are equal to
each other, then a homogeneous system of stationary oscillation differential
equations of the theory of two-temperature elastic mixtures has the form
[11]

µ∆u + (λ + µ) grad div u− grad(η1ϑ1 + η2ϑ2) + ρσ2u = 0,

iση1 div u + (κ1∆ + α1)ϑ1 + (κ2∆ + α)ϑ2 = 0,

iση2 div u + (κ2∆ + α)ϑ1 + (κ3∆ + α2)ϑ2 = 0,

(2.1)

where ∆ is the three-dimensional Laplace operator, u = (u1, u2, u3)> is the
displacement vector, ϑ1, ϑ2 are the temperatures of the variable components
of the mixture, α1 = −α+iσκ′, α2 = −α+iσκ′′ is the oscillation frequency,
ρ > 0 is the density sum of the components; λ, µ, η1, η2, κ′, κ′′, α, κj ,
j = 1, 2, 3, are the positive constants characterizing the mechanical and
thermal properties of the bodies contained in the elastic mixture which
satisfy the conditions

µ > 0, 3λ + 2µ > 0, κ1κ3 − κ2
2 > 0.

> is the transposition symbol.
The following statement is true
Theorem 2.1. For the vector U = (u, ϑ1, ϑ2)> to be a solution of

system (2.1) in a domain Ω ⊂ R3 it is necessary and sufficient that it be
represented in the form

u(x) =
3∑

j=1

gradΦj(x) + rot rot(xΦ4(x)) + rot(xΦ5(x)),

ϑl(x) = −
3∑

j=1

k2
j β

(j)
l Φj(x), l = 1, 2,

(2.2)

9
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where

β
(j)
1 =

iσ

cj

[
(η1κ3 − η2κ3)k2

j + αη2 − α2η1

]
, j = 1, 2, 3,

β
(j)
2 =

iσ

cj

[
(η2κ1 − η1κ2)k2

j + αη1 − α1η2

]
, j = 1, 2, 3,

(2.3)

cj =(κ1κ3−κ2
2)k

4
j−(α1κ3+α2κ1−2ακ2)k2

j +α1α2−α2 6=0, j =1, 2, 3,

(∆ + k2
j )Φj(x) = 0, j = 1, 2, 3, (∆ + k2

4)Φj(x) = 0, j = 4, 5,

k2
4 = ρσ2

µ , k2
j , j = 1, 2, 3 are the roots of the following equations

z3 + a1z
2 + a2z + a3 = 0, (2.4)

a1 =− 1
a

[
ρσ2(κ1κ3 − κ2

2) + (λ + 2µ)(α1κ3 + α2κ1 − 2ακ2)+

+ iσ(η2
1κ3 + η2

2κ1 − 2η1η2κ2)
]
,

a2 =
1
a

[
(λ + 2µ)(α1α2 − α2) + ρσ2(α1κ3 + α2κ1 − 2ακ2)+

+ iσ(η2
1α2 + η2

2α1 − 2η1η2α)
]
,

a3 = −1
a

ρσ2(α1α2 − α2), a = (λ + 2µ)(κ1κ3 − κ2
2) > 0.

For simplicity we assume that σ > 0, kj 6= kp for j 6= p = 1, 2, 3,
=kj ≥ 0, and =kj = 0, then kj > 0.

Theorem 2.2. A regular solution of equation (2.1) admits a represen-
tation of the form

u(x) =
4∑

j=1

u(j)(x), ϑl(x) =
3∑

j=1

β
(j)
l div u(j)(x), l = 1, 2,

where β
(j)
l , l = 1, 2, j = 1, 2, 3 are given by (2.3) , and

(∆ + k2
j )u

(j)(x) = 0, rotu(j)(x) = 0, j = 1, 2, 3,

(∆ + k2
4)u

(4)(x) = 0, div u(4)(x) = 0.

Let Ω+ = B(0, R) be a ball in R3 centered at the origin and radius R,
and let

∑
R = ∂Ω be its boundary. Further, let Ω− = R3 \ Ω+.

10
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Definition. A solution U = (u, ϑ1, ϑ2)> of system (2.1) will called
regular in the domain Ω−, if U ∈ C2(Ω−) ∩ C(1)(Ω−), and will be satisfy
the thermoelastic radiation condition

u(j)(x) = o(|x|−1),
∂u(j)(x)

∂xk
= O(|x|−2), k, j = 1, 2, 3,

u(4)(x) = O(|x|−1),
∂u(4)(x)

∂|x| − ik4u
(4)(x) = o(|x|−1),

ϑl(x) = o(|x|−1),
∂ϑl(x)
∂xk

= O(|x|−2), l = 1, 2, k = 1, 2, 3.

Theorem 2.3. The vector U = (u, ϑ1, ϑ2)> represented by equality
(2.2) will be uniquely defined by the functions Φj(x), j = 1, 2, ..., 5 in the
domain Ω− if the folloving condition

∫

Σr

Φj(x)dΣr = 0, j = 4, 5, r = |x| > R, (2.5)

is fulfilled, i. e. to the zero value of the vector U = (u, ϑ1, ϑ2)> there
corresponds the zero value of the vector (Φ1, Φ2, ...,Φ5)> and vice versa.

3 Statement of the Problems. The Uniqueness
Theorem

Assume that the domain Ω− is filled with an elastic two-component mix-
ture.

Problem. Find, in the domain Ω−, such a regular vector U = (u, ϑ1, ϑ2)>

that satisfies in this domain the system of differential equations (2.1) and,
on the boundary ∂Ω, satisfies one of the following boundary conditions:

[Iσ]− (the Dirichlet problem)

{u(z)}− = f(z), {ϑ1(z)}− = f4(z), {ϑ2(z)}− = f5(z), z ∈ ∂Ω; (3.1)

[IIσ]− (the Neumann problem)

{T (∂, n)U(z)}− = f(z),
{

∂ϑ1(z)
∂n(z)

}−
= f4(z), (3.2)

{
∂ϑ2(z)
∂n(z)

}−
= f5(z), z ∈ ∂Ω,

11
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where f = (f1, f2, f3)>, fj , j = 1, 2, ..., 5 are the functions given on the
boundary, n(z) is the external mormal unit passing at a point z ∈ ∂Ω with
respect to the domain Ω+, and

T (∂, n)U = 2µ
∂u

∂n
+ λndiv u + µ[n× rot u]− n(η1ϑ1 + η2ϑ2).

A solution of system (2.1) will be sought for in form (2.2), where the
function Φj(x), j = 1, 2, ..., 5, are represented as

Φj(x) =
∞∑

k=0

k∑

m=−k

hk(kjr)Y
(m)
k (ϑ, ϕ)A(j)

mk, j = 1, 2, 3,

Φj(x) =
∞∑

k=0

k∑

m=−k

hk(k4r)Y
(m)
k (ϑ, ϕ)A(j)

mk, j = 4, 5,

(3.3)

where A
(j)
mk, j = 1, 2, ..., 5 are unknown constants,

hk(kjr) =

√
R

r

H
(1)
k+1\2(kjr)

H
(1)
k+1\2(kjR)

,

Y
(m)
k (ϑ, ϕ) =

√
2k + 1

4π
· (k −m)!
(k + m)!

P
(m)
k (cosϑ)eimϕ,

H
(1)
k+1\2(x) are the first kind Hankel functions, P

(m)
k (cosϑ) is the associated

Legendre polynomial of k-th kind and m-th order. (r, ϑ, ϕ) are the spherical
coordinates of the point x = (x1, x2, x3).

The substitution of the values of the functions Φj(x), j = 4, 5 from (3.3)
into (2.5) yields A

(j)
00 = 0, j = 4, 5.

Let us substitute the expressions (3.3) into (2.2) and apply the following
identities [6]

grad[a(r)Y (m)
k (ϑ, ϕ)] =

da(r)
dr

Xmk(ϑ, ϕ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, ϕ),

rot[xa(r)Y (m)
k (ϑ, ϕ)] =

√
k(k + 1)a(r) Zmk(ϑ, ϕ)

rot rot[xa(r)Y (m)
k (ϑ, ϕ)] =

k(k + 1)
r

a(r) Xmk(ϑ, ϕ)+

√
k(k + 1)

(
d

dr
+

1
r

)
a(r) Ymk(ϑ, ϕ),

12
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here a(r) is an arbitrary differentiable scalar function of r, we obtain

u(x) =
∞∑

k=0

k∑

m=−k

{
umk(r)Xmk(ϑ, ϕ)+

√
k(k + 1)×

[vmk(r)Ymk(ϑ, ϕ) + wmk(r)Zmk(ϑ, ϕ)]
}

,

ϑl(x) =
∞∑

k=0

k∑

m=−k

ω
(l)
mk(r)Y

(m)
k (ϑ, ϕ), l = 1, 2,

(3.4)

where

umk(r) =
3∑

j=1

d

dr
hk(kjr)A

(j)
mk +

k(k + 1)
r

hk(k4r)A
(4)
mk, k ≥ 0,

vmk(r) =
3∑

j=1

1
r

hk(kjr)A
(j)
mk +

(
d

dr
+

1
r

)
hk(k4r)A

(4)
mk, k ≥ 1,

wmk(r) = hk(k4r)A
(5)
mk, k ≥ 1,

ω
(l)
mk(r) = −

3∑

j=1

k2
j β

(j)
l hk(kjr)A

(j)
mk, l = 1, 2, k ≥ 0,

Xmk(ϑ, ϕ), Ymk(ϑ, ϕ), Zmk(ϑ, ϕ) are orthonormal vectors system in the
space L2(Σ1) [6], [19]

Xmk(ϑ, ϕ) = erY
(m)
k (ϑ, ϕ), k ≥ 0,

Ymk(ϑ, ϕ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eϕ

sinϑ

∂

∂ϕ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1,

Zmk(ϑ, ϕ) =
1√

k(k + 1)

(
eϑ

sinϑ

∂

∂ϕ
− eϕ

∂

∂ϑ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1,

(3.5)

where |m| ≤ k, er, eϑ, eϕ are unit orthogonal vectors in R3,

er = (cosϕ sinϑ, sinϕ sinϑ, cosϑ)>,

eϑ = (cosϕ cosϑ, sinϕ cosϑ, − sinϑ)>,

eϕ = (− sinϕ, cosϕ, 0)>.

Let us substitute the values of the vector u(x), and the function ϑl(x),
l = 1, 2 from (3.4) into value of a tress vectors and make use of the following
equalities

13
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er ×Xmk(ϑ, ϕ) = 0, er × Ymk(ϑ, ϕ) = −Zmk(ϑ, ϕ),
er × Zmk(ϑ, ϕ) = Ymk(ϑ, ϕ)

div[a(r)Xmk(ϑ, ϕ)] =
(

d

dr
+

2
r

)
a(r)Y (m)

k (ϑ, ϕ),

div[a(r)Ymk(ϑ, ϕ)] = −
√

k(k + 1)
r

a(r)Y (m)
k (ϑ, ϕ),

div[a(r)Zmk(ϑ, ϕ)] = 0,

(3.6)

rot
[
a(r)Xmk(ϑ, ϕ)

]
=

√
k(k + 1)

r
a(r)Zmk(ϑ, ϕ),

rot
[
a(r)Ymk(ϑ, ϕ)

]
= −

( d

dr
+

1
r

)
a(r)Zmk(ϑ, ϕ),

rot
[
a(r)Zmk(ϑ, ϕ)

]
=

√
k(k + 1)

r
a(r)Xmk(ϑ, ϕ)+

+
( d

dr
+

1
r

)
a(r)Ymk(ϑ, ϕ),

we obtain

T (∂, n)U(x) =
∞∑

k=0

k∑

m=−k

{
amk(r)Xmk(ϑ, ϕ)+

+
√

k(k + 1)
[
bmk(r)Ymk(ϑ, ϕ) + cmk(r)Zmk(ϑ, ϕ)

]}
, (3.7)

where

amk(r) =
3∑

j=1

[
2µ

d2

dr2
+ k2

j

(
η1β

(j)
1 + η2β

(j)
2 − λ

)]
hk(kjr)A

(j)
mk+

+ 2µ
k(k + 1)

r

( d

dr
− 1

r

)
hk(k4r)A

(4)
mk,

bmk(r) = 2µ
3∑

j=1

1
r

( d

dr
− 1

r

)
hk(kjr)A

(j)
mk+

+ µ
( d2

dr2
+

(k − 1)(k + 2)
r2

)
hk(k4r)A

(4)
mk,

cmk(r) = µ
( d

dr
− 1

r

)
hk(k4r)A

(5)
mk.

Note that in formulas (3.4) and (3.7)and in the summand of analo-
gous series below which contains the vectors Ymk(ϑ, ϕ) and Zmk(ϑ, ϕ) , the
summation index varies from 1 to +∞.

14
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From the second equality of (3.4) we obtain

∂ϑl(x)
∂n(x)

=
∞∑

k=0

k∑

m=−k

d

dr
ω

(l)
mk(r)Y

(m)
k (ϑ, ϕ), l = 1, 2. (3.8)

Theorem 3.1. Problems [Iσ]− and [IIσ]− have, in the domain Ω−, a
unique solution in the class of regular functions.

proof. The theorems will be proved if we show that the homogeneous
problems (f = 0, fj = 0, j = 4, 5) have the trivial solution only.

Let us assume that the vector U = (u, ϑ1, ϑ2)> is a solution of system
(2.1). We multiply both sides of the first equality (2.1) by the complex-
conjugate u , and the complex-conjugate functions of the second and third
equalities (2.1) by the functions 1

iσϑ1 and 1
iσϑ2, respectively. The inte-

gration of these expressions over the domain Ωr, which is bounded by the
concentric spheres ΣR and ΣR (r = |x| > R). After summing the results,
we obtained

∫

Σr

[
u · T (∂, n)U + (κ1ϑ1 + κ2ϑ2)∂nϑ1 + (κ2ϑ1 + κ3ϑ2)∂nϑ2

]
ds−

−
∫

ΣR

[
u · T (∂, n)U + (κ1ϑ1 + κ2ϑ2)∂nϑ1 + (κ2ϑ1 + κ3ϑ2)∂nϑ2

]−
ds =

=
∫

Ωr

[
E(u, u)− ρσ2|u|2 +

1
iσ

(κ1|∇ϑ1|2 + κ2(∇ϑ1 · ∇ϑ2 +(3.9)

+∇ϑ1 · ∇ϑ2) + κ3|∇ϑ2|2) +
α

iσ
|ϑ1 − ϑ2|2 − (κ′|ϑ1|2 + κ′′|ϑ2|2)

]
dx = 0,

where

∇ = (∂1, ∂2, ∂3)>, ∂j =
∂

∂xj
, j = 1, 2, 3, ∂nϑj =

∂ϑj

∂n
, j = 1, 2,

E(u, u) =
3λ + 2µ

3
| div u|2 +

µ

2

3∑

k 6=j=1

∣∣∣∣
∂uk

∂xj
+

∂uj

∂xk

∣∣∣∣
2

+

+
µ

3

3∑

k,j=1

∣∣∣∣
∂uk

∂xk
− ∂uj

∂xj

∣∣∣∣
2

.

From the equality (3.9), if we use homogeneous boundary conditions,
we obtain

2
iσκ3

∫

Ωr

[
d1|∇ϑ1|2 + |κ2∇ϑ1 + κ3∇ϑ2|2 + ακ3|ϑ1 − ϑ2|2

]
dx =

15
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=
∫

Σr

[
u · T (∂, n)U − u · T (∂, n)U + κ1(ϑ1∂nϑ1 − ϑ1∂nϑ1) +(3.10)

+κ2(ϑ2∂nϑ1 − ϑ2∂nϑ1 + ϑ1∂nϑ2 − ϑ1∂nϑ2) + κ3(ϑ2∂nϑ2 − ϑ2∂nϑ2)
]

ds,

where d1 = κ1κ3 − κ2
2 .

Substituting the expressions for u, T (∂, n)U , ϑj and ∂nϑj , j = 1, 2 from
(3.4),(3.7) and (3.8) into (3.10) and apply the following formulas [18]

H
(1)
k+1/2(k4r)

d

dr
H

(2)
k+1/2(k4r)−H

(2)
k+1/2(k4r)

d

dr
H

(1)
k+1/2(k4r) =

4
iπr

,

H
(l)
k+1/2(k4r) = O(r−1/2), l = 1, 2, H

(l)
k+1/2(kjr) = o(e−=kjr), j = 1, 2, 3,

and the fact that the vectors Xmk, Ymk, Zmk are normalized, we have

2
iσκ3

lim
r→∞

∫

Ωr

[
d1|∇ϑ1|2 + |κ2∇ϑ1 + κ3∇ϑ2|2 + ακ3|ϑ1 − ϑ2|2

]
dx+

+
4µR

πi

∞∑

k=1

k∑

m=−k

k(k + 1)∣∣H(1)
k+1/2(k4r)

∣∣2
[
k2

4|A(4)
mk|2 + |A(5)

mk|2
]

= 0.

Hence it follows that

ϑ1(x) = ϑ2(x) = c = const, x ∈ Ω−, A
(j)
mk = 0, j = 4, 5, k ≥ 1. (3.11)

Taking into account the behavior of ϑj(x), j = 1, 2 at infinity and expansion
(3.3), from equality (3.11) we obtain

ϑj(x) = 0, j = 1, 2, Φj(x) = 0, j = 4, 5, x ∈ Ω−. (3.12)

(2.2) and (3.12) imply

3∑

j=1

k2
j β

(j)
l Φj(x) = 0, l = 1, 2, x ∈ Ω−,

from which, we obtain Φj(x) = 0, j = 1, 2, 3, x ∈ Ω−. Thus we have shown
that Φj(x) = 0, j = 1, 2, .., 5, x ∈ Ω−. By virtue of these equalities we
conclude that u(x) = 0, ϑl(x) = 0, l = 1, 2, x ∈ Ω−.

16
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4 Solution of the Dirichlet Problem

Assume that the boundary vector functions f(z) and functions fj(z), j =
4, 5, satisfy the sufficient conditions of smoothness which enable us to rep-
resent the following Fourier-Laplace series

f(z) =
∞∑

k=0

k∑

m=−k

{
αmkXmk(ϑ, ϕ) +

√
k(k + 1)×

[
βmkYmk(ϑ, ϕ) + γmkZmk(ϑ, ϕ)

]}
,

fj(z) =
∞∑

k=0

k∑

m=−k

α
(j)
mkY

(m)
k (ϑ, ϕ), j = 4, 5,

(4.1)

where αmk, βmk, γmk and α
(j)
mk, j = 4, 5 are the Fourier coefficients.

Possing to the limit on both sides of equalities (3.4) x → z ∈ ∂Ω
(r → R) and taking into account the boundary conditions (3.1) and also
equality(4.1), for the sought for constants A

(j)
mk , j = 1, 2, ..., 5, we obtain

the following system of linear algebraic equations

3∑

j=1

d

dR
hk(kjR)A(j)

mk +
k(k + 1)

R
A

(4)
mk = αmk, k ≥ 0,

3∑

j=1

1
R

A
(j)
mk +

(
d

dR
+

1
R

)
hk(k4R)A(4)

mk = βmk, k ≥ 1,

3∑

j=1

k2
j β

(j)
1 A

(j)
mk = −α

(4)
mk,

3∑

j=1

k2
j β

(j)
2 A

(j)
mk = −α

(5)
mk, k ≥ 0,

A
(5)
mk = γmk, k ≥ 1.

(4.2)

Nov we formulate several technical lemmas [6].
lemma 4.2. Let f ∈ C l(Σ1), fj ∈ C(l)(Σ1), l ≥ 1, j = 4, 5. Then the

coefficients αmk, βmk, γmk and α
(j)
mk, j = 4, 5 have the proporties

αmk = O(k−l), βmk = O(k−l−1), γmk = O(k−l−1), (4.3)

α
(j)
mk = O(k−l), j = 4, 5.

lemma 4.3. For the vectors Xmk(ϑ, ϕ), Ymk(ϑ, ϕ) and Zmk(ϑ, ϕ) given
by (3.5) the following inequalities hold

17
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∣∣Xmk(ϑ, ϕ)
∣∣ ≤

√
2k + 1

4π
, k ≥ 0,

∣∣Ymk(ϑ, ϕ)
∣∣ <

√
k(k + 1)
2k + 1

,
∣∣Zmk(ϑ, ϕ)

∣∣ <

√
k(k + 1)
2k + 1

, k ≥ 1.

(4.4)

Moreover, as is known [18]

∣∣Y (m)
k (ϑ, ϕ)

∣∣ ≤
√

2k + 1
4π

, k ≥ 0. (4.5)

System (4.2) is compatible according to Theorem 3.1 and Theorem 2.3
If the solutions of these system are substituted into (3.4), then we obtain a
formal solution of the Dirichlet problem. We need to show that series (3.4),
(3.7) and (3.8) are absolutely and uniformly convergent tn the domain Ω−.

The following asymptotic representations are true as k → +∞ [18]

hk(kjr) ∼
(

R

r

)k+1

, h′k(kjr) ∼ −k

r

(
R

r

)k+1

(4.6)

If x ∈ Ω− (r < R), then by the asymptotic representation (4.6) the
above-mentationed series are convergent.

If x ∈ ∂Ω (r = R), then by lemma 4.3 and asymptotic representation
(4.6), series (3.4), (3.7) and (3.8) are absolutely and uniformly convergent
provided that the majorant series

∞∑

k=k0

k3/2
[
|αmk|+ k

(|βmk|+ |α(4)
mk|+ |α(5)

mk|
)

+ |γmk|
]
.

is convergent.
The obtained majorant series will be convergent if the Fourier coeffi-

cients admit the estimates

αmk = O(k−3), βmk = O(k−4), γmk = O(k−3),

α
(j)
mk = O(k−4), j = 4, 5.

(4.7)

By Lemma 4.2, estimates (4.7) hold if the boundary vector functions are
assumed to satisfy the following smoothness conditions

f(y) ∈ C3(∂Ω), fj(y) ∈ C4(∂Ω), j = 4, 5. (4.8)

Therefore if the vector functions f(y) and fj(y), j = 4, 5, satisfy the
smoothness conditions (4.8), then the vector U(u, ϑ1, ϑ2)> represented in
form (3.4) is a regular solution of Problem [Iσ]− in the domain Ω−.

18
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5 Solution of the Neumann Problem

Passing to the limit on both sides of equalities (3.7)–(3.8) as x → z ∈ ∂Ω
(r → R), for the sought constants A

(j)
mk, j = 1, 2, . . . , 5, we obtain the

following systems of algebraic equations:

3∑

j=1

[
2µ

d2

dR2
+ k2

j

(
η1β

(j)
1 + η2β

(j)
2 − λ

)]
hk(kjR)A(j)

mk+

+2µ
k(k + 1)

R

( d

dR
− 1

R

)
hk(k4R)A(4)

mk = αmk, k ≥ 0,

3∑

j=1

2µ

R

( d

dR
− 1

R

)
hk(kjR)A(j)

mk+

+µ
( d2

dR2
+

(k − 1)(k + 2)
R2

)
hk(k4R)A(4)

mk = βmk, k ≥ 1,

3∑

j=1

k2
j β

(j)
1

d

dR
hk(kjR)A(j)

mk = −α
(4)
mk,

3∑

j=1

k2
j β

(j)
2

d

dR
hk(kjR)A(j)

mk = −α
(5)
mk, k ≥ 0,

µ
( d

dR
− 1

R

)
hk(k4R)A(5)

mk = γmk, k ≥ 1.

(5.1)

According to Theorem 3.1 and Theorem 2.3, systems (5.1) is compat-
ible. If we repeat the reasoning of Section 4, then we obtain that if the
vector functions f(y) and fj(y), j = 4, 5, satisfy the smoothness conditions

f(y) ∈ C2(∂Ω), fj(y) ∈ C3(∂Ω), j = 4, 5,

then the vector U = (u, ϑ1, ϑ2)> represented in form (4.2) is a regular
solution of Problem [IIσ]− in the domain Ω−.
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