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Abstract

We consider the initial boundary value problem for an integro-differential equation

describing the vibration of a beam. Using the Galerkin method and a symmetric

difference scheme, the solution is approximates with respect to a spatial and a time

variable. Thus the problem is reduced to a system of nonlinear discrete equations

which is solved by the iteration method. The convergence of the method is proved.
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1 Statement of Problem

Let us consider the following initial boundary value problem
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0 < x < L, 0 < t ≤ T,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),

u(0, t) = u(L, t) = 0,
∂2u
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(1.2)

0 ≤ x ≤ L, 0 ≤ t ≤ T,

where h and λ are some non-negative constants, f(x, t), u0(x) and u1(x)
are the given functions, and u(x, t) is the function to be defined. In the
homogeneous case the equation (1.1) describing a dynamic beam was ob-
tained by Henriques de Brito [1] and is a Timoshenko type equation [8].
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Menzala and Zuazua [3], [4] arrived at the corresponding equation by mak-
ing an additional assumption λ = 0 and passing to the limit in the system
of von Karman equations [2]
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for a prismatic beam. In [5], the same authors write a generalized variant
of the equation under discussion.

Note that the solvability of an operator equation, the particular case of
which is the equation (1.1), is proved in [1].

In the present paper, we consider one numerical method of solution of
the problem (1.1), (1.2). In [6], one can partly get acquainted with the
bibliography on approximate algorithms for equations having nonlinearity
analogous to that of (1.1).

2 The Algorithm

a. Galerkin method. A solution of the problem (1.1), (1.2) will be sought
for as a finite sum

un(x, t) =
n∑

i=1

L

iπ
uni(t) sin

iπx

L
, (2.3)

where the coefficients uni(t) are defined by the Galerkin method from the
system of ordinary differential equations
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)
uni(t) = fi(t), (2.4)

i = 1, 2, . . . , n,

with the initial conditions

uni(0) = u0
i , u′ni(0) = u1

i , (2.5)
i = 1, 2, . . . , n.
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We have used here the notation

fi(t) =
2
iπ

∫ L

0
f(x, t) sin

iπx

L
dx,

up
i =

2iπ

L2

∫ L

0
up(x) sin

iπx

L
dx, p = 0, 1, i = 1, 2, . . . , n.

The problem of accuracy of this part of the algorithm is studied in [7]
for the case f(x, t) = 0.

b. Difference scheme. On the time interval [0, T ] we introduce the net

with constant step τ =
T

M
and nodes tm = mτ , m = 0, 1, . . . , M .

Denote by um
ni, m = 0, 1, . . . ,M , a difference analogue of the function

uni(t) from the expansion (2.3). To the system (2.4) we put into correspon-
dence the symmetric implicit scheme
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m = 1, 2, . . . , M − 1, i = 1, 2, . . . , n,

and, using (2.4), replace the relations (2.5) by
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(2.7)

Here we have used the notation fm
i = fi(tm), m = 0, 1, . . . , M , i =

1, 2, . . . , n.
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c. Iteration method. Let us rewrite the system (2.6), (2.7) in the form

u0
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i , i = 1, 2, . . . , n,
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We split the system (2.8) into subsystems corresponding to each m =
1, 2, . . . , M and will solve them individually by iteration
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(2.9)
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Here um
ni,k+l denotes the (k + l)-th approximation of um

ni, l = 0, 1.
Assume that we have already found uo

ni for m = 1, and um−2
ni and um−1

ni

for m > 1. For the sake of simplicity, we neglect the error corresponding
to the values of these functions.

Since (2.9) is a cubic equation with respect to um
ni,k+1, the latter can be

written in the explicit form
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Thus the iteration method used here should be understood as counting
by (2.10).

3 Error of the iteration method

Let us rewrite the system (2.10) as

um
ni,k+1 = ϕi

(
um

n1,k, u
m
n2,k, . . . , u

m
nn,k

)
, (3.12)

k = 0, 1, . . . , i = 1, 2, . . . , n.

To estimate the error of the method (3.12) we need to consider the
matrix-jacobian

J =

(
∂ϕi

∂um
nj,k

)n

i,j=1

.
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Taking into account (2.10)–(3.12), we conclude that the principal diag-
onal of the matrix J consists of zeros
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as to the nondiagonal elements, for them we have
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Let us apply the principle of compressed mappings. We define the

vector and matrix norms by the expressions
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spectively, for v = (vi)n
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be fulfilled for q, 0 < q < 1. As follows from (3.13) and (3.14), for this it
suffices that the relation

ατ4 + βτ2 − γ ≤ 0 (3.15)

holds, where the following notation is used
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and ε is an arbitrary positive number.

The relation (3.15) will be fulfilled if the set of the grid satisfies the
inequality

τ ≤
[
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(
−β + (β2 + 4αγ)

1
2
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2

.

In that case, in the domain (3.14) there exists a unique vector (um
ni)

n
i=1 such

that um
ni, i = 1, 2, . . . , n, are a solution of the system (2.8), the sequence

um
ni,k of the process (2.10) tends to um

ni, i = 1, 2, . . . , n, as k →∞, whereas
the method error decreases at a geometrical progression rate
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