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Abstract

In the present paper we consider the contact problem for a piecewise-homogeneous

plane consisting of two domains filled with different binary elastic mixtures. On the

interface there are prescribed: the difference of limiting vector values of partial dis-

placements for each domain; difference of limiting vector values of partial thermal

stresses; difference of limiting values of temperature changes and difference of heat

flows. The solution is given in the form of absolutely and uniformly convergent series

which allow one to perform numerical analysis of the problem. The question on the

uniqueness of the solution of the problem is studied.
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lems, theorems of uniqueness.
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Let the circle S, of radius R, divide a plane into inner and outer domains
which are denoted by D0 and D1, respectively. Every field is filled with
different elastic mixtures.

We formulate the following problem: Find in the field Dj (j = 0, 1)

a regular solution
j

U(x) = (
j
u(x),

j
u3(x)),

j

U(x) ∈ C2(Dj) ∩ C1(Dj) (Dj =
Dj ∪ S) of a system of equations of statics of the theory of thermoelastic
mixtures [1-3]:

j
a1∆

j
u1(x) +

j

b1 grad div
j
u1(x) +

j
c∆

j
u2(x) +

j

d grad div
j
u2(x)=

j
γ1 grad

j
u3(x),

j
c∆

j
u1(x) +

j

d grad div
j
u1(x) +

j
a2∆

j
u2(x) +

j

b2 grad div
j
u2(x)=

j
γ2 grad

j
u3(x),

∆
j
u3(x) = 0, j = 0, 1, (1)

such that on the circumference S it satisfies the contact conditions

1
u−(z)− 0

u+(z) = f(z), z ∈ S,

[
1
R(∂z, n)

1
U(z)]− − [

0
R(∂z, n)

0
U(z)]+ = F (z), (2)
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1
u3

−(z)− 0
u3

+(z) = f3(z), α
[d1u3(z)
dn(z)

]−
− β

[d0u3(z)
dn(z)

]+
= f4(z) (3)

and the conditions

1
U(x) = O(1), r2

∂
1
U(x)

∂xk

= O(1), k = 1, 2; x = (x1, x2), x ∈ D1

at infinity. Here
j
u(x) = (

j
u1(x),

j
u2(x)) and

j
ui(x) = (

j
u1

i(x),
j
u2

i(x)) are

partial displacements in Dj ;
j
u3(x) is temperature change in Dj , j = 0, 1;

i = 1, 2.

j

R(∂x, n)
j

U(x) =
[
(
j

R(∂x, n)
j

U(x))1, (
j

R(∂x, n)
j

U(x))2
]
,

(
j

R(∂x, n)
j

U(x))i =
[
(
j

R(∂x, n)
j

U(x))1
i, (

j

R(∂x, n)
j

U(x))2
i
]
,

are partial thermal stresses of the mixture in Dj ,

(
j

R(∂x, n)
j

U(x))ip = (
j

P(∂x, n)
j
u(x))ip −

j
γinp(x)

j
u3(x), p = 1, 2; (4)

j

P(∂x, n)
j
u(x) is the stress vector [3]:

(
j

P(∂x, n)
j
u(x))1p =

2∑
q=1

[(
j

λ1
j

θ1(x) +
j

λ3
j

θ2(x))δpq + 2
j
µ1

j
ε
1

qp(x)+

+2
j
µ3

j
ε
2

qp(x)− 2
j

λ5
j

hqp(x)]nq −
j
ρ−1 j

α2(
j
ρ2

j

θ1(x) +
j
ρ1

j

θ2(x))np;

(
j

P(∂x, n)
j
u(x))2p =

2∑
q=1

[(
j

λ4
j

θ1(x) +
j

λ2
j

θ2(x))δpq + 2
j
µ3

j
ε
1

qp(x)+

+2
j
µ2

j
ε
2

qp(x) + 2
j

λ5
j

hqp(x)]nq +
j
ρ−1 j

α2(
j
ρ2

j

θ1(x) +
j
ρ1

j

θ2(x))np,

j
ε
i

qp(x) =
1

2
(∂q

j
u
i

p(x) + ∂p
j
u
i

q(x)),
j

θp(x) = div
j
u
p

(x),

j

hqp =
1

2
[∂q(

j
u
1

p −
j
u
2

p)− ∂p(
j
u
1

q −
j
u
2

q)],

∂p =
∂

∂xp

, i, p, q = 1, 2; j = 0, 1,

δpq is the Kronecker symbol, f(z) = (f1(z), f2(z)) = (f11 , f
1
2 , f

2
1 , f

2
2 ); F (z) =

(F 1(z), F 2(z)) = (F 1
1 , F

1
2 , F

2
1 , F

2
2 ), f3(z), f4(z) are the known on S func-

tions,∫
S

F (y)dyS = 0,

∫
S

f4(y)dyS = 0,

∫
S

[y × F (y)]dyS = 0, y = (y1, y2) ∈ S,
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r2 = x21 + x22;
j
a1 =

j
µ1 −

j

λ5,
j

b1 =
j
µ1 +

j

λ5 +
j

λ1 −
j
ρ−1 jρ2

j
α2,

j
a2 =

j
µ2 −

j

λ5,
j

b2 =
j
µ2 +

j

λ2 +
j

λ5 +
j
ρ−1 jρ2

j
α2,

j
c =

j
µ3 +

j

λ5,
j

d =
j
µ3 +

j

λ3 −
j

λ5 −
j
ρ−1 jρ1

j
α2 ≡

j
µ3 +

j

λ4 −
j

λ5 +
j
ρ−1 jρ2

j
α2,

j
α2 =

j

λ3 −
j

λ4;
j

λ1,
j

λ2,
j

λ3,
j

λ4,
j

λ5,
j
µ1,

j
µ2,

j
µ3,

j
γ1,

j
γ2 are the constants characterizing elastic and thermal properties of the
mixture in Dj , j = 0, 1; α and β are the positive constants.

In a static case, the problems [(1)3,(3)] regarding temperature and [(1),
(2)] regarding displacements can be solved separately. The question of the
uniqueness of solutions of these problems can likewise be studied separately.

The following theorems are valid.

Theorem 1. A regular solution of the problem [(1), (2)] is defined
modulo an arbitrary constant vector. Theorem 2. A regular solution of
the problem [(1)3, (3)] is defined modulo an arbitrary constant value.

Indeed, let the problem [(1), (2)] have two regular solutions. The dif-
ference of these solutions, obviously, satisfies the homogeneous system (1)0
and zero contact conditions (2)0. To find the difference in each of the do-
mains D1 and D2, we use Green’s formula. Moreover, taking into account
the identity

0
u+(z)

[0
P(∂z, n)

0
u(z)

]+
− 1
u−(z)

[1
P(∂z, n)

1
u(z)

]−
=

= (
0
u+(z)− 1

u−(z))
[0
P(∂z, n)

0
u(z)

]+
+

+
1
u−(z)

{[0
P(∂z, n)

0
u(z)

]+
−

[1
P(∂z, n)

1
u(z)

]−}
,

from the homogeneous contact conditions (2)0, as well as from the condi-
tions at infinity we can state that the difference of any two regular soutions
of the problem is a constant vector.

Using now for the domains D0 and D1 Green’s (Dirichlet) formulas for
the Laplace equation, from the homogeneous conditions (3)0 and by means
of the identities

0
u3

+(z)β
[d0u3(z)
dn(z)

]+
− 1
u3

−(z)α
[d1u3(z)
dn(z)

]−
=

= (
0
u3

+(z)− 1
u3

−(z))β
[d0u3(z)
dn(z)

]+
+

1
u3

−(z)
{
β
[d0u3(z)
dn(z)

]+
− α

[d1u3(z)
dn(z)

]−}
,

we obtain

∂
j
u3(x)

∂xi

= 0, j = 1, 2; j = 0, 1.
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Which allows us to conclude that the difference of two solutions of the

problem [(1)3, (3)] is an arbitrary constant
j
u3(x) = const.

On the basis of the above theorems, we can now formulate the unique-
ness theorem of the above-posed problem.

Theorem 3. A regular solution of the contact problem of thermoelastic
mixture under consideration is defined modulo an arbitrary constant vector.

We will now proceed to solving the problem [(1)3, (3)]. A harmonic

function
j
u3(x) is sought in the domain Dj in the form of a series

j
u3(x) =

∞∑
m=0

j

f3m(x), j = 0, 1, (5)

where

0
f3m(x) =

( r
R

)m
(
0
Xm · νm(ψ)),

1
f3m(x) =

(R
r

)m
(
1
Xm · νm(ψ)), (6)

j

Xm are the unknown two-component constant vectors, νm(ψ) = (cosmψ,
sinmψ).

Let the functions f3(z) and f4(z) be expanded into the Fourier series.
Substituting formulas (5) and (6) into the conditions (3) and passing to the

limit, as r → R, we obtain the system of equations with respect to
j

Xm,
j = 0, 1. Solving this system, we find values of the unknown quantities:

0
Xm = −βm + αmαm

(α+ β)m
,

1
Xm = −βm − βmαm

(α+ β)m
, m = 1, 2, . . . . (7)

Taking into account the condition
∫
S

f4(y)dyS = 0 for m = 0, we obtain

1
X0 =

0
X0 + α0, where αm = (αm1, αm2) and βm = (βm1, βm2) are the

Fourier coefficients of the functions f3(z) and f4(z), α0 = (α01, 0) respec-

tively, α01 =
1
π

2π∫
0

f3(θ)dθ, x = (r, ψ), z = (R,ψ), y = (R, θ).

Let us now solve the problem [(1), (2)]. The condition (2) with regard
for (4) can be replaced by the condition

{[1
P(∂z, n)

1
u(z)

]i}−
−

{[0
P(∂z, n)

0
u(z)

]i}+
=

= F i(z) + n(z)
[
1
γi

1
u
−
3 (z)−

0
γi

0
u
+

3 (z)
]
, (8)
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where
0
u
+

3 and
1
u
−
3 are defined by formulas (5), (6) and (7). Thus we pass

now to the problem [(1), (8)]. A solution of this problem is sought in the
form of a sum

j
u(x) =

j
w1(x) +

j
w2(x), j = 0, 1, (9)

where
j
w1(x) is the solution of the homogeneous system (1)0 with the con-

ditions {[
1
w1(z)

]i}−
−

{[
0
w1(z)

]i}+
= f i(z),{[1

P(∂z, n)
1
w1(z)

]i}−
−
{[0

P(∂z, n)
0
w1(z)

]i}+
= F i(z),

(10)

and
j
w2(x) is the solution of the system (1) with the{[

1
w2(z)

]i}−
−

{[
0
w2(z)

]i}+
= 0,{[1

P(∂z, n)
1
w2(z)

]i}−
−

{[0
P(∂z, n)

0
w2(z)

]i}+
= n

[
1
γi

1
u31

−(z)− 0
γi

0
u30

+(z)
]
.

(11)

To find a solution
j
w1(x) of the problem [(1)0, (10)], we use a general rep-

resentation of solutions of the system (1)0 in the plane, which is expressed

by four harmonic functions
j

Φk(x) [4]:

j
w

1

1(x) = grad
j

Φ1(x)+

+r2 grad
{[

(
j

ξ1 +
1

2
)r
∂

∂r
+ 2

j

ξ1

] j

Φ2(x) +
j

β1(r
∂

∂r
+ 2)

j

Φ3(x)
}
−

−xr ∂
∂r

[(2
j

ξ1 − 1)−
j

Φ2(x) + 2
j

β1
j

Φ3(x) +
j

Ψ1(x),

j
w

2

1(x) = grad
j

Φ4(x) + r2 grad
{
(
j

ξ2(r
∂

∂r
+ 2)

j

Φ2(x)+

+
[
(
j

β2 +
1

2
)r
∂

∂r
+ 2

j

β2

] j

Φ3(x)
}
−

−xr ∂
∂r

[
2
j

ξ2(x)
j

Φ2(x) + (2
j

β2 − 1)
j

Φ3(x)
]
+

j

Ψ2(x),

(12)

where

0
Ψi(x) =

0
Aix+

0
Bix̃, x ∈ D0;

1
Ψi(x) =

1

r2

[ 1
Aix+

1
Bix̃

]
, x ∈ D1,

j

ξ1 =
1

2
j

∆1

(
j
c
j

d−
j

b1
j
a2 −

j

∆1),
j

β1 =
1

2
j

∆1

(
j
c
j

b2 −
j
a2

j

d),
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j

β2 =
1

2
j

∆1

(
j
c
j

d−
j

b1
j
a2 −

j

∆1),
j

ξ2 =
1

2
j

∆1

(
j
c
j

b1 −
j
a1

j

d),
j

∆1 =
j
a1

j
a2 − (

j
c)2,

x = (x1, x2), x̃ = (−x2, x1),

j

Aii and
j

Bii are the unknown constants, i = 1, 2, j = 0, 1.

The functions
j

Φk(x) are sought in the form of the following series:

0
Φk(x) =

∞∑
m=0

( r
R

)m
(
0
Xmk · νm(ψ)), x ∈ D0,

1
Φk(x) =

∞∑
m=0

(R
r

)m
(
1
Xmk · νm(ψ)), x ∈ D1, k = 1, 2, 3, 4,

(13)

where
j

Xmk is the unknown two-component constant vector, νm(ψ) =
(cosmψ, sinmψ), x = (r, ψ).

We substitute (13) into (12) and the above-obtained expression into

(10). The functions
j

f(z) and
j

F (z) are assumed to be reprezentable by
Fourier series. Passing to the limit, as r → R, for every value m, from (10)

we obtain with regard to the unknowns
0
Xmk and

1
Xmk the system of linear

algebraic equations:

4∑
p=1

j
akp

j

Xmp =
j
χmk, k = 1, 2, 3, 4; j = 0, 1; m = 1, 2, . . . , (14)

where for the case of j = 0, i.e. for the domain D0, the following notation
are introduced:

0
χm1 =

0
ζm

1

m
,

0
χm2 =

0
ηm

1

m
,

0
χm3 =

0
ζm

2

m
,

0
χm4 =

0
ηm

2

m
;

0
a11 =

1

R2
(2

0
µ1m− ε1),

0
a12 = 2

[
0
µ1(

0
ξ1 +

1

2
) +

0
ξ2

0
µ3

]
m2+

+(
0
ξ2ε2−2

0
ξ1ε4+ε1(

0
ξ1+

3

2
)−2

0
ξ2ε5)m+ε1;

0
a13=2

[
0
µ1

0
β1+(

0
β2+

1

2
)
0
µ3

]
m2+

+
[
ε2(

0
β2 +

3

2
) + ε1

0
β1 − 2

0
β2ε5 − 2

0
β1ε4

]
m+ ε2;

0
a14=

1

R2
(2

0
µ3m−ε2);

0
a21=

1

R2
(2

0
λ5m−ε6);

0
a22=2

[0
λ5(

0
ξ1+

1

2
)−

0
ξ2

0
λ5

]
m

2
+

+(3
0
ξ1ε6 + 3

0
ξ2ε7 +

1

2

0
ξ6 −

0
a1)m+ 2ε6

0
ξ1 + 2

0
ξ2ε7;
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0
a23 = 2

[0
λ5

0
β1 −

0
λ5(

0
β2 +

1

2
)
]
m2 + (3ε6

0
β1 + 3ε7

0
β2 +

1

2
ε7 −

0
c)m+

+2ε6
0
β1 + 2ε7

0
β2;

0
a24 = − 1

R2
(2

0
λ5m+ ε7);

0
a31 =

1

R2
(2

0
µ3m− ε2);

0
a32 = 2

[
0
µ3(

0
ξ1 +

1

2
) +

0
ξ2

0
µ2

]
m2+

+
[
ε2(

0
ξ1+

3

2
)+ε3

0
ξ2−2ε5

0
ξ4−2ε9

0
ξ2

]
m+ε2;

0
a33 = 2

[
0
µ3

0
β1 +

0
µ2(

0
β2 +

1

2
)
]
m2+

+
[
ε3(

0
β2 +

3

2
) + ε2

0
β1 − 2ε5

0
β1 − 2ε9

0
β2

]
m+ ε3;

0
a34 =

1

R2
(2

0
µ2m− ε3);

0
a41 = − 1

R
(2

0
λ5m+ ε7);

0
a42 = −2

[0
λ5(

0
ξ1 +

1

2
)−

0
λ5

0
ξ2

]
m2+

+(3ε7
0
ξ1 + 3ε8

0
ξ2 +

1

2
ε7 −

0
c)m+ 2ε7

0
ξ1 + 2ε8

0
ξ2;

0
a43 = −2

[0
λ5

0
β1 −

0
λ5(

0
β2 +

1

2
)
]
m2 + (3

0
β1ε7 + 3ε8

0
β2 +

1

2
ε8 −

0
a2)m+

+2ε7
0
β1 + 2ε8

0
β2;

0
a44 =

1

R2
(2

0
λ5m− ε8);

ε1 =
1
a1 +

1
b1 −

0
a1 −

0
b1, ε2 =

1
c+

1
d− 0

c−
0
d, ε3 =

1
a2 +

1
b2 −

0
a2 −

0
b2,

ε4 =
1

R
(
1
λ1 −

1
α2

1
ρ2
1
ρ

−
0
λ1 +

0
α2

0
ρ2
0
ρ

); ε5 =
1

R
(
1
λ3 −

1
α2

1
ρ1
1
ρ

−
0
λ3 +

0
α2

0
ρ1
0
ρ

);

ε6 =
1
µ1 +

1
λ5 −

0
µ1 −

0
λ5, ε7 =

1
µ3 +

1
λ5 −

0
µ3 +

0
λ5,

ε8 =
1
µ2 +

1
λ5 −

0
µ2 −

0
λ5, ε9 =

1

R
(
1
λ2 +

1
α2

1
ρ2
1
ρ

−
0
λ2 −

0
α2

0
ρ1
0
ρ

);

j

ζ
i

m and
j
η
i

m are the Fourier coefficients of the given on the boundary func-
tions.

The unknown values
j

Xmk are defined from the system (14) in which we
put j = 1.

The values of the coefficients
1
akp deffer from

0
akp only by that we have

changed the signs before the expressions for
0
akp and in the expression itself

instead of the symbol m we have written (−m). For m = 0, for finding the

unknown constants
j

Ai and
j

Bi appearing in (12), we obtain the systems

ε1
j

A1 + ε2
j

A2 =
j

ζ
1

0

j
c, ε6

j

B1 + ε7
j

B2 =
j
η
1

0

j
c,

0
c = 1,

1
c = −R2,

ε2
j

A1 + ε3
j

A2 =
j

ζ
2

0

j
c, ε7

j

B1 + ε8
j

B2 =
j
η
2

0

j
c, j = 0, 1.

(15)
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Relying on the theorems on the uniqueness of a solution of the problem
we can conclude that the principal determinants of the systems (14) and
(15) are different from zero.

Substituting the solutions of the systems (14) and (15) into (13) and

(12), we obtain the representations
j
w

i

1(x) in the form of infinite series.

The solution
j
w

i

2(x) of the problem [(1), (11)] is constructed in the form
of series [5]:

j
w

i

2(x) =
∞∑

m=0

[
αi
mx+ βimr

2 grad
] j

f3m(x), (16)

where
j

f3m(x) is the harmonic function which is defined by formulas (6);
αi
m and βim are the unknown constants, j = 0, 1; i = 1, 2.

To find the above values, we substitute formulas (16) and (5) into (1)

instead of the values
j
ui(x) and

j
u3(x).

Passing to the limit, as r → R, for every value of the indexm, we obtain
the system

[
2(

j
a1 +

j

b1) +
j

b1m
]
α1
m + 2(

j

b1 + 2
j
a1)m

j

β
1

m +
[
2(

j
c+

j

d) +
j

dm
]
α2
m+

+2(
j

d+ 2
j
c)mβ2m =

j
γ1,[

2(
j
c+

j

d) +
j

dm
]
α1
m + 2(

j

d+ 2
j
c)m

j

β
1

m +
[
2(

j
a2 +

j

b2) +
j

b2m
]
α2
m+

+2(
j

b2 + 2
j
a2)mβ

2
m =

j
γ2, j = 0, 1; m = 1, 2, ...

Moreover, taking into account (5) and (16), from the conditions (11), for
αi
m and βim we obtain two more equations:

(
∗
λ1 +

∗
µ1)

[
2α1

m +m(α1
m + 2β1m)

]
+ (

∗
λ2 +

∗
µ2)

[
2α2

m +m(α2
m + 2β2m)

]
=

∗
γ,

∗
µ1(α

1
m + 2mβ1m) + µ∗2(α

2
m + 2β2m) = 0,

where
∗
λ1 =

1
λ1+

1
λ4−

0
λ1−

0
λ4,

∗
λ2 =

1
λ3+

1
λ2−

0
λ3−

0
λ2,

∗
µ1 =

1
µ1+

1
µ3−

0
µ1−

0
µ3,

∗
µ2 =

1
µ3 +

1
µ2 −

0
µ3 −

0
µ2,

∗
γ =

1
γ1 +

1
γ2 −

0
γ1 −

0
γ2.

Thus we have found the regular solution
j

U(x) = (
j
u(x),

j
u3(x)) of the

above-posed problem.
j
u(x) is given in the form of the sum (9) in which

j
w

i

1(x) are defined by formulas (12), while
j
w

i

2(x) by formulas (16);
j
u3(x) is

defined by formulas (5).
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The infinite series (12), (16) and (5), as well as their first derivatives
(including boundary) converge absolutely and uniformly, if the inequalities∣∣∣ jwi

1(x)
∣∣∣ < 1

m3
,

∣∣∣ jwi

2(x)
∣∣∣ < 1

m3
,

∣∣∣ ju3∣∣∣ < 1

m3
,

i = 1, 2; j = 0, 1, m = 1, 2, . . . .

are valid.
To fulfill these inequalities, as one can see from the formulas for cal-

culation of coefficients of the system (14), it suffices [6] to require that for
the boundary functions the conditions f(z) ∈ C3(S), F (z), f3(z), f4(z) ∈
C2(S)are fulfilled.
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