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Abstract

The purpose of this paper is to consider three-dimensional version of quasistatic

Aifantis’ equation of the theory of consolidation with double porosity and to study the

uniqueness and existence of solution of the Dirichlet boundary value problem (BVP).

Using the fundamental matrix we will construct the simple and double layer potentials

and study their properties. Using the potential method, for the Dirichlet BVP we

construct Fredholm type integral equation of the second kind and prove the existence

theorem of solution for the finite and infinite domains.
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Introduction

A theory of consolidation with double porosity has been proposed by Aifan-
tis. This theory unifies a model proposed by Biot for the consolidation of
deformable single porosity media with a model proposed by Barenblatt for
seepage in undeformable media with two degrees of porosity. In a mate-
rial with two degrees of porosity, there are two pore systems, the primary
and the secondary. For example in a fissured rock (i.e., a mass of porous
blocks separated from each other by an interconnected and continuously
distributed system of fissures) most of the porosity is provided by the pores
of the blocks or primary porosity, while most of permeability is provided by
the fissures or the secondary porosity. When fluid flows and deformations
processes occur simultaneously , three coupled partial differential equations
can be derived [1],[2] to describe the relationships governing pressure in the
primary and secondary pores (and therefore the mass exchange between
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them) and the displacement of the solid. Inertia effects are neglected as
they are in Biot’s theory.

The physical and mathematical foundations of the theory of double
porosity were considered in the papers [1]-[3]. In part I of a series of paper
on the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical
interpretations of the phenomenological coefficients appearing in the dou-
ble porosity theory.They also solved several representative boundary value
problems. In part II of this series, uniqueness and variational principles
were established by D. E. Beskos and E. C. Aifantis [2] for the equations of
double porosity,while in part III Khaled, Beskos and Aifantis [3] provided a
related finite element to consider the numerical solution of Aifantis’ equa-
tions of double porosity (see [1],[2],[3] and references cited therein). The
basic results and the historical information on the theory of porous media
were summarized by the Boer [4].

In this paper for the solution of the Dirichlet BVP we construct a Fred-
holm type integral equation of the second kind and prove the existence
theorem of solution for the finite and infinite domains.

1 Basic Equations, Boundary Value Problem and
Uniqueness Theorems

The basic steady-state quasistatic Aifantis’ equations of the theory of con-
solidation with double porosity are given by the partial differential equa-
tions in the form [1], [2]

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) = 0,

iωβ1divu+ (m1∆+ α3)p1 + kp2 = 0,

iωβ2divu+ kp1 + (m2∆+ α4)p2 = 0,

(1.1)

where u = (u1, u2, u3) is the displacement vector, p1 is the fluid pressure
within the primary pores and p2 is the fluid pressure within the secondary

pores. α3 = iωα1 − k, α4 = iωα2 − k, mj =
kj
µ∗
, j = 1, 2. The constant λ

is the Lame modulus, µ is the shear modulus and the constants β1 and β2
measure the change of porosities due to an applied volumetric strain. The
constants α1 and α2 measure the compressibilities of primary and secondary
pores filled with pore fluid.The constants k1 and k2 are the permeabilities
of the primary and secondary systems of pores, the constant µ∗ denotes
the viscosity of the pore fluid and the constant k measures the transfer
of fluid from the secondary pores to the primary pores. The quantities
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λ, µ, αj , βj , kj (j = 1, 2) and µ∗ are all positive constants. △ is the
Laplace operator, ω is the oscilation frequency (ω > 0).

We also rewrite the equation (1.1) in the matrix form

B(∂x)U = 0, (1.2)

where
B(∂x) =∥ Bpq(∂x) ∥5x5, p, q = 1, 2, 3, 4, 5,

Bjj(∂x) = µ∆+ (λ+ µ)
∂2

∂x2j
, j = 1, 2, 3,

B1j(∂x) = Bj1(∂x) = (λ+ µ)
∂2

∂x1∂xj
, j = 2, 3,

B23(∂x) = B32(∂x) = (λ+ µ)
∂2

∂x3∂x2
,

Bj4(∂x) = −β1
∂

∂xj
, Bj5(∂x) = −β2

∂

∂xj
, j = 1, 2, 3,

B4j(∂x) = iωβ1
∂

∂xj
, B5j(∂x) = iωβ2

∂

∂xj
, j = 1, 2, 3,

B44(∂x) = m1∆+ α3, B45 = k ,B54 = k,

B55(∂x) = m2∆+ α4, U(u1, u2, u3, p1, p2).

The conjugate system of the equation (1.2) is

B̃(∂x)U = BT (−∂x)U = 0.

Throughout this paper the superscript ”T” denotes transposition.

Write now the expressions for the components of the generalizes stress

vector. Denoting the generalized stress tensor by
κ
R(∂x, n) where κ is an

arbitrary constant, we have

κ
R(∂x, n) =∥

κ
Rkj(∂x, n) ∥5×5, (1.3)

where [6]
κ
Rkj(∂x, n) = µδkj

∂

∂n
+ (λ+ µ)nk

∂

∂xj

+κ

(
nj

∂

∂xk
− nk

∂

∂xj

)
, k, j = 1, 2, 3,

(1.4)
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κ
Rj4(∂x, n) = −β1nj ,

κ
Rj5(∂x, n) = −β2nj ,

κ
R4j(∂x, n) =

κ
R5j(∂x, n) =

κ
R45(∂x, n) =

κ
R54(∂x, n) = 0,

κ
R44(∂x, n) = m1

∂

∂n
,

κ
R55(∂x, n) = m2

∂

∂n
, j = 1, 2.3.

n = (n1, n2, n3) is the unit normal vector.

If κ = µ, we have the stress vector P (∂x, n)u. The operator, which will

be obtained from
κ
P(∂x, n), for κ = κn =

µ(λ+ µ)

λ+ 3µ
, will be called the opera-

tor N(∂x, n), and vector N(∂x, n)u will be called the pseudo-stress vector.
The pseudo-stress operator succeeded in obtaining the Fredholm integral
equation of the second kind for the Dirichlet boundary value problem.

Let D+(D−) be a finite (an infinite) three-dimensional domain bounded
by the surface S. Suppose that S ∈ C1,β, 0 < β ≤ 1.

We introduce the following definition:

Definition 1. A vector-function U(x) = (u1, u2, u3, p1, p2) defined in
the domain D+(D−) is called regular if it has integrable continuous sec-
ond order derivatives in D+(D+), and U and its first order derivatives
are continuously extendable at every point of the boundary of D+(D−),
i.e., U ∈ C2(D+)

∩
C1(D+), (U ∈ C2(D+)

∩
C1(D+)). Note that for

the infinite domain D− the vector U(x) additionally satisfies the following
conditions at infinite:

U(x) = O(|x|−1),
∂Uk

∂xj
= O(|x|−2), |x|2 = x21 + x22 + x23, j = 1, 2, 3.

(1.5)

For the equation (1.1) we pose the following boundary value problem:
find in the domainD+(D−) a regular solution U of equation (1.1), satisfying
on the boundary S the following Dirichlet boundary conditions:

Problem 1. The displacement vector and the fluid pressures are given
in the form

u±(u1, u2, u3) = f(z)±, p±1 = f±4 , p
±
2 = f±5 , z ∈ S.

Generalized Green’s Formulas: Let U and u be two regular
solutions of equation (1.1) in D+. Multiply the first equation of (1.1)
by u = (u1, u2, u3) , the second one by p1 and the third by p2 ,
where u, p1 and p2 are the complex conjugate of u, p1 and p2
respectively. Integration of the results over D+ and then their addition,
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after some simplification, gives

∫
D+

[
E(u, ū) + α1|p1|2 + α2|p2|2 +

k

iω
|p1 − p2|2 +

m1

iω
|gradp1|2

+
m2

iω
|gradp2|2

]
dV =

∫
S

[
u

κ
P(∂x, n)u+

m1

iω
p1
∂p1
∂n

+
m2

iω
p2
∂p2
∂n

]
dS,

κ
P(∂x, n)u =

κ
T(∂x, n)u− n(β1p1 + β2p2), u = (u1, u2, u3),

κ
T(∂x)kj = µδkj

∂

∂n
+ (λ+ µ)nk

∂

∂xj

+κ

(
nj

∂

∂xk
− nk

∂

∂xj

)
, k, j = 1, 2, 3,

(1.6)
where [6]

E(u, u) = (λ+ µ− κ)

(∑
k

∂uk
∂xk

)2

+
µ+ κ

4

∑
k,q

(
∂uk
∂xq

+
∂uq
∂xk

)2

+
µ− κ

4

∑
k,q

(
∂uk
∂xq

− ∂uq
∂xk

)2

.

For the positive definiteness of the potential energy the inequalities
λ+ µ− κ > 0, µ+ κ > 0, µ− κ > 0, are necessary and sufficient.

One can generalize the formula (1.6) for an infinite domain D− , pro-
vided the conditions

lim
R→∞

∫
S(0,R)

[
u

κ
P(∂x, n)u+

m1

iω
p1
∂p1
∂n

+
m2

iω
p2
∂p2
∂n

]
dS = 0, (1.7)

are fulfilled, where S(0, R) is a sphere of radius R with center at the
point O, lying inside D+ . The radius R is taken so large that the region
D+ lies entirely inside the sphere S(0, R).

Obviously, the conditions (1.7) are fulfilled if the vector u and u satisfy
the conditions (1.5).

If (1.7) are fulfilled the Green’s formula for the domain D− takes the

9
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form

∫
D−

[
E(u, u) + α1|p1|2 + α2|p2|2 +

k

iω
|p1 − p2|2 +

m1

iω
|gradp1|2

+
m2

iω
|gradp2|2

]
dV = −

∫
S

[
u

κ
P(∂x, n)u+

m1

iω
p1
∂p1
∂n

+
m2

iω
p2
∂p2
∂n

]
dS,

(1.8)

The Uniqueness Theorems. In this subsection we investigate the
question of the uniqueness of solution of the above-mentioned problem.

Now Let us prove the following theorems:

Theorem 1. The first boundary value problem has at most one regular
solution in the finite domain D+.

Proof: Let the first BVP have in the domain D+ two regular solutions
U (1) and U (2) . We write v = U (1)−U (2) . Evidently the vector v satisfies
(1.1) and the boundary condition v+ = 0 on S . Note that if v is a
regular solution of the equation (1.1), we have the Green’s formula (1.6).
Using (1.6) and taking into account the fact that the pseudopotential energy
is positive definite, we conclude that v = C, x ∈ D+, where C = const.
Since v+ = 0, we have C = 0 and v(x) = 0, x ∈ D+.

Theorem 2. The first boundary value problem has at most one regular
solution in the infinite domain D−.

Proof: The vectors U (1) and U (2) in the domain D− must satisfy
the condition at infinite (1.5). In this case the formula (1.8) is valid and
v(x) = C, x ∈ D−, where C is again the constant vector. But v on the
boundary satisfies the condition v− = 0 , which implies that C = 0 and
v(x) = 0, x ∈ D−.

2 Matrix of Fundamental Solutions

The matrix of fundamental solutions for the system (1.1) is given in the
work of M. Svanadze [5]. We rewrite it in the form

Γ(x− y) =∥ Γpq(∂x) ∥5×5, p, q = 1, 2, 3, 4, 5, (2.1)

10
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where

Γkj = Γjk =
δkj
µr

− ∂2Ψ11

∂xjxk
, Γj4 =

1

am1m2

∂Ψ12

∂xj
,

Γj5 =
1

am1m2

∂Ψ13

∂xj
, Γ4j =

−iω
am1m2

∂Ψ12

∂xj
,

Γ5j =
−iω

am1m2

∂Ψ13

∂xj
, Γ44 =

1

m1m2
Ψ44, Γ45 = Γ54 =

1

m1m2
Ψ45,

Γ55 =
1

m1m2
Ψ55, k, j = 1, 2, 3, Ψ11 =

α11r

2
+
α12

r

+
β11e

iλ1r + β12e
iλ2r

r
, Ψ12 =

γ11
r

+
γ12e

iλ1r + γ13e
iλ2r

r
,

Ψ13 =
δ11
r

+
δ12e

iλ1r + δ13e
iλ2r

r
, Ψ44 =

η11e
iλ1r + η12e

iλ2r

r
,

Ψ55 =
γ21e

iλ1r + γ22e
iλ2r

r
, Ψ45 = γ45

eiλ2r − eiλ1r

r
,

α11 =
λ+ µ

aµ
+
iω(α4β

2
1 + α3β

2
2 − 2kβ1β2)

a2m1m2λ21λ
2
2

,

α12 =
iω

a2m1m2λ21λ
2
2

[
m2β

2
1 +m1β

2
2 −

(λ21 + λ22)(α4β
2
1 + α3β

2
2 − 2kβ1β2)

λ21λ
2
2

]
,

β1k =
(−1)kiω

a2m1m2(λ21 − λ22)λ
2
2

[
−m2β

2
1 −m1β

2
2 +

α4β
2
1 + α3β

2
2 − 2kβ1β2
λ2k

]
,

k = 1, 2,

γ11 =
α4β1 − kβ2

λ21λ
2
2

, γ1k =
(−1)k

(λ21 − λ22)

[
−m2β1 +

α4β1 − kβ2
m2λ2k−1

]
, k = 2, 3,

δ11 =
α3β2 − kβ1

λ21λ
2
2

, δ1k =
(−1)k

λ21 − λ22

[
−m1β2 +

α3β2 − kβ1
m1λ2k−1

]
, k = 2, 3

η1k =
(−1)k

λ21 − λ22

[
−m2λ

2
k + α4 +

iωβ22
a

]
, k = 1, 2, γ45 = −ka+ iωβ1β2

a(λ21 − λ22)
,

γ2k =
(−1)k

λ21 − λ22

[
−m1λ

2
k + α3 +

iωβ21
a

]
, k = 1, 2

α12 + β11 + β12 = 0, δ11 + δ12 + δ13 = 0, η11 + η12 = m2,
(2.2)

11
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γ11 + γ12 + γ13 = 0, γ21 + γ22 = m1,

r2 = (x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2.

Here λ2j , j = 1, 2 are roots of the characteristic equation

m1m2x
2 −

[
α4m1 + α3m2 +

iω

a

(
β22m1 + β21m2

)]
x+ α3α4 − k2

+
iω

a

(
α4β

2
1 + α3β

2
2 − 2kβ1β2

)
= 0, a = λ+ 2µ.

Without loss of generality we assume that Imλj > 0, j = 1, 2.

Analogously we construct the matrix Γ̃(x) = ΓT (−x).

3 Singular Matrix of Solutions

In solving boundary value problems of the theory of consolidation with
double porosity by the method of potential theory, the fundamental matrix
and some other matrices of singular solutions to equation (1.1) are of great
importance. These matrices will be constructed explicitly in the present
section with the help of elementary functions. Using the basic fundamental
matrix, we will construct the so-called singular matrices of solutions. For
simplicity, we will introduce the special generalized stress vector.

We introduce the following notation R̃
κ
(∂x, n)

R̃
κ
(∂x, n) =∥ R̃

κ
kj(∂x, n) ∥5×5, p, q = 1, 2, 3, 4, 5,

R̃
κ
kj(∂x, n) = µδkj

∂

∂n
+ (λ+ µ)nk

∂

∂xj

+κ

(
nj

∂

∂xk
− nk

∂

∂xj

)
, k, j = 1, 2, 3,

R̃
κ
j4(∂x, n) = −iωβ1nj , R̃

κ
j5(∂x, n) = −iωβ2nj , j = 1, 2, 3,

R̃
κ
4j(∂x, n) = R̃

κ
5j(∂x, n) = R̃

κ
45(∂x, n) = R̃

κ
54(∂x) = 0,

R̃
κ
44(∂x, n) = m1

∂

∂n
, R̃

κ
55(∂x, n) = m2

∂

∂n
.

12
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Applying the operator
κ
R(∂x, n) to the matrix Γ(x) we construct

the so-called singular matrix of solutions. Let us consider the matrix

[
κ
R(∂y, n)Γ(y − x)]∗ , which is obtained from

κ
R(∂x, n)Γ(x− y) = (

κ
Ppq)5×5

by transposition of the columns and rows and the variables x and y. It is

not difficult to prove that every column of the matrix [
κ
R(∂y, n)Γ(y− x)]∗

is a solution of the system B̃(∂x)U = 0 with respect to the point x, if

x ̸= y and all elements of
κ
Ppq have a singularity of type O(|x|−2).

The elements
κ
Ppq are given as follows:

κ
P11 =

∂

∂n

1

r
+ (κ+ µ)

[
∂

∂s3

∂2Ψ11

∂x1∂x2
− ∂

∂s2

∂2Ψ11

∂x1∂x3

]
,

κ
P12 = −κ

µ

∂

∂s3

1

r
− (κ+ µ)

[
∂

∂s2

∂2Ψ11

∂x2∂x3
− ∂

∂s3

∂2Ψ11

∂x22

]
,

κ
P13 =

κ

µ

∂

∂s2

1

r
+ (κ+ µ)

[
∂

∂s3

∂2Ψ11

∂x2∂x3
− ∂

∂s2

∂2Ψ11

∂x23

]
,

κ
P1j =

κ+ µ

am1m2

[
∂

∂s2

∂Ψ1,j−2

∂x3
− ∂

∂s3

∂Ψ1,j−2

∂x2

]
, j = 4, 5

κ
P21 =

κ

µ

∂

∂s3

1

r
+ (κ+ µ)

[
∂

∂s1

∂2Ψ11

∂x1∂x3
− ∂

∂s3

∂2Ψ11

∂x21

]
,

κ
P22 =

∂

∂n

1

r
+ (κ+ µ)

[
∂

∂s1

∂2Ψ11

∂x2∂x3
− ∂

∂s3

∂2Ψ11

∂x1∂x2

]
,

κ
P23 = −κ

µ

∂

∂s1

1

r
+ (κ+ µ)

[
− ∂

∂s3

∂2Ψ11

∂x1∂x3
+

∂

∂s1

∂2Ψ11

∂x23

]
,

κ
P2j =

κ+ µ

am1m2

[
∂

∂s3

∂Ψ1,j−2

∂x1
− ∂

∂s1

∂Ψ1,j−2

∂x3

]
, j = 4, 5,

κ
P31 = −κ

µ

∂

∂s2

1

r
+ (κ+ µ)

[
− ∂

∂s1

∂2Ψ11

∂x2∂x1
+

∂

∂s2

∂2Ψ11

∂x21

]
,

κ
P32 =

κ

µ

∂

∂s1

1

r
+ (κ+ µ)

[
∂

∂s2

∂2Ψ11

∂x1∂x2
− ∂

∂s1

∂2Ψ11

∂x22

]
,

κ
P33 =

∂

∂n

1

r
+ (κ+ µ)

[
∂

∂s2

∂2Ψ11

∂x1∂x3
− ∂

∂s1

∂2Ψ11

∂x2∂x3

]
,

(3.1)

13
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κ
P3j =

κ+ µ

am1m2

[
− ∂

∂s2

∂Ψ1,j−2

∂x1
+

∂

∂s1

∂Ψ1,j−2

∂x2

]
, j = 4, 5,

κ
P4j = − iω

am2

∂

∂xj

∂

∂n
Ψ12,

κ
P5j = − iω

am1

∂

∂xj

∂

∂n
Ψ13, j = 1, 2, 3,

κ
P44 =

1

m2

∂

∂n
Ψ44,

κ
P45 =

1

m2

∂

∂n
Ψ45,

κ
P54 =

1

m1

∂

∂n
Ψ45,

κ
P55 =

1

m1

∂

∂n
Ψ55,

∂

∂s3
= n1

∂

∂x2
− n2

∂

∂x1
,

∂

∂s2
= n3

∂

∂x1
− n1

∂

∂x3
,

∂

∂s1
= n2

∂

∂x3
− n3

∂

∂x2
.

Analogously we obtain the matrix

R̃
κ
(∂y, n)Γ̃(y − x) = ([R̃

κ
Γ̃]pq)5×5.

The matrix [R̃
κ
(∂y, n)Γ̃(y−x)]∗ is a solution of the system (1.1). It shows,

that the matrixes [R̃
κ
(∂x, n)Γ̃]∗ and [

κ
R(∂x, n)Γ]∗ contains a singular

part, which is integrable in sense the principal Cauchy value sense.

4 Potentials and Their Properties

We introduce the following definitions:
Definition 1. The vector-functions defined by the equalities

V (1)(x) =
1

2π

∫ ∫
S

Γ(y − x)h(y)dSy, (4.1)

V (2)(x) =
1

2π

∫ ∫
S

Γ̃(x− y)h(y)dSy

where Γ̃(x, y) is the fundamental matrix, Γ̃(x) = ΓT (−x) , h is a
continuous (or Hölder continuous) vector and S is a closed Lyapunov
surface, will be called simple layer potentials.

Definition 2. The vector-functions defined by the equalities

U (1)(x) =
1

2π

∫ ∫
S

[
Ñ(∂y, n)Γ̃(y − x)

]∗
h(y)dSy,

U (2)(x) =
1

2π

∫ ∫
S

[N(∂y, n)Γ(y − x)]∗ h(y)dSy,

(4.2)

14
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are called double layer potentials, where h (y) is a real 5-dimensional
vector.

The potentials V (1), U (1) are solutions of the system (1.1) and the
potentials V (2), U (2) are solutions of the system B̃(∂x)U = 0 in the
domains D+ and D− .

The following theorems are valid.

Theorem 3. If S is a closed surface of the class S ∈ L1(α) and
h ∈ S1,β(S), 0 < β < α ≤ 1, then the potentials (4.2) are regular in D±

there exist boundary values of the vectors U (1)(x), U (2)(x) from inside
and outside of the surface S, and there take place the equalities

U (1)± = ±h(z) + 1

2π

∫ ∫
S

[
Ñ(∂y, n)Γ̃(y − z)

]∗
h(y)dSy,

U (2)± = ±h(z) + 1

2π

∫ ∫
S

[N(∂y, n)Γ(y − z)]∗ h(y)dSy.

(4.3)

Theorem 4. If S is a closed surface of the class S ∈ L1(α) and
h ∈ S0,β(S), 0 < β < α ≤ 1, then
(a) the potentials (4.1) are regular in D±;
(b) there exist boundary values of the vectors N(∂x, n)V (1)(x), N(∂x, n)V (2)(x)
from inside and outside of the surface S, and there take place the equalities

[
N(∂y, n)V (1)(z)

]∓
= ∓h(z) + 1

2π

∫ ∫
S

N(∂y, n)Γ(z − y)h(y)dSy,

[Ñ(∂y, n)V (2)(z)]∓ = ∓h(z) + 1

2π

∫ ∫
S

Ñ(∂y, n)Γ̂(z − y)h(y)dSy,

(4.4)

Let us note that [N(∂x, n)Γ(x− y)]∗ is a weakly singular kernel .

5 Solution of the Boundary Value Problems

Problem (I)+. Let us first prove the existence of solution of the first
boundary value problem in the domain D+. A solution is sought in the
form of the double layer potential

U(x) =
1

2π

∫ ∫
S

[
Ñ(∂y, n)Γ̃(y − x)

]∗
h(y)dSy. (5.1)

15
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Then for determining the unknown real vector function h we obtain
the following Fredholm integral equation of the second kind

−h(z) + 1

2π

∫ ∫
S

[
Ñ(∂y, n)Γ̃(y − z)

]∗
h(y)dSy = f+. (5.2)

Let us prove that the equation (5.2) is solvable for any continuous right-
hand side. Consider the associated to (5.2) homogeneous equation

−h(z) + 1

2π

∫ ∫
S

N(∂y, n)Γ(y − z)h(y)dSy = 0. (5.3)

and prove that it has only the trivial solution. Assume the contrary and
denote by φ(z) a nontrivial solution of (5.3). Compose the simple layer
potential

V (x) =
1

2π

∫ ∫
S

Γ(y − x)φ(y)dSy. (5.4)

It is obvious from (5.3), that

[N(∂z, n)V (z)]− = 0,

∫ ∫
S

φ(y)ds = 0.

Using the formula (1.8) for κ = κn in D− , we obtain V (z) = 0, z ∈ D−.

Now taking into account the continuity of the simple layer potential and
using the uniqueness theorem for the solution of the first boundary value
problem, we will have V (x) = 0, x ∈ D+.

Note that [NV ]+ − [NV ]− = 2φ(x) = 0 and hence the equation (5.3)
has only the trivial solution. This implies that the associated to (5.3) ho-
mogeneous equation also has only the trivial solution, and the equation(5.2)
is solvable for any continuous right-hand side (according to the Fredholm
theorem).

For the regularity of the double layer potential in the domain D+ it

is sufficient to assume that S ∈ C2,β, (0 < β < 1) and
∂f

∂s
is Holder

continuous, f ∈ C1, α(S), ( 0 < α < β).

Problem (I)−. Consider the first boundary value problem in the do-
main D−. Its solution is sought in the form

U(x) =
1

2π

∫ ∫
S

[
[Ñ(∂y, n)Γ̃(y − x)]∗ − [Ñ(∂y, n)Γ̃(y)]∗

]
ψ(y)dSy. (5.5)
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To define the unknown real vector function ψ we obtain the following Fred-
holm integral equation of the second kind

ψ(z) +
1

2π

∫ ∫
S

[
[Ñ(∂y, n)Γ̃(y − z)]∗ − [Ñ(∂y, n)Γ̃(y)]∗

]
ψ(y)dSy = f−.

(5.6)

Prove that the equation (5.6) is solvable for any continuous right-hand
side. To this end, we consider the associated to (5.6) homogeneous equation

h(z) +
1

2π

∫ ∫
S

[N(∂z, n)Γ(z − y) +N(∂z, n)Γ(z)]h(y)dSy = 0. (5.7)

Let us prove that (5.7) has only the trivial solution. Suppose that it
has a nontrivial solution h(z). From (5.7) by integration we obtain∫

S

hdS = 0.

In this case the equation (5.7) corresponds to the boundary condition
[N(∂x, n)V ]+ = 0, where

V (x) =
1

2π

∫ ∫
S

Γ(y − x)h(y)dSy, (5.8)

and find that V = C, x ∈ D+, where C is a constant vector.

Taking into account the equation
∫
S

hdS = 0 and the fact that the

single layer potential is continuous while passing through the boundary
and using the Green’s formula for κ = κn, we obtain V = 0, x ∈ D−.
Since [NV ]+ − [NV ]− = 2h(x) = 0, and [NV ]+ = 0, [NV ]− = 0, then
h(x) = 0.

Thus we conclude that the associated to (5.7) homogeneous equation
has only the trivial solution, and the equation (5.6) is solvable for any
continuous right-hand side.

To prove the regularity of the potential (5.5) in the domain D−, it is
sufficient to assume that S ∈ C2,β(0 < β < 1) and f ∈ C1,α(S), (0 <
α < β).

Finally, on the basis of the general theory, the following theorems are
valid.

Theorem 5. If S ∈ L2(α) and f ∈ C1,β(S), then the BVP (I)+ has a
unique solution. Moreover, this solution is given in the form of the double
layer potential (5.1), where h is a solution of equation (5.2).
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Theorem 6. The problem (I)− is solvable for an arbitrary vector
f ∈ C1,α(S), for S ∈ L2(α) , and its solution is representable by formula
(5.5).

For the proof of Theorems 1,2,...,6, we used the method given in [6]
which is applied to the proof of analogous theorems for isotropic media.
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