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Abstract

The paper considers an analogue of the Bitsadze-Samarskii problem for a mixed

type equation when a skew derivative is given on the boundary of an elliptic domain.

It is shown that this problem is Noetherian.
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Let us consider the equation

0 =

{
uxx + uyy + aux + buy + cu, y > 0,

uxx − uyy, y < 0,
(1)

where a, b, c are the given analytic functions of their arguments that have
real values for real (x, y), and u(x, y) is the real function we want to define.

Let Ω be a simply connected domain on the plane of a complex variable
z = x + iy, bounded by a curve σ from the class C2 having ends at the
points C1(0, 0) and C2(1, 0), lying in an upper half-plane y > 0 and having
the characteristics CC1 : y = −x, CC2 : y = x−1, C =

(
1
2 ,−1

2

)
of equation

(1).
We use the following notation: Ω+, Ω− are respectively an elliptic and

a hyperbolic part of the mixed domain Ω; J = {x : 0 < x < 1} is the
unit interval of the straight line y = 0; θ(x) = x

2 − i x
2 is an affix of the

intersection point of equation (1) coming out from a point x ∈ J with
characteristic CC1.

Under a regular solution of equation (1) in the domain Ω we will under-
stand a function u(x, y) ∈ C(Ω) ∩ C1(Ω) ∩ C2(Ω+ ∪ Ω−) that satisfies the
equation in Ω+ ∪Ω− and is such that at the ends of the interval J uy(x, 0)
may tend to infinity of order less than one.
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Problem A. Find a regular solution u(x, y) of equation (1) in the
domain Ω that satisfies the conditions

(pux + quy + λu)
∣∣
σ

= ϕ ∀(x, y) ∈ σ, (2)
d

dx
u[θ(x)] = α∗(x)uy(x, 0) + β∗(x) ∀x ∈ J , (3)

where ϕ, p, q, λ ∈ C1,h, 0 ≤ h = const < 1, a ∈ C(J ) ∩ C1(J ), b ∈ C(J )
are the given functions, and p2 + q2 6= 0, α∗(x) 6= −1

2 ∀x ∈ J .

Let us assume that there exists a Cauchy solution for a string oscillation
equation in the domain Ω− under the initial conditions

u(x, 0) = τ(x), uy(x, 0) = ν(x),

u(x, y) =
τ(x + y) + τ(x− y)

2
+

1
2

∫ x+y

x−y
ν(t) dt.

If we take condition (3) into account, it is not difficult to obtain the fol-
lowing functional relation between the functions τ(x) and ν(x) transferred
from Ω− onto J

(1 + 2α∗(x)) ν(x) = τ ′(x)− 2β∗(x). (4)

Instead of the real variables x and y, (x, y) ∈ Ω+, let us introduce the
complex variables z = x+iy, z = x−iy. Then equation (1) can be rewritten
as follows:

∂2

∂z∂z
+ A(z, z)

∂u

∂z
+ A(z, z)

∂u

∂z
+ C(z, z)u = 0, (5)

where

4A(z, z) = a

(
z + z

2
,
z − z

2i

)
+ ib

(
z + z

2
,
z − z

2i

)
,

4C(z, z) = c

(
z + z

2
,
z − z

2i

)
.

If we use the formulas

∂

∂x
=

∂

∂z
+

∂

∂z
,

∂

∂y
= i

∂

∂z
− i

∂

∂z
,

then the boundary condition (2) takes the form

H(s)
∂u

∂t
+ H(s)

∂

∂t
+ λ(s)u = ϕ(s),

H(s) = p(s) + iq(s).
(6)
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Let us make use of the general representation of regular solutions of
equation (1) in Ω+ by analytic functions ω(z) [1]

u(x, y) = Re
{

α(z, z)ω(z) +
∫ z

p0

β(z, z, t)ω(t) dt

}
, (7)

where ω(z) is an arbitrary analytic function in the domain Ω+ that satisfies
the condition Imω(p0) = 0, p0 ∈ Ω+, and α(z, z), β(z, z, t) are the entire
functions of their arguments

α(z, z) = exp
(
−

∫ z

0
A(z, t) dt

)
,

β(z, z, t) =
∫ z

0
V (z, z; t, t) dt,

where V (z, z; t, t) is uniquely defined by the following conditions: 1) V (z, z; t, t)
is a solution of the differential equation (5), and 2)

V (z, t; t, t) = γ(t, t) exp
(
−

∫ z

t
A(t1, t) dt1

)
,

V (t, z; t, t) = γ(t, t) exp
(
−

∫ z

t
A(t, t1) dt1

)
,

−γ(z, z) =
∂α(z, z)
∂z∂z

+ A(z, z)
∂α(z, z)

∂z
+ A(z, z)

∂α(z, z)
∂z

+ C(z, z)α(z, z).

To define the function V , we must solve the Goursat problem in a
complex domain. The solution of the problem can always be found by the
method of successive approximations [1].

I. N. Vekua proved [1] that if ω(z) ∈ C1,h(Ω+) is an analytic function in
the simply connected domain Ω+ that satisfies the condition Imω(z)(p0) =
0, then there exists a unique real function µ(t) ∈ C0,h such that the formula

ω(z) =
∫

∂Ω+

µ(t) log e
(
1− z

t

)
dSt (8)

holds, where dSt is an element of an arc of the boundary ∂Ω+, while
log e

(
1− z

t

)
, z ∈ Ω+, t ∈ ∂Ω+, is understood as the branch of this function

which is equal to zero for z = 0.
By means of (7) and (8), the boundary condition (6) can be rewritten

as

α1(t)µ(t) + β1(t)
∫

∂Ω+

µ(t1) dt1
t1 − t

+
∫

∂D+

K(t, t1)µ(t1) dt1 = ϕ(t), t ∈ ∂D+ \ C1C2, (9)
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where

α1(t) = Re
(
πit ′α(t, t)H(t)

)
,

β1(t) = Im
(−it ′α(t, t)H(t)

)

and
∫

∂Ω+

K(t, t1)µ(t1) dt1 is a completely defined general operator.

Using the general representation of regular solutions in Ω+, we find

τ ′(t) = α̃1(t)µ(t) + β̃1(t)
∫

∂Ω+

µ(t1) dt1
t1 − t

+K∞(µ), (10)

ν(t) = α̃2(t)µ(t) + β̃2(t)
∫

∂Ω+

µ(t1) dt1
t1 − t

+K∈(µ), (11)

where

α̃1(t) = Re
(−πiα(t, t)t ′

)
, β̃1(t) = Im

(−iα(t, t)t ′
)
,

α̃2(t) = Re
(
πα(t, t)t ′

)
, β̃1(t) = Im

(
iα(t, t)t ′

)
,

and K∞(µ), K∈(µ) are completely defined integral operators.
The substitution of (10) and (11) into (4) gives

α3(t)µ(t) + β3(t)
∫

∂D+

µ(t1) dt1
t1 − t

+K3(µ) = ψ̃(t), t ∈ (′,∞), (12)

where

α3(t) = α̃1(t)− (1 + 2α∗(t))α̃2(t) = Re
(−π(i + 1 + 2α∗(t))α(t, t)t ′

)
,

β3(t) = β̃1(t)− (1 + 2α∗(t))β̃2(t) = Im
(−(i + 1 + 2α∗(t))α(t, t)t ′

)
.

Let us write equations (9) and (12) in the form of one singular integral
equation on the entire boundary ∂D+:

α4(t)µ(t) + β4(t)
∫

∂D+

µ(t1) dt1
t1 − t

+K4(µ) = {(t), (13)

where

α4(t) =

{
α1(t), t ∈ ∂D+ \ C1C2,

α3(t), t ∈ C1C2,
β4(t) =

{
β1(t), t ∈ ∂D+ \ C1C2,

β3(t), t ∈ C1C2,

f(t) =

{
ϕ(t), t ∈ ∂D+ \ C1C2,

2β∗(t), t ∈ C1C2,

K4(µ) is a completely defined compact linear integral operator.
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Remark. In the sequel it will be assumed that α4(t) and β4(t) are contin-
uous at the point t = 0, i.e. p(0)+q(0) = 0 and (1+ i)p(0) = i+1+2α∗(0).

A solution µ(t) of the singular integral equation (13) is sought in the
space H∗(∂D+); the node of ∂D+ is assumed to lie at the point C2(1, 0)
[3].

Assuming that

H(t) = (p + iq)(t) 6= 0, t ∈ σ,

we write

ω(t) =
α4(t)− iπβ4(t)
α4(t) + iπβ4(t)

.

The index κ of the singular integral equation (13) in the class H∗(∂D+)
is defined in the following manner [3].

We denote by arg ω−(t) and arg ω+(t) the continuous branches of the
argument of functions on ∂D+ \ σ and σ, respectively.

Let
d =

1
2π

arg ω−(C2)− 1
2π

arg ω+(C2).

The index κ is defined by the formula

κ =

{
−[d]− 1 if d /∈ Z,

−d if d ∈ Z,
(14)

where Z is the set of integer numbers, [d] is an integer part of the number
d.

Theorem 1. Let the following conditions be fulfilled:

H(t) = (p + iq)(t) 6= 0, t ∈ σ,

(1 + i)p(0) = 1 + 2α∗(0) + i,

p(0) + q(0) = 0, ϕ(0) = β∗(0) = 0.

Then Problem A is Noetherian and its index is given by formula (14).
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