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Abstract

In the present work, on the basis of rational splitting of cosine operator-function,

there is constructed fourth order accuracy decomposition scheme for nonhomogeneous

hyperbolic equation, when the main operator is self-adjoint positively defined and is

represented as a sum of two addends. Stability of the constructed scheme is shown

and the error of approximate solution is estimated.
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Introduction

As it is known, the solution of Cauchy problem for nonhomogeneous hyper-
bolic equation can be given by means of sine and cosine operator functions,
where square root from the main operator is included in the argument. Us-
ing this formula, for the equally distanced values of the time variable, the
precise three-layer semi-discrete scheme can be constructed, whose tran-
sition operator is a cosine operator function. Main purpose of the work
is construction of decomposition scheme for abstract hyperbolic equation
by means of the above-mentioned scheme basing on splitting of cosine-
operator function. Splitting of cosine operator-function can be carried out
using cosine-operator functions, as well as using rational operator-functions.
Schemes of rational splitting have important practical value, as by means
of them it is possible to carry out numerical calculations.

D. Gordeziani and A. Samarskii in the works [1] - [3] constructed and
investigated first and second order precision decomposition schemes for
hyperbolic equation. Qin Sheng, Voss David A., Khaliq Abdul Q. M. in the
work [4] constructed second order precision decomposition scheme for sin-
Gordon equation. It has to be pointed out that these authors constructed
the scheme using exponential splitting and then obtained the corresponding
rational splitting using Pade approximation.
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In the present work, on the basis of rational splitting of cosine operator-
function, there is constructed fourth order accuracy decomposition scheme
for nonhomogeneous hyperbolic equation, when the main operator is self-
adjoint positively defined and is represented as a sum of two addends.
Stability of the constructed scheme is shown and the error of approximate
solution is estimated.

1 Statement of the Problem and Rational Decom-
position Scheme

Let us consider the Cauchy problem for abstract hyperbolic equation in the
Hilbert space H:

d2u(t)
dt2

+ Au (t) = f (t) , t ∈ [0, T ] , (1.1)

u (0) = ϕ0,
du (0)

dt
= ϕ1, (1.2)

where A is a self-adjoint (A does not depend on t), positively defined (gen-
erally unbounded) operator with the definition domain D (A), which is
everywhere dense in H, D (A) = H, A = A∗ and

(Au, u) ≥ a ‖u‖2 , ∀u ∈ D (A) , a = const > 0,

where by ‖·‖ and (·, ·) denotes respectively the norm and scalar product
in H; ϕ0 and ϕ1 are given vectors from H; u (t) is a continuous, twice
continuously differentiable, searched function with values in H, f (t) is a
given function with values in H.

It is known that if ϕ0 ∈ D (A) , ϕ1 ∈ D
(
A1/2

)
and f (t) ∈ C1 ([0, T ] ; H),

then there exists such twice continuously differentiable function u (t), which
satisfies equation (1.1) and initial conditions (1.2) (see [5], Chapter III, \1
). In this case the solution is given by the following formula:

u(t) = cos
(
tA1/2

)
ϕ0 + A−1/2 sin

(
tA1/2

)
ϕ1

+

t∫

0

sin
(
(t− s) A1/2

)
A−1/2f (s) ds, (1.3)

where operator functions cos
(
tA1/2

)
and sin

(
tA1/2

)
are defined by gener-

alized Euler formulas:

cos
(
tA1/2

)
=

1
2

(
e−it

√
A + eit

√
A
)

,

sin
(
tA1/2

)
=

1
2i

(
eit
√

A − e−it
√

A
)

,
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where
{

e±it
√

A
}

is a unitary group of operators generated by operators(±iA1/2
)
.

It is proved, that there exists a limit lim
n→∞

(
I ± t

n iA1/2
)−n

ϕ (I is a unit

operator), for any ϕ ∈ H and this limit is defined as e±it
√

Aϕ (see [6],
Chapter IX).

Let A = A1 + A2, where A1 and A2 are self-adjoint, positively defined
operators.

Let us introduce a grid set:

ωτ =
{

tk = kτ, k = 0, 1, ...n, n > 1, τ =
T

n

}
.

From formula (1.3) it can be easily obtained the following three-point re-
current relation:

u(tk+1) = 2 cos
(
τA1/2

)
u(tk)− u (tk−1) + τ2ψk, (1.4)

where

τ2ψk =

tk+1∫

tk−1

sin
(
(tk+1 − s) A1/2

)
f (s) ds

−2 cos
(
τA1/2

) tk∫

tk−1

sin
(
(tk − s) A1/2

)
A−1/2f (s) ds. (1.5)

Let us construct decomposition scheme using the formula (1.4):

uk+1 = V (τ) uk − uk−1 + τ2ψ̃k, k = 1, ..., n− 1, (1.6)

u0 = ϕ0, u1 =
1
2

(
V (τ) ϕ0 + τV

(
τ√
3

)
ϕ1

)
+ τ2ϕ2, (1.7)

where

V (τ) = V0 (τ ; A1, A2) + V0 (τ ; A2, A1) , (1.8)

V0 (τ ; A1, A2) =
(
I + ατ2A1

)−1 (
I + λτ2A2

)−1 (
I + ατ2A1

)−1
,

ψ̃k =
(

I +
1
12

τ2A1

)−1 (
I +

1
12

τ2A2

)−1

f (tk) +
1
12

τ2f ′′ (tk) ,

ϕ2 =
1
2
f (0) +

τ

6
f ′ (0) +

τ2

24
f ′′ (0)− 2τ2

3
Af ′ (0) ,
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where λ = 1
2 ± 1√

6
, α = 1−λ

2 ± i

√
3−(1−λ)2

2 , α is a conjugate of α. f (t) is
a right hand side of the equation (1.1), ϕ0 and ϕ1 are initial values, τ is a
time step, n > 1 is a number of division of time variable.

We declare function uk as an approximation of u (t) in the t = tk.
In order to conduct numerical calculations of the scheme (1.6)-(1.7), it

is necessary to inverse operator I + γτ2Aj (j = 1, 2, γ = λ, α, α), which
is equivalent to solving of the following equation:

ϕ + γτ2Ajϕ = f,

where ϕ is unknown function and f is a given function.

2 Stability of the Rational Decomposition Scheme

To investigate stability of the scheme (1.6)-(1.7) we need the following
lemma (see [7]).

Lemma 2.1 Let the Recurrent relation

uk+1 = Luk − Suk−1 + fk

be given, where L and S are the commutative operators acting in the linear
space X; u0, u1 and fk are the given vectors from this space. Then the
following formula is valid:

uk+1 = Uk (L, S) u1 − SUk−1 (L, S) u0 +
k∑

i=1

Uk−i (L, S) fi, (2.9)

where the operator polynomials Uk (L, S) satisfy the following relation

Uk+1 (L, S) = LUk (L, S)− SUk−1 (L, S) , k = 1, 2, ..., (2.10)
U0 (L, S) = I, U1 (L, S) = L.

Note that (2.9) can be easily proved using the method of induction.
In previous works, using formula (2.9), we have investigated three-layer

semi-discrete schemes for abstract parabolic and hyperbolic equations (see
[7], [8]).

Let us continue investigation of stability of the scheme (1.6)-(1.7). The
following theorem takes place.

Theorem 2.1 Suppose A1 and A2 are self-adjoint positively defined oper-
ators. Then for the scheme (1.6)-(1.7) the following estimate is valid:

‖uk‖ ≤ ‖ϕ0‖+ ν ‖ϕ1‖+ ντ ‖ϕ2‖
+ νtk

(
max

t∈[0,tk]
‖f (t)‖+

τ2

12
max

t∈[0,tk]

∥∥f ′′ (t)
∥∥
)

, k = 1, ..., n,
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where ν =
(
1 + τ2ν0

)
/
√

2ν0, ν0 is minimal of lower boundaries of operators
A1 and A2.

Proof. According to formula (2.9), we have

uk+1 = Uk (L, I) u1 − Uk−1 (L, I) u0 +
k∑

i=1

Uk−i (L, I) ψ̃i, (2.11)

where L = V (τ) . Substituting the value of u1 into (2.11), we obtain:

uk+1 =
(

1
2
LUk (L, I)− Uk−1 (L, I)

)
ϕ0 +

1
2
τUk (L, I) V

(
τ√
3

)
ϕ1

+τ2Uk (L, I) ϕ2 + τ2
k∑

i=1

Uk−i (L, I) ψ̃i. (2.12)

Let us consider scalar polynomial Uk (x, 1) corresponding to operator poly-
nomial Uk (L, I). It is important that the polynomials Uk (2x, 1) are the
second kind Chebyshev polynomials, for which the following representation
is valid (see e.g. [9], Chapter II)

Uk (2x, 1) =
sin ((k + 1) arccosx)√

1− x2
, x ∈]− 1, 1[.

Hence it follows that

Uk (x, 1) =
2 sin

(
(k + 1) arccos x

2

)
√

4− x2
, x ∈]− 2, 2[. (2.13)

Therefore we obtain the following well-known estimate:

|Uk (x, 1)| ≤ 2√
4− x2

, x ∈]− 2, 2[. (2.14)

Let us estimate the norm of the operator
(
I + ατ2A1

)−1. As, due to con-
ditions of the theorem, A1 is self-adjoint and positively defined operator,
we have:

∥∥∥
(
I + ατ2A1

)−1
∥∥∥ = sup

x∈[ν0,+∞)

1
|1 + ατ2x|

= sup
x∈[ν0,+∞)

1√
1 + (1− λ) τ2x + 3

4τ4x2

≤ 1
1 + 1

2 (1− λ) τ2ν0
. (2.15)

96



+ The Fourth Order of Accuracy ... AMIM Vol.13 No.2, 2008

Analogously we obtain:
∥∥∥
(
I + ατ2A1

)−1
∥∥∥ ≤ 1

1 + 1
2 (1− λ) τ2ν0

, (2.16)

∥∥∥
(
I + λτ2A2

)−1
∥∥∥ ≤ 1

1 + λτ2ν0
. (2.17)

From the estimates (2.15), (2.16) and (2.17) it follows that

‖V0 (τ ; A1, A2)‖ ≤ 1(
1 + 1

2 (1− λ) τ2ν0

) 1
(1 + λτ2ν0)

1(
1 + 1

2 (1− λ) τ2ν0

)

≤ 1
1 + τ2ν0

. (2.18)

Analogously we obtain

‖V0 (τ ; A2, A1)‖ ≤ 1
1 + τ2ν0

. (2.19)

From (1.8), taking into account (2.18) and (2.19), we obtain:

‖V (τ)‖ ≤ 2
1 + τ2ν0

. (2.20)

As V (τ) is self-adjoint operator, from (2.20) it follows that

Sp (V (τ)) ⊂ [−ν1, ν1] , (2.21)

where ν1 = 2/
(
1 + τ2ν0

)
.

Let us estimate the norm of the operator τUk (L, I). As is known, when
the argument represents a self-adjoint bounded operator, the norm of the
operator polynomial is equal to the C-norm of the corresponding scalar
polynomial on the spectrum (see, e.g., [10] Chapter VII). Due to this fact,
from (2.14) with account of (2.21) we obtain

τ ‖Uk (L, I)‖ = τ max
x∈Sp(L)

|Uk (x, 1)| ≤ τ max
x∈[−ν1,ν1]

2√
4− x2

=
2τ√
4− ν2

1

≤ ν. (2.22)

Now let us estimate the norm of the operator 1
2LUk (L, I)−Uk−1 (L, I).

The scalar polynomial Uk (x, 1) satisfies the following recurrent relation:

Uk+1 (x, 1) = xUk (x, 1)− Uk−1 (x, 1) , k = 1, 2, ..., (2.23)
U0 (x, 1) = 1, U1 (x, 1) = x.
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Due to recurrent relation (2.23) and formula (2.13), we have

1
2
xUk (x, 1)− Uk−1 (x, 1) =

1
2

[(xUk (x, 1)− Uk−1 (x, 1))− Uk−1 (x, 1)]

=
1
2

[Uk+1 (x, 1)− Uk−1 (x, 1)]

=
sin

(
(k + 2) arccos x

2

)− sin
(
k arccos x

2

)
√

4− x2

=
2 cos

(
(k + 1) arccos x

2

)
sin

(
arccos x

2

)
√

4− x2

=
2 cos

(
(k + 1) arccos x

2

)√
1− x2

4√
4− x2

= cos
(
(k + 1) arccos

x

2

)
, x ∈ [−2, 2] .

Hence we obtain
∣∣∣∣
1
2
xUk (x, 1)− Uk−1 (x, 1)

∣∣∣∣ ≤ 1, x ∈ [−2, 2] . (2.24)

Analogously to (2.22), according to the inequality (2.24) we have:
∥∥∥∥
1
2
LUk (L, 1)− Uk−1 (L, 1)

∥∥∥∥ ≤ 1. (2.25)

From (1.8) it follows the estimate
∥∥∥∥V

(
τ√
3

)∥∥∥∥ ≤ 2. (2.26)

Let us estimate
k∑

i=1
Uk−i (L, I) ψ̃i.

∥∥∥∥∥
k∑

i=1

Uk−i (L, I) ψ̃i

∥∥∥∥∥ ≤ τ
k∑

i=1

‖τUk−i (L, I)‖

×
(∥∥∥∥∥

(
I +

1
12

τ2A1

)−1 (
I +

1
12

τ2A2

)−1
∥∥∥∥∥ ‖f (ti)‖

+
τ2

12

∥∥f ′′ (ti)
∥∥
)

≤ νtk

(
max

t∈[0,tk]
‖f (t)‖+

τ2

12
max

t∈[0,tk]

∥∥f ′′ (t)
∥∥
)

. (2.27)
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From (2.12), taking into account (2.22), (2.25), (2.26) and (2.27), we
obtain the desired inequality. ¤

Now let us show that the scheme (1.6)-(1.7) remains stable after small
perturbation of the operator V (τ). With this purpose, along with the
scheme (1.6)-(1.7) (for simplicity let us consider homogenous case), we con-
sider the following scheme:

ũk+1 = Ṽ (τ) ũk − ũk−1, k = 1, ..., n− 1, (2.28)

ũ0 = ϕ̃0, ũ1 =
1
2

(
Ṽ (τ) ϕ̃0 + τ Ṽ

(
τ√
3

)
ϕ̃1

)
+ τ2ϕ̃2, (2.29)

where Ṽ (τ) is a bounded operator in H, ϕ̃0, ϕ̃1 and ϕ̃2 are the given vectors
from H.

The following theorem takes place.

Theorem 2.2 If
∥∥∥V (τ)− Ṽ (τ)

∥∥∥ ≤ ετ2, ε = const > 0, then the estimate
is valid:

‖uk+1 − ũk+1‖ ≤ ετν
k∑

i=1

exp (ενtk−i) δi−1 + δk, k = 1, ..., n− 1,

where

δk = ‖ϕ0 − ϕ̃0‖+ ν ‖ϕ1 − ϕ̃1‖+ ντ ‖ϕ2 − ϕ̃2‖
+

1
2
εντ

(
‖ϕ̃0‖+

1
3
τ ‖ϕ̃1‖

)
+ ενtk (‖ϕ0‖+ ν ‖ϕ1‖) ,

uk and ũk are solutions of the systems (1.6)-(1.7) and (2.28)-(2.29), re-
spectively.

Proof. From (1.6) and (2.28) we have

uk+1 − ũk+1 = V (τ) (uk − ũk)− (uk−1 − ũk−1) +
(
V (τ)− Ṽ (τ)

)
ũk.

Hence, using the formula (2.9), we obtain

uk+1 − ũk+1 = Uk (L, I) (u1 − ũ1)− Uk−1 (L, I) (u0 − ũ0)

+
k∑

i=1

Uk−i (L, I)
(
V (τ)− Ṽ (τ)

)
ũi.
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Due to formulas (1.7) and (2.29), we obtain

uk+1 − ũk+1 =
(

1
2
LUk (L, I)− Uk−1 (L, I)

)
(ϕ0 − ϕ̃0)

+
1
2
τUk (L, I) V

(
τ√
3

)
(ϕ1 − ϕ̃1)

+τ2Uk (L, I) (ϕ2 − ϕ̃2)

+
1
2
Uk (L, I)

[(
V (τ)− Ṽ (τ)

)
ϕ̃0

+ τ

(
V

(
τ√
3

)
− Ṽ

(
τ√
3

))
ϕ̃1

]

+
k∑

i=1

Uk−i (L, I)
(
V (τ)− Ṽ (τ)

)
ũi. (2.30)

From (2.30), according to inequalities (2.22), (2.25) and (2.26) and condi-
tions of the theorem, we have

‖uk+1 − ũk+1‖ ≤ δ + c
k∑

i=1

‖ũi‖ ≤ δ + c
k∑

i=1

‖ui‖+ c
k∑

i=1

‖ui − ũi‖ , (2.31)

where c = ετν and

δ = ‖ϕ0 − ϕ̃0‖+ ν ‖ϕ1 − ϕ̃1‖
+ντ ‖ϕ2 − ϕ̃2‖+ εντ

(
1
2
‖ϕ̃0‖+

1
6
τ ‖ϕ̃1‖

)
.

From (2.31), with account of the estimate obtained in theorem 3.2, we
have

εk+1 ≤ c

k∑

i=1

εi + δk, (2.32)

where εi = ‖ui − ũi‖ and

δk = δ + ενtk (‖ϕ0‖+ ν ‖ϕ1‖) .

Using induction method, from (2.32) we obtain (the discrete analog of
Gronwall’s lemma)

εk+1 ≤ c (1 + c)k−1 ε1 + c
k−1∑

i=1

(1 + c)k−i−1 δi + δk.

Hence, taking into account that ε1 ≤ δ0 and (1 + c)k ≤ exp (ενtk) , we
obtain the inequality under proof. ¤

Result: If ‖ϕ0 − ϕ̃0‖ → 0, ‖ϕ1 − ϕ̃1‖ → 0, ‖ϕ2 − ϕ̃2‖ and ε → 0, then
‖uk − ũk‖ → 0, k = 1, ..., n.
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3 Estimate of Error of the Approximated Solu-
tion

We need the natural powers of the operator A = A1 +A2. They are usually
defined as follows:

A2 = (A1 + A2)
2 =

(
A2

1 + A2
2

)
+ (A1A2 + A2A1) ,

A3 = (A1 + A2)
3 =

(
A3

1 + A3
2

)
+

(
A2

1A2 + A1A
2
2 + A2A

2
1 + A2

2A1

)

+(A1A2A1 + A2A1A2) .

Analogously is defined (A1 + A2)
m, m > 3. It is obvious that the definition

domain D (Am) of the operator Am is the intersection of definition domains
of its addends.

Let us introduce the following notations:

‖ϕ‖A = ‖A1ϕ‖+ ‖A2ϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
∥∥A2

1ϕ
∥∥ +

∥∥A2
2ϕ

∥∥ + ‖A1A2ϕ‖+ ‖A2A1ϕ‖ , ϕ ∈ D
(
A2

)
,

where ‖·‖ is a norm in H. ‖ϕ‖Am , m > 2, are defined analogously.
For estimate error of approximate solution we will need the following

lemma (in the sequel c denotes a positive constant).

Lemma 3.1 If f (t) ∈ C(IV ) ([0, T ] ; H), f ′′ (t) ∈ D (A) and f (t) ∈ D
(
A2

)
for every t ∈ [0, T ] then the following estimation takes place:

∥∥∥ψk − ψ̃k

∥∥∥ ≤ cτ4

(
max

t∈[0,tk]

∥∥∥f (IV ) (t)
∥∥∥

+ max
t∈[0,tk]

∥∥f ′′ (t)
∥∥

A
+ max

t∈[0,tk]
‖f (t)‖A2

)
. (3.33)

Proof. From (1.5) for τ2ψk we will have

τ2ψk =

tk+1∫

tk−1

sin
(
(tk+1 − s) A1/2

)
A−1/2f (s) ds

−2 cos
(
τA1/2

) tk∫

tk−1

sin
(
(tk − s) A1/2

)
A−1/2f (s)

=

τ∫

−τ

sin
(
(s + τ) A1/2

)
A−1/2f (tk − s) ds

101



AMIM Vol.13 No.2, 2008 J. Rogava, M. Tsiklauri +

−2 cos
(
τA1/2

) τ∫

0

sin
(
sA1/2

)
A−1/2f (tk − s) ds

=




τ∫

−τ

(
(s + τ)− (s + τ)3

6
A

)
f (tk − s) ds + r1 (τ)




+


−2

(
I − τ2

2
A

) τ∫

0

sin
(
sA1/2

)
A−1/2f (tk − s) ds + r2 (τ)




=

τ∫

−τ

(s + τ) f (tk − s) ds−
τ∫

−τ

(s + τ)3

6
Af (tk − s) ds

−2

τ∫

0

sin
(
sA1/2

)
A−1/2f (tk − s) ds

+τ2A

τ∫

0

sin
(
sA1/2

)
A−1/2f (tk − s) ds + r1 (τ) + r2 (τ)

=

τ∫

−τ

(s + τ) f (tk − s) ds

+


−

τ∫

−τ

(s + τ)3

6
A

(
f (tk)− sf ′ (tk)

)
ds + r3 (τ)




+


−2

τ∫

0

(
s− s3

6
A

)
f (tk − s) ds + r4 (τ)




+


τ2A

τ∫

0

sf (tk − s) ds + r5 (τ)


 + r1 (τ) + r2 (τ)

=

τ∫

−τ

(s + τ) f (tk − s) ds− 2

τ∫

0

sf (tk − s) ds

−
τ∫

−τ

(s + τ)3

6
A

(
f (tk)− sf ′ (tk)

)
ds

+


1

3

τ∫

0

s3A
(
f (tk)− sf ′ (tk)

)
ds + r6 (τ)
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+


τ2A

τ∫

0

s
(
f (tk)− sf ′ (tk)

)
ds + r7 (τ)


 +

5∑

j=1

rj (τ)

=

τ∫

0

(τ − s) (f (tk + s) + f (tk − s)) ds−
τ∫

−τ

(s + τ)3

6
Af (tk) ds

+

τ∫

−τ

s (s + τ)3

6
Af ′ (tk) ds

+
1
3




τ∫

0

s3Af (tk) ds−
τ∫

0

s4Af ′ (tk) ds


 +

τ4

2
Af (tk)

−τ5

3
Af ′ (tk) +

7∑

j=1

rj (τ)

=


2

τ∫

0

(τ − s) f (tk) ds +

τ∫

0

s2 (τ − s) f ′′ (tk) ds + r8 (τ)




−2τ4

3
Af (tk) +

2τ5

5
Af ′ (tk)

+
τ4

12
Af (tk)− τ5

15
Af ′ (tk) +

τ4

2
Af (tk)− τ5

3
Af ′ (tk) +

7∑

j=1

rj (τ)

= τ2f (tk) +
τ4

12
f ′′ (tk)− τ4

(
2
3
− 1

12
− 1

2

)
Af (tk)

+τ5

(
2
5
− 1

15
− 1

3

)
Af ′ (tk) +

8∑

j=1

rj (τ)

= τ2f (tk)− τ4

12
Af (tk) +

τ4

12
f ′′ (tk) +

8∑

j=1

rj (τ)

= τ2

(
I +

1
12

τ2A

)−1

f (tk) +
τ4

12
f ′′ (tk) +

9∑

j=1

rj (τ) , (3.34)

where

‖rj (τ)‖ ≤ cτ6 max
t∈[0,tk]

‖f (t)‖A2
, j = 1, 4, 5, 9, (3.35)

‖rj (τ)‖ ≤ cτ6 max
t∈[0,tk]

∥∥f ′′ (t)
∥∥

A
, j = 3, 6, 7, (3.36)

‖r8 (τ)‖ ≤ cτ6 max
t∈[0,tk]

∥∥∥f (IV ) (t)
∥∥∥ , (3.37)
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‖r2 (τ)‖ = cτ4

∥∥∥∥∥∥
A2

τ∫

0

sin
(
sA1/2

)
A−1/2f (tk − s) ds

∥∥∥∥∥∥

= cτ4

∥∥∥∥∥∥

τ∫

0




s∫

0

cos
(
ξA1/2

)
dξ


A2f (tk − s) ds

∥∥∥∥∥∥
≤ cτ6 max

t∈[0,tk]
‖f (t)‖A2

. (3.38)

From (3.34) for ψk we have:

ψk =
(

I +
1
12

τ2A

)−1

f (tk) +
τ2

12
f ′′ (tk) + Rk (τ) , (3.39)

where for Rk (τ) according to the inequalities (3.35)-(3.38) we have the
following estimation:

‖Rk (τ)‖ ≤ 1
τ2

∥∥∥∥∥∥

9∑

j=1

rj (τ)

∥∥∥∥∥∥
≤ cτ4

(
max

t∈[0,tk]

∥∥∥f (IV ) (t)
∥∥∥

+ max
t∈[0,tk]

∥∥Af ′′ (t)
∥∥ + max

t∈[0,tk]

∥∥A2f (t)
∥∥
)

. (3.40)

As it is known the following estimation takes place

∥∥∥∥∥

[(
I +

1
12

τ2A

)−1

−
(

I +
1
12

τ2A1

)−1 (
I +

1
12

τ2A2

)−1
]

f (tk)

∥∥∥∥∥
≤ cτ4 ‖f (tk)‖A2 . (3.41)

From (1.8) and (3.34) taking into account (3.40) and (3.41) we will get the
sought estimation. ¤

Theorem 3.1 Let the following conditions be fulfilled:

(a) λ = 1
2 ± 1√

6
, α = 1−λ

2 ± i

√
3−(1−λ)2

2 ;
(b) A,A1 and A2 are self-adjoint, positively defined (generally unbounded)

operators;
(c) ϕ0 ∈ D

(
A3

)
, ϕ1 ∈ D

(
A2+1/2

)
;

(d) f (t) ∈ C(IV ) ([0, T ] ; H), f ′′ (t) ∈ D (A) and f (t) ∈ D
(
A2+1/2

)
for

every t ∈ [0, T ] .
Then for error of approximate solution obtained by scheme (1.6)-(1.7),
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the following estimate holds:

‖u(tk)− uk‖ ≤ cντ4

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + tk max

1≤i≤k
‖u (ti)‖A3

+ max
t∈[0,τ ]

∥∥f ′ (t)
∥∥

A
+ max

t∈[0,τ ]

∥∥f ′′′ (t)
∥∥

+tk

(
max

t∈[0,tk]

∥∥∥f (IV ) (t)
∥∥∥ + max

t∈[0,tk]

∥∥f ′′ (t)
∥∥

A
+ max

t∈[0,tk]
‖f (t)‖A2

))
.

Proof. Let us note that if ϕ0 ∈ D
(
A3

)
, ϕ1 ∈ D

(
A2+1/2

)
and f (t) ∈

D
(
A2+1/2

)
for every t ∈ [0, T ], then from formula (1.3) automatically fol-

lows that u (t) ∈ D
(
A3

)
for every t ∈ [0, T ] .

According to the following formula (see. [6], p. 603):

A

t∫

r

e−sAds = e−rA − e−tA, 0 ≤ r ≤ t,

we can obtain the expansion

e−tA =
k−1∑

i=0

(−1)i ti

i!
Ai + (−A)k

t∫

0

s1∫

0

...

sk−1∫

0

e−sAdsdsk−1...ds1.

Using this formula we obtain

cos
(
τA1/2

)
=

k∑

i=0

(−1)i τ2i

(2i)!
Ai + Rk (τ, A) , (3.42)

where Rk (τ,A) is a residual member, for which the following estimation is
true:

‖Rk (τ, A) ϕ‖ ≤ 1
(2k + 2)!

τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (3.43)

We denote an error of the approximate solution at t = tk by zk, zk =
u (tk)− uk. Due to formulas (1.4) and (1.6), we have

zk+1 = V (τ) zk − zk−1 + R (τ) u (tk) + τ2
(
ψk − ψ̃k

)
, (3.44)

where
R (τ) = 2 cos

(
τA1/2

)
− V (τ) . (3.45)

Using induction method, we obtain that

(
I + τ2A

)−1 =
k∑

i=0

(−1)i τ2iAi + R̃k (τ,A) , (3.46)
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where
R̃k (τ, A) = (−1)k τ2k+2

(
I + τ2A

)−1
Ak+1. (3.47)

It is obvious that for residual member of R̃k (τ,A) the following estimate
is valid: ∥∥∥R̃k (τ,A) ϕ

∥∥∥ ≤ τ2k+2 ‖ϕ‖Ak+1 , ϕ ∈ D
(
Ak+1

)
. (3.48)

Let us estimate the operator R (τ). We decompose the operator V (τ)
from right to left using the formula (3.46) in the way that each residual
member be of sixth degree respect to τ . Therefore we obtain

V0 (τ ;A3−j , Aj) = W (τ ; A3−j , Aj) + RV (τ ; A3−j , Aj) ,  = 1, 2, (3.49)

where

W (τ ; A3−j , Aj) = I − τ2 ((α + α) A3−j + λAj)
+τ4

((
α2 + αα + α2

)
A2

3−j + αλA3−jAj

+ αλAjA3−j + λ2A2
j

)
,

RV (τ ; A3−j , Aj) =
(
I + ατ2A3−j

)−1 (
I + λτ2Aj

)−1
R̃2 (τ, αA3−j)

+
(
I + ατ2A3−j

)−1
R̃2 (τ, λAj)

−ατ2
(
I + ατ2A3−j

)−1
R̃1 (τ, λAj)A3−j

+α2τ4
(
I + ατ2A3−j

)−1
R̃0 (τ, λAj) A2

3−j

+R̃2 (τ, αA3−j)− λτ2R̃1 (τ, αA3−j) Aj

+λ2τ4R̃0 (τ, αA3−j) A2
j − ατ2R̃1 (τ, αA3−j) A3−j

+αλτ4R̃0 (τ, αA3−j) AjA3−j

+α2τ4R̃0 (τ, αA3−j) A2
3−j .

From here, taking into account (3.48), we obtain

‖RV (τ ;A3−j , Aj) ϕ‖ ≤ cτ6 ‖ϕ‖A3 , j = 1, 2, ϕ ∈ D
(
A3

)
. (3.50)

From (1.8), using (3.49), we have:

V (τ) = 2I − τ2 (α + α + λ) (A1 + A2)
+τ4

((
α2 + α2 + αα + λ2

) (
A2

1 + A2
2

)

+ λ (α + α) (A1A2 + A2A1)) + R̃ (τ) , (3.51)

where
R̃ (τ) = RV (τ ; A1, A2) + RV (τ ; A2, A1) . (3.52)

106



+ The Fourth Order of Accuracy ... AMIM Vol.13 No.2, 2008

Due to theorem condition (a), parameters α and λ satisfy the following
equalities:

α + α + λ = 1,

α2 + α2 + αα + λ2 =
1
12

,

λ (α + α) =
1
12

.

With account of these equalities, from (3.49) we obtain:

V (τ) = 2I − τ2A +
τ4

12
A2 + R̃ (τ) . (3.53)

Due to (3.42), we have:

2 cos
(
τA1/2

)
= 2I − τ2A +

τ4

12
A2 + 2R2 (τ, A) . (3.54)

From (3.45), taking into account equalities (3.53), (3.54) and inequali-
ties (3.50), (3.43), we obtain:

‖R (τ) ϕ‖ ≤ 2 ‖R2 (τ,A) ϕ‖+
∥∥∥R̃ (τ) ϕ

∥∥∥ ≤ cτ6 ‖ϕ‖A3 , ϕ ∈ D
(
A3

)
.

(3.55)
According to formula (2.9), from (3.44), we obtain:

zk+1 = Uk (L, I) z1 − Uk−1 (L, I) z0 +
k∑

i=1

Uk−i (L, I) R (τ) u (ti)

+τ2
k∑

i=1

Uk−i (L, I)
(
ψi − ψ̃i

)

= Uk (L, I) z1 +
k∑

i=1

Uk−i (L, I) R (τ) u (ti)

+τ2
k∑

i=1

Uk−i (L, I)
(
ψi − ψ̃i

)
. (3.56)

For z1 we have:

z1 = u (t1)− u1 =
1
2
R (τ) ϕ0 +

(
A−1/2 sin

(
τA1/2

)
− 1

2
τV

(
τ√
3

))
ϕ1

+




τ∫

0

sin
(
(τ − s) A1/2

)
A−1/2f (s) ds− τ2ϕ2


 (3.57)
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Analogously to estimate (3.55), we obtain:
∥∥∥∥
(

A−1/2 sin
(
τA1/2

)
− 1

2
τV

(
τ√
3

))
ϕ1

∥∥∥∥
≤ cτ5 ‖ϕ1‖A2 , ϕ1 ∈ D

(
A2

)
. (3.58)

for integral term we have in formula (3.57):

τ∫

0

sin
(
(τ − s) A1/2

)
A−1/2f (s) ds

=

τ∫

0

(
(τ − s)− (τ − s)3

6
A

)
f (s) ds + r̃1 (τ)

=

τ∫

0

(τ − s) f (s) ds−
τ∫

0

(τ − s)3

6
Af (s) ds + r̃1 (τ)

=




τ∫

0

(τ − s)
(

f (0) + sf ′ (0) +
s2

2
f ′′ (0)

)
ds + r̃2 (τ)




+


−

τ∫

0

(τ − s)3

6
Af (0) ds + r̃3 (τ)


 + r̃1 (τ)

= τ2

(
1
2
f (0) +

τ

6
f ′ (0) +

τ2

24
f ′′ (0)− 2τ2

3
Af ′ (0)

)

+r̃1 (τ) + r̃2 (τ) + r̃3 (τ)

where

‖r̃1 (τ)‖ ≤ cτ6 max
t∈[0,τ ]

‖f (t)‖A2 ,

‖r̃2 (τ)‖ ≤ cτ5 max
t∈[0,τ ]

∥∥f ′′′ (t)
∥∥ ,

‖r̃3 (τ)‖ ≤ cτ5 max
t∈[0,τ ]

∥∥f ′ (t)
∥∥

A
.

According these inequalities we have:
∥∥∥∥∥∥

τ∫

0

sin
(
(τ − s) A1/2

)
A−1/2f (s) ds− τ2ϕ2

∥∥∥∥∥∥

≤ cτ5

(
max
t∈[0,τ ]

∥∥f ′′′ (t)
∥∥ + max

t∈[0,τ ]

∥∥f ′ (t)
∥∥

A
+ τ max

t∈[0,τ ]
‖f (t)‖A2

)
(3.59)

108



+ The Fourth Order of Accuracy ... AMIM Vol.13 No.2, 2008

From (3.57), with account of (3.55), (3.58) and (3.59), we obtained:

‖z1‖ ≤ cτ5

(
‖ϕ1‖A2 + τ ‖ϕ0‖A3 + max

t∈[0,τ ]

∥∥f ′′′ (t)
∥∥

+ max
t∈[0,τ ]

∥∥f ′ (t)
∥∥

A
+ τ max

t∈[0,τ ]
‖f (t)‖A2

)
. (3.60)

From the formula (3.56), taking into account inequalities (3.55), (2.22),
(3.60) and (3.33), we obtain the sought estimation. ¤
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