
ON RADON–NIKODYM DENSITY ESTIMATES OF THE SOLUTION
OF DIFFERENTIAL EQUATIONS WITH A RANDOM RIGHT-HAND

PART

T. Buadze∗, E. Nadaraya∗∗, G. Sokhadze∗∗

∗ Georgian Technical University
∗∗ I. Javakhishvili Tbilisi State University
(Received: 11.10.08; accepted: 17.02.09)

Abstract

The paper deals with some questions arising in the random analysis and statistical

estimation theory. The approaches are outlined to the solution of the posed problems

by methods of nonparametric statistical analysis.
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Statistical estimation for random processes is a rapidly developing area
of research. It is understood that in the general case this problem is equiv-
alent to the following problem: Let X1, X2, . . . , Xn be a sample of inde-
pendent, identically distributed random elements in the separable Hilbert
space H. Let B be the Borel σ-algebra in H, and µ be a probability mea-
sure on B which is the distribution of X1. It is required to construct an
estimate of µ by sample observation data.

In the general case this problem is not solvable to an extent to which
it is solved in the finite-dimensional case (by the Glivenko–Cantelli theo-
rem). Counter-examples of this kind were constructed by V. V. Sazonov
[1] who indicated some situations in which the problem can be solved in
particular cases. On the other hand, as recent studies have shown [2]–
[4], we may succeed in estimating some important characteristics of the
distribution of a measure in the Hilbert space, in particular, of a logarith-
mic derivative with respect to the direction of a subspace – the so-called
Cameron–Martin subspace. Such estimates are based on the limit proce-
dure by finite-dimensional approximations. Such a formulation makes it
possible to apply the sufficiently well developed method of statistical esti-
mation, in particular, estimation of the Rosenblatt–Parzen type. For prac-
tical reasons it would be desirable to find possibilities of applying these
estimates in the problems traditionally considered for measure (distribu-
tion) transformations in the Hilbert space.
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We give two examples of a possible application of these procedures.
Let us consider the differential equation

y′′(t) + a(t)y(t) = w′(t),
y′(0) = y′(1) = 0, 0 ≤ t ≤ 1,

(1)

where a(t) is a Gaussian random process related to the Wiener process

a(t) = b(t) +

1∫

0

A(t, s) dw(s).

Here b(t) and A(t, s) are nonrandom smooth functions. Problem (1) is
understood as an equivalent form of the equation

y′(t) +

t∫

0

α(s)y(s) ds = w(t),

with the additional condition
1∫
0

α(s)y(s) ds = w(1) (mod P ).

Our aim is to construct the solution of problem (1). For this we consider
the direct and the inverse initial problem

y′′1(t) + α(t)y1(t) = 0,
y1(0) = 1, y′1(0) = 0

(2)

and
y′′2(t) + α(t)y2(t) = 0,
y2(1) = 1, y′2(1) = 0.

(3)

Using the method of successive approximations, for the solution we can
write

y1(t)=1+
∞∑

k=1

(−1)k

1∫

0

λ1∫

0

λ2∫

0

· · ·
λ2 k−1∫

0

α(λ2)α(λ3) · · ·α(λ2k) dλ2k · · · dλ3 dλ2 dλ1

and

y2(t)=1+
∞∑

k=1

(−1)k

1∫

t

1∫

λ1

1∫

λ2

· · ·
1∫

λ2 k−1

α(λ2)α(λ3) · · ·α(λ2k) dλ2k · · · dλ3 dλ2 dλ1.

The Wronskian of this system is

V (t) = y1(1) 6= 0 (mod P )
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and therefore the system y1, y2 is independent.
Let us now construct the Green function

G(t, s) =

{
y1(t)y2(s)V −1(0) for t ≤ s

y1(t)y2(s)V −1(0) for t > s
. (4)

As shown in [5], the solution of problem (1) can be written as an extended
Skorokhod stochastic integral

y(t) =

1∫

0

〈
G(t, s), dw(s)

〉
. (5)

If we now take into account the fact that an extended stochastic integral
is in fact a logarithmic derivative in a concrete functional space (in our
case in the space L2([0, 1])), then it becomes obvious that the stochastic
estimation procedure can be used for estimating the solution of a problem of
type (1). For this, keeping in mind that we construct estimates on the basis
of finite-dimensional estimates, we must rewrite problem (1) as a system
of equations in the finite-dimensional space Rn and write the estimate of
finite-dimensional solutions using observations. Then we can be sure that
the limit procedure converges.

More specifically, suppose we observe the solution of problem (1):

y1(t), y2(t), . . . , yn(t).

We choose points t1, t2, . . . , tm so that λ = max(ti+1 − ti) → 0. Let us
rewrite (1) in the finite-difference form and consider the matrix of observa-
tions

y1(t1), y1(t2), . . . , y1(tm)
y2(t1), y2(t2), . . . , y2(tm)
. . . . . . . . . . . . . . . . . . . . .

yn(t1), yn(t2), . . . , yn(tm).

We construct the Rosenblatt–Parzen estimate by the following vector ob-
servations:

l̂ m
n (xm) =

λn

n∑
i=1

m∑
s=1

as
nK ′(λn(xs

m − yi(tj)))
m∏

j=1
j 6=s

K(λn(xj
m − yi(tj)))

n∑
i=1

m∏
j=1

K(λn(xj
m − yi(tj)))

.
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The limit of this expression exists as m →∞ and give (5).
The other example concerns the problem

y′ + f(t, y(t)) = ξ′(t),
y(0) = 0 a.s. 0 ≤ t ≤ T,

(6)

where ξ(t) is some differentiable and smooth (for example, Gaussian) pro-
cess.

As is known ([6]), under some natural conditions the measures µy and
µξ are equivalent and the Radon–Nikodym density can be written in the
explicit form (the generalized Girsanov formula)

dµy

dµξ
(ξ) = exp

{
−

T∫

0

f(t, ξ(t)) dw(t)− 1
2

T∫

0

f2(t, ξ(t)) dt

}
.

The principal term in this expression is again the stochastic integral and
it is not required to impose any restrictions like the dependence on “the
past”. Therefore this is an extended stochastic integral and it can be un-
derstood as a logarithmic derivative and we can construct as above finite-
dimensional estimates of this summand and estimate by the limit procedure
the Radon–Nikodym density. Of course, preliminarily, we should rewrite
(7) as a difference equation in the same manner as we have done above for
problem (1).

An analogous problem can be posed in the general case, too, using the
results of [7]. The construction of statistical estimates of measure character-
istics is also of interest in the case where these distributions are generated
by random vector fields [8], [9].
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